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Purpose: The aim of this study was to develop a neural network that accurately and effectively 
segments the median nerve in ultrasound (US) images.
Methods: In total, 1,305 images of the median nerve of 123 normal subjects were used to train 
and evaluate the model. Four datasets from two measurement regions (wrist and forearm) of 
the nerve and two US machines were used. The neural network was designed for high accuracy 
by combining information at multiple scales, as well as for high efficiency to prevent overfitting. 
The model was designed in two parts (cascaded and factorized convolutions), followed by self-
attention over scale and channel features. The precision, recall, dice similarity coefficient (DSC), 
and Hausdorff distance (HD) were used as performance metrics. The area under the receiver 
operating characteristic curve (AUC) was also assessed.
Results: In the wrist datasets, the proposed network achieved 92.7% and 90.3% precision, 
92.4% and 89.8% recall, DSCs of 92.3% and 89.7%, HDs of 5.158 and 4.966, and AUCs of 
0.9755 and 0.9399 on two machines. In the forearm datasets, 79.3% and 87.8% precision, 
76.0% and 85.0% recall, DSCs of 76.1% and 85.8%, HDs of 5.206 and 4.527, and AUCs of 
0.8846 and 0.9150 were achieved. In all datasets, the model developed herein achieved better 
performance in terms of DSC than previous U-Net-based systems.
Conclusion: The proposed neural network yields accurate segmentation results to assist clinicians 
in identifying the median nerve. 

Keywords: Ultrasound; Median nerve; Deep learning; Neural networks; Artificial intelligence
Key points: The proposed neural network system using deep learning showed good segmentation 
performance of the median nerve in ultrasound images. The proposed neural network was more 
efficient in terms of model size and computational costs than previous U-Net-based systems. 
The proposed neural network can be a useful assistive tool to assist clinicians in identifying the 
median nerve in ultrasound images.
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Introduction

High-resolution ultrasonography (US) has evolved as a crucial 
tool for diagnosis, treatment, and prognostication in the field of 
neuromuscular medicine. From the perspective of the peripheral 
nerves, US not only enables the identification of anatomic structures 
and measurements of nerve parameters, but also provides real-time 
guidance for therapeutic purposes [1,2]. Despite the clinical utility of 
US, several limitations have been pointed out. First, annotation and 
measurement tasks are time-consuming and labor-intensive, and they 
require a relatively long learning curve to be successfully implemented. 
In addition, in actual clinical settings, it is often difficult to identify 
peripheral nerves because the morphology and echotexture of the 
nerves vary among individuals and often present similar US features 
to those of other anatomic structures (especially tendons) [3-5]. Since 
US parameters are annotated and measured manually, there is room 
for improvement in terms of efficiency and accuracy.

Deep learning can automatically learn high-level features in 
raw data, and has shown remarkable performance in the field of 
computer vision. Deep learning has been applied to US imaging 
of numerous anatomical structures for tasks such as classification, 
detection, and segmentation [6]. Deep learning-based segmentation 
can automatically and accurately measure the volume and shape of 
anatomical structures in US images. The architecture and training 
methods for deep-learning models for segmentation have been 
actively studied [7]. The U-Net and its variants are widely used as 
the neural architecture for base models [8-11]. Recent studies on 
nerve segmentation focused on adding new components to the 
U-Net while using standard convolutions [12-14]. However, these 
approaches have limitations in that they do not reflect the process 
in which clinicians identify peripheral nerves in actual clinical 
settings. If the echotexture of a nerve is not clearly recognizable, a 
clinician may locate the nerve based on anatomic landmarks around 
the nerve [15-17]. For example, when a clinician evaluates the 
median nerve, a structure inside the carpal tunnel, below the flexor 
retinaculum, and superficial to the flexor digitorum superficialis 
tendons and flexor pollicis longus tendons might be suspected as 
the nerve [18,19]. In this case, a filter with a large receptive field is 
required to capture relations between the region of interest and its 
contextual landmarks for effective segmentation. On the contrary, 
when a clinician tries to identify a "honeycomb appearance," a typical 
echotexture of peripheral nerve on axial images [15], a small receptive 
field is suitable for extracting detailed echotexture features. In light of 
this process through which clinicians identify peripheral nerves, there 
is a need to develop a deep learning architecture with receptive fields 
of various sizes to glean and combine information at multiple scales.

The goal of this study was to design a neural network that 

effectively captures the spatial US features of a representative 
peripheral nerve (i.e., the median nerve) at various scales, and to 
evaluate its performance. The conventional approach of simply 
adding filters with various receptive field sizes is expected to 
increase the model complexity, and thus, might increase the risk 
of overfitting. Moreover, US image datasets typically have limited 
training samples, which worsens the overfitting problem. Thus, an 
efficient architecture for convolutional filters was developed in order 
to process multi-scale features without incurring overfitting and 
compromising the accuracy of detecting the shape and location of 
the median nerve.

Materials and Methods

Compliance with Ethical Standards
This retrospective review of medical records and images was 
approved by the institutional review board (2020GR0389) of the 
authors’ affiliated institution, with a waiver of the requirement for 
informed consent. 

Study Subjects
A computerized search of electronic medical records and 
picture archiving and communication systems was performed to 
identify patients who underwent both electrodiagnostic and US 
examinations of the upper extremities from March 2019 to February 
2021. Among the 312 initially identified subjects, 132 subjects over 
20 years of age with normal findings of median nerve conduction 
studies were included. Nine subjects were then excluded from 
the study due to a previous surgical history of the wrist and hand. 
Finally, a total of 123 subjects (64 men and 59 women; mean 
age±standard deviation [SD], 49±8 years; age range, 28 to 75 
years) were included in this study.

Datasets
Although US images were retrospectively analyzed, they were 
collected with a consistent protocol at the time of evaluation. A 
rehabilitation medicine physician with more than 10 years of clinical 
experience in neuromuscular US (B.S.K.) performed all examinations 
and annotations. Subjects were scanned in a seating position with 
the elbow flexed to 90°, the forearm fully supinated, and the fingers 
slightly bent. A pillow was used to support the forearm and hand. 
For exact identification of the median nerve, the physician performed 
dynamic US scanning by slowly sweeping the transducer proximally 
and distally along its course. In the axial view, the cross-sectional 
area of the median nerve was measured around the wrist and mid-
forearm levels. 

The median nerve was detected using two machines: HM70A 
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(Samsung Medison, Seoul, Korea) and miniSONO (Alpinion, Seoul, 
Korea), with 5-12 MHz broadband linear transducers. The HM70A 
system produces 442×565 images with a resolution of 150 dots per 
inch (DPI), whereas miniSONO provides 576×864 images with 96 DPI. 

The data collection protocol was slightly different depending on 
which US machine was used. In order to obtain the wrist-to-forearm 
median nerve area ratio to screen for carpal tunnel syndrome, 
measurements were performed at various areas of the wrist and 
forearm [20,21]. Using the HM70A system, US images of the median 
nerve were taken at five different levels of the wrist and forearm 
(four around the wrist and one around the forearm): the distal wrist 
crease (DWC), 1 cm proximal and distal to the DWC (DWC+1 and 
DWC-1, respectively), 2 cm proximal to the DWC (DWC+2), and 10 
cm proximal to the DWC (DWC+10) [22]. Using miniSONO, images 
were taken at eight different levels (five around the wrist and three 
around the forearm): DWC-1, DWC, DWC+1, DWC+2, DWC+3, 
DWC+9, DWC+10, and DWC+11. A total of 803 (162 hands of 81 
subjects) using HM70A and 502 images (64 hands of 42 subjects) 
using miniSONO were acquired.

In total, 641 images acquired by using HM70A were used 

as training data and 162 images were utilized to evaluate the 
proposed algorithm. Next, to examine whether the proposed neural 
network was well adapted to images acquired from another device, 
502 additional images acquired by using miniSONO were tested. 
Of these images, 401 were used as training data and 101 were 
used for validation. In brief, 1,305 US images obtained from 123 
normal subjects were used to train and evaluate the model. Table 1 
summarizes the datasets. 

Neural Network Architecture for Segmentation
A newly designed neural network is proposed for the segmentation of 

Fig. 1. Overview of the proposed method. The idea is to compute convolutional features over multiple scales, weight features by their 
importance, and combine and mix scale features to capture contextual information as well as the detailed echotexture, while enhancing the 
architectural efficiency to prevent overfitting. The proposed convolutional layer is integrated into the U-Net architecture for ultrasonography 
image segmentation.

Forward pass

Skip connection

Downsample

Upsample

Obtain features using multiple
receptive fields of various scales

Weight scale features by importance

0.6 0.4 0.8 0.3

Table 1. Datasets of ultrasound images of the median nerve

Equipment Part
Set

Train Test
HM70A Wrist 512 129

Forearm 129 33
miniSONO Wrist 248 63

Forearm 153 38
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output is given by 

H(i)(x)=Wix 

where Wi represents the convolutional matrix. H (1), H(2), … are 
successively applied to the input. The intermediate output at n-th 
convolution denoted by F(n)(x) is given by 

F(n)(x)=H(n)°H(n-1)°…°H(1)(x) 
=(∏i=1Wi)x

for n=1,…,N where N is the total number of cascaded convolutional 
operations. It should be noted that (∏i=1Wi)x is also a convolutional 
matrix in a factorized form. Importantly, the H(i) components are 
linear layers without in-between nonlinearity or normalizations. For 
the first convolution H(1), a 1×1 convolution was used in order to 
reduce computational cost and to create a bottleneck structure for 
performance improvement [25,26]. A 3×3 convolution was used for 
the rest of the H(i) components. For the sake of efficiency, depth-wise 
separable convolution was used for convolutional operations [27]. 
Specifically, the 3×3 convolution for H(i) consists of a depth-wise 
convolution followed by a 1×1 (pointwise) convolution.

Thus, F(n)(·) is an output of a factorized convolution, and the size 

the median nerve in US images. The proposed network applies scale-
attentional convolution (described below) to the U-Net architecture 
[8], as shown in Fig. 1. U-Net has an encoder-decoder structure, 
which consists of a hierarchy of stacked convolutional and pooling 
layers. The convolution layers of U-Net were replaced with the scale-
attentional convolution. The network was designed for high accuracy 
by combining information at multiple scales, as well as for high 
efficiency to prevent overfitting. To that end, the model was designed 
in two parts (cascaded and factorized convolutions), followed by 
self-attention over scale and channel features. Each component is 
described below, and Fig. 2 shows the overall architecture.

The decoding layers of U-Net used a combination of nearest 
neighbor and convolution for up-sampling, instead of transposed 
convolution [23,24]. A mini-batch size of 4 was used. The model 
was trained using the Adam optimizer with an initial learning rate 
of 5×10-4. Data augmentation was conducted by applying random 
shearing between -15° and 15° on the x-axis and y-axis, respectively.

Factorized Convolution for Multi-scale Receptive Fields
The proposed convolution layer combines features from receptive 
fields of multiple scales by applying cascaded convolution to the 
input. The i-th convolution operation of the cascaded convolutions is 
denoted by H(i)(·). If the input to the i-th convolution is given by x, its 

Fig. 2. Architecture of scale-attentional convolution. 
A. Cascaded convolutions are performed without nonlinearity or pooling in-between, effectively using receptive fields of varying sizes. 
B. Intermediate convolutional outputs form a concatenated feature map to which self-attention is applied in order to select and mix 
important scale features.

A B

Input Scale 1 Scale 2 Scale N

Output
Attention map

Depthwise
Separable
Convolution

Concatenate

Self Channel
Attention

3×3 1×1
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of its receptive field is given as follows. Let the filter size of i-th 
convolutional kernel have spatial dimensions Si×Si where Si denotes 
the width and height of the kernel of the filter Wi. The following 
values were set: Si=1 for i=1 and Si=3 for i≥2. Thus, the effective 
receptive field size seen by F(n) is (2n-1)×(2n-1). Thus, a single layer 
of the proposed convolution covers and combines multiple receptive 
fields whose sizes are 1×1, 3×3, …, (2N-1)×(2N-1). In the baseline 
network, N was fixed at 4.

Weight Importance of Scales with Self-attention
A potential issue with using concatenated features is the overfitting 
caused by reflecting every scale to the output. A self-attention can 
be used to weight scale and channel features by their importance. 
By using attention, the proposed layer effectively "selects" and 
"mixes" features from various scales. 

The intermediate maps F(i)(·) are concatenated to the intermediate 
output z. Thus, z aggregates convolutional features over various 
scales and channels. The self-attention is applied to z as follows.

y=G(z)⊗z 

where G denotes the self-attention weights and ⊗ denotes the 
Hadamard product. For weighting function G(·), efficient channel 
attention (ECA) was used [28]. Thus,

G(z)=σ(CIDk(g(z)) )

where CIDkdenotes 1D convolution with kernel size k, σ is a sigmoid 
function, and g(z) is channel-wise global average pooling. ECA is 
suitable for the present architecture because it focuses highly on 
model efficiency while capturing cross-channel dependencies to 
preserve performance. In summary, the proposed layer can replace 
the conventional convolutional layers and can be applied to any 
architecture aimed at balancing efficiency and performance.

Statistical Analysis
The dice similarity coefficient (DSC) was used as the performance 

metric. The DSC measures similarity between two sets of data [29]. 
It quantifies how much segmentation results overlap with labels 
ranging between 0 and 1. Let pi, qi denote the i-th pixel value of 
target image and ground truth image, respectively. pi takes value 
from 0 to 1 which is an output of the sigmoid function. qi represents 
the segmentation label and takes value 0 or 1.

DSC=2×
∑ i pi q i 

∑ i pi+∑i qi

The model was trained using the dice loss function L defined as 
L=1-DSC. The dice loss can alleviate blurred boundary problems 
often observed with cross-entropy loss and is effective in dealing 
with class imbalance (i.e., the fact that the nerves occupy only a 
small portion of the US images). In order to verify the reliability of 
the model performance evaluation, the model was tested 20 times, 
and the mean and SD were calculated for each performance metric.

Another metric to evaluate the accuracy for the location and 
shape of segmentation results is the Hausdorff distance (HD). The 
HD between two sets of locations is defined as the greatest of all 
distances from a point in one set to its closest point in the other set. 
In these experiments, the HD was measured between segmentation 
results and the labels of nerves.

Segmentation can be viewed as a binary classification per 
pixel [29]. That is, each pixel belongs to class 0 (background) or 
class 1 (median nerve). The output of the neural network for each 
pixel location, which takes values from 0 to 1, can be regarded 
as the confidence of the binary classification. Thus, it is possible 
to derive a receiver operating characteristic curve, or receiver 
operating characteristic (ROC) curve, averaged over pixels [30]. The 
performance of the proposed model was assessed by the area under 
the receiver operating characteristic curve (AUC). 

Results

Segmentation Performance 
Table 2 summarizes the segmentation performance achieved by the 

Table 2. Segmentation performance of the proposed model 
Dataset Precision Recall DSC HD Inference time (ms) Parameter

HM70A Wrist 0.927±0.006 0.924±0.009 0.923±0.004 5.158±0.062 9.9 491K

Forearm 0.793±0.028 0.760±0.036 0.761±0.030 5.206±0.151

miniSONO Wrist 0.903±0.014 0.898±0.016 0.897±0.012 4.966±0.173

Forearm 0.878±0.013 0.850±0.017 0.858±0.010 4.527±0.133
Values are presented as mean±standard deviation.
DSC, dice similarity coefficient; HD, Hausdorff distance; K, thousand.
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proposed method. The model achieved DSCs of 0.923, 0.761, 0.897, 
and 0.858 for the HM70A-Wrist, HM70A-Forearm, miniSONO-Wrist, 
and miniSONO-Forearm datasets, respectively. The average HD was 
5.158, 5.206, 4.966, and 4.527 for HM70A-Wrist, HM70A-Forearm, 
miniSONO-Wrist, and miniSONO-Forearm datasets, respectively.

Table 3 shows that the proposed model obtained the highest 
recall and DSC for all the datasets-from the HM70A-Wrist dataset, 
which had the largest number of training samples, to the HM70A-
Forearm dataset, which had the smallest number of training 
samples in comparison to previous architectures. The precision of 
the MultiRes U-Net was slightly higher than that of the proposed 
network with the HM70A-Wrist dataset; however, its performance 
on recall was relatively low in all datasets. By contrast, the proposed 
network achieved a good balance between precision and recall, 
resulting in the highest DSC in all cases. Overall, the proposed 
network outperformed previous U-Net models by 2.63%, 1.68%, 
4.95%, and 2.01%, respectively.

Fig. 3 shows the ROC curves associated with per-pixel 
classification performance averaged over the test images in the 
four datasets. The AUCs were 0.9755, 0.8846, 0.9399, and 0.9150 
for the HM70A-Wrist, HM70A-Forearm, miniSONO-Wrist, and 
miniSONO-Forearm datasets, respectively.

Efficiency Performance 
The proposed model not only had good performance, but also was 
efficient in terms of model size and computational costs. The model 
used 491K trainable parameters, which is 19.15× more parameter-
efficient than the baseline U-Net, which uses 9.4M. A model with 
a smaller number of parameters (i.e., a simpler model) typically 
leads to better generalization ability and less overfitting. The mean 
inference time for segmentation was 9.9 ms per image over all 
datasets with a single NVIDIA GeForce RTX 3090 GPU card. This 
would result in 101.98 frames per second if the proposed model 
were used for segmentation over the successive frames.

Table 3. Comparison of segmentation performance with other U-Net variants
Architecture Precision Recall DSC HD

HM70A wrist dataset

U-Net 0.916 0.895 0.897 5.476

U-Net++ 0.914 0.884 0.889 5.577

Attention U-Net 0.918 0.890 0.896 5.442

MultiRes U-Net 0.934a) 0.869 0.893 5.475

Proposed 0.927 0.924a) 0.923a) 5.158a)

HM70A forearm dataset

U-Net 0.763 0.738 0.719 5.441

U-Net++ 0.790 0.712 0.713 5.487

Attention U-Net 0.793 0.742 0.744 5.283

MultiRes U-Net 0.727 0.666 0.653 6.050

Proposed 0.793a) 0.760a) 0.761a) 5.206a)

miniSONO wrist dataset

U-Net 0.859 0.829 0.830 5.430

U-Net++ 0.882 0.827 0.839 5.243

Attention U-Net 0.857 0.816 0.824 5.449

MultiRes U-Net 0.897 0.823 0.848 5.141

Proposed 0.903a) 0.898a) 0.897a) 4.966a)

miniSONO forearm dataset

U-Net 0.873 0.828 0.838 4.661

U-Net++ 0.857 0.805 0.812 4.844

Attention U-Net 0.864 0.820 0.828 4.738

MultiRes U-Net 0.868 0.793 0.813 4.774

Proposed 0.878a) 0.850a) 0.858a) 4.527a)

DSC, dice similarity coefficient; HD, Hausdorff distance. 
a)The best performance of each metric.
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Sample Segmentation Results 
Fig. 4 shows samples of segmentation results on wrist and forearm 
nerve images captured by two devices. The ground truth region is 
annotated by a green contour and the predicted region is red. In Fig. 
4, the first two rows were captured by the HM70A, and the others 
were captured by the miniSONO. Fig. 4A-D and Fig. 4I-L show 
the results for wrist nerves, while Fig. 4E-H and Fig. 4M-P are the 
results for forearm nerves.

Discussion

The present study proposes a neural network architecture for the 

segmentation of median nerves in US images. The proposed network 
combines features obtained from receptive fields at multiple scales 
and selects important features to avoid overfitting. In wrist and 
forearm datasets from two US machines, the model described herein 
not only had the best segmentation performance compared to 
previous U-Net-based systems, but also was efficient in terms of 
model size, showing that it was effective in overcoming overfitting 
typically caused by limited training samples in US image datasets.

Several studies on US nerve segmentation have been conducted 
using U-Net. For regional anesthesia, Baby and Jereesh [31] adopted 
the U-Net architecture to detect the brachial plexus. The DSC was 
improved by 11% compared to the conventional method using 

Fig. 3. Receiver operating characteristic curve of the proposed model in four datasets.
The curves are HM70A-Wrist (A), HM70A-Forearm (B), miniSONO-Wrist (C) and miniSONO-Forearm (D), respectively. TPR, true positive rate; 
FPR, false positive rate; AUC, area under the receiver operating characteristic curve.
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a support vector machine. Kakade and Dumbali [32] used linear 
Gabor binary patterns for pre-processing, and applied U-Net with 
principal component analysis for post-processing. Zhao and Sun 
[12] modified the U-Net structure with the Inception module [25]. 
They showed that the U-Net structure could be applied to femoral 
nerve segmentation in a clinically meaningful manner. Wang et al. 
[13] improved performance in the brachial plexus segmentation 
by pre-processing, which removed speckle noise in US images, 
and modifying the U-Net architecture with a residual module [26]. 

The aforementioned methods showed that performance can be 
significantly enhanced by adopting the U-Net combined with pre-/
post-processing on data. In addition, multiple U-Net variants have 
been proposed. U-Net++ exploited the idea of dense blocks to add 
more layers to skip connections [9,33]. The attention U-Net added 
attention gates to suppress irrelevant regions and highlight salient 
features [10]. The MultiRes U-Net combined output from three 
convolution blocks in order to extract spatial features from different 
scales [11].

Fig. 4. Segmentation results on the wrist with HM70A (A-D), forearm with HM70A (E-H), wrist with miniSONO (I-L), and forearm with 
miniSONO (M-P). The green line is the median nerve area annotated by the expert, and the red line is the area predicted by the proposed 
model.
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Fig. 5. Notable cases. 
A, B. Bifid median nerves are found by the proposed model. C, D. Label ambiguity is caused by subjective annotation. E, F. Perineurium is 
misidentified. G. Non-elliptical shape is detection. H. Nerve is detected incorrectly. The green line is the median nerve area annotated by the 
expert, and the red line is the area predicted by the proposed model.
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The aforementioned architectural studies focused on adding 
new components to the U-Net structure while using standard 
convolutions. However, if the goal is to capture information at 
various scales ranging from structures such as peripheral nerves to 
contextual anatomical landmarks, the addition of these blocks will 
potentially increase the model size, and accordingly require more 
data to train. Instead, the convolution itself and the associated 
network architecture were redesigned with a focus on efficiency, 
and the analysis showed that the approach described herein pays 
off in a context where labeled data are scarce. 

The proposed model provided segmentation results deemed to 
be qualitatively proper for clinical analysis, as shown in Fig. 4. The 
ground truths annotated by the clinician and the predicted areas 
mostly coincided. The discrepancies in the predictions were mostly 
minor and were caused by the boundary shapes. The differences 
might have been caused partly by limitations of the US images 
themselves. As nerves travel curved routes in many cases, even 
with high-resolution US equipment and an effort to position the 
probe at a right angle to the course of travel, nerves are present 
atypically on US. In such cases, the clinician recognizes the margin 
of the nerve in the form of a curve and draws it to be as close to an 
ellipse as possible, but an exact annotation of nerve boundaries may 
be difficult. In addition, since the measurement process itself (i.e., 
annotation along the margin) is performed manually, segmentation 
labels may contain errors at boundaries even when performed 
by a specialist. Despite the observed discrepancies between the 
predicted areas and the ground truths, the nerve segmentation by 
the proposed system is considered clinically appropriate.

Interestingly, there were several cases where the proposed 
algorithm identified a rare condition initially unnoticed by the 
physician. As shown in Fig. 5A and B, the predicted regions were 
more extensive than what the examiner annotated, and the 
prediction included adjacent masses. As the differences between 
the annotated and predicted areas were significant, the examiner 
enrolled the subjects again and follow-up evaluations were 
performed after obtaining informed consent. As a result, the subjects 
were found to have bifid median nerve, a rare anatomic variation 
that involves a high division of the main nerve proximal to the carpal 
tunnel. In this case, it is proper to perform extensive annotations 
including the two masses on US images, as the proposed algorithm 
did, because the median nerves indeed consisted of two branches. 
This case shows that the algorithm presented herein can assist 
clinicians with identifying unexpected or rare conditions.

There were several cases with subtle differences in the boundaries 
between the ground truth and prediction, most likely caused by 
label ambiguity. Fig. 5C and D present ambiguous cases, where it 
was difficult to judge whether the ground truth or the prediction 

was correct. When closely observed, the nerve boundaries were not 
clearly separated from the peripheries. In such cases, clinicians often 
make subjective decisions, and the examples in Fig. 5C and D are 
those where the predictions also provided a potentially accurate 
delineation.

The proposed algorithm also had some limitations, as follows. 
Fig. 5E and F show cases where the prediction only partially 
overlapped with the ground truth region. It is suspected that the 
algorithm mistook a certain structure inside the actual nerve as the 
perineurium, a sheath surrounding a nerve fascicle that was located 
inside the epineurium. Thus, the predicted boundary passed across 
the middle portion of the nerve. Fig. 5G shows a case where the 
prediction formed a non-elliptical region. Most clinicians recognize 
the nerve as an ellipse in most cases. If the margin is uneven, it is 
generally detected as a shape that approximates an ellipse. Instead, 
the algorithm predicted the nerve to be more extensive, including a 
small vessel on the top. Thus, the algorithm could be improved by 
penalizing non-elliptical shapes at the output or post-processing 
stage. Fig. 5H shows a rare case of a total miss (i.e., there was no 
overlap between the prediction and the ground truth region). In this 
case, both the precision and recall were 0. However, the algorithm 
developed herein had fewer occurrences of zero overlap than other 
models. The average rate of zero overlap for the proposed network 
was only 0.82%, whereas the rates of the other algorithms used in 
the experiment ranged from 1.96% to 2.95%.

Clinical applications of the proposed algorithm are expected 
in various contexts. Since the present algorithm showed higher 
accuracy and efficiency than conventional algorithms, it may be a 
good base model for developing automatic segmentation systems 
of the median nerve in the future. If a software program can be 
implemented on the US machine through this, the time-consuming 
and labor-intensive process of median nerve segmentation and 
measurement can be easily performed, and the burden on the 
examiner will be greatly reduced. This will provide a methodological 
basis for building a large-scale cohort database in the field of 
peripheral nerve US in the new era of big data. As this algorithm 
helps clinicians to identify the median nerve, it is expected to 
increase the accuracy of diagnosis and the safety of the procedure. 
Furthermore, the algorithm can be applied for educational purposes 
to shorten the learning curve for beginners of neuromuscular US.

The present study has several limitations. First, since only the 
median nerve was targeted, it is difficult to generalize the proposed 
algorith as a segmentation system for the peripheral nerves in 
general. Further studies on other clinically important nerves should 
also be conducted. Second, since the subjects of this study were 
limited to those with normal anatomy, its application to cases 
of nerve pathology (e.g., carpal tunnel syndrome) is still limited. 
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Future studies using data from patients with neuropathy need to 
be conducted. Third, only data performed by one examiner were 
included. Further research on whether this algorithm is well suited 
for images collected by other examiners will be needed. 

This paper proposes a new convolutional layer, which is a 
lightweight architecture for the segmentation of US images. Similar 
to how clinicians diagnose nerves, the network was able to capture 
and select information from multi-scale convolutional features and 
self-attention, as well as significantly reducing the model size and 
computation. The efficiency of the proposed model led to substantial 
performance improvements with limited training samples as 
compared to baseline models. Thus, the proposed network can be a 
useful tool to assist clinicians in diagnosis and treatment.
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