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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has become a global pandemic threatening the lives and health of people worldwide. Currently, there are no 
effective therapies or available vaccines for COVID-19. The molecular mechanism causing acute immunopath
ological diseases in severe COVID-19 is being investigated. Long noncoding RNAs (lncRNAs) have been proven to 
be involved in many viral infections, such as hepatitis, influenza and acquired immune deficiency syndrome. 
Many lncRNAs present differential expression between normal tissue and virus-infected tissue. However, the role 
of lncRNAs in SARS-CoV-2 infection has not been fully elucidated. This study aimed to review the relationship 
between lncRNAs and viral infection, interferon and cytokine storms in COVID-19, hoping to provide novel 
insights into promising targets for COVID-19 treatment.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 spread at 
an alarming rate, threatening the lives and health of the entire human 
race. SARS-CoV-2, a single-stranded RNA virus, is a member of the 
Coronaviridae family (Pontecorvi et al., 2020). Patients with COVID-19 
present with fever, dry cough and respiratory failure, combined with 
gastrointestinal and neurological symptoms (Wiersinga et al., 2020). It is 
projected that asymptomatic dissemination is responsible for nearly half 
of SARS-CoV-2 transmission (Al-Tawfiq, 2020). Respiratory failure ac
counts for the highest mortality of patients with COVID-19 (Ruan et al., 
2020). SARS-CoV-2 can lead to acute respiratory distress syndrome 
(ARDS) mediated by proinflammatory cytokines (Ziegler et al., 2020). 
Proinflammatory cytokines can cause severe damage to vital organs and 
lead to multiple organ dysfunction syndrome (MODS) (Xiong et al., 
2020). The main therapeutic measures include convalescent plasma, 
remdesivir and cytokine blocker drugs (Chen et al., 2020). Specific 
vaccination represents a key strategy against SARS-CoV-2 infection. 
According to the World Health Organization (WHO), more than 360 
vaccines have been developed, and 45 vaccines have been evaluated in 
phase III clinical trials to date (Fiolet et al., 2022). These COVID-19 

vaccines seem to be well tolerated and display a preventive effect on 
the original strain and variants of SARS-CoV-2 (Fiolet et al., 2022). 
However, the regulatory mechanism of host genetic expression in 
response to infection remains unclear (Casagrande et al., 2021). It is 
necessary to explore viral pathogenesis and biological reactions against 
SARS-CoV-2 in the host. 

Long noncoding RNAs (lncRNAs), a subclass of noncoding RNAs, 
lack an open reading frame and have a length of more than 200 nucle
otides (Yang et al., 2014). 

By competing with endogenous RNA (ceRNA), lncRNA serves as a 
miRNA sponge, regulating the expression of target genes. LncRNA, 
miRNA, and mRNA were used to construct a lncRNA‒miRNA-mRNA 
competing endogenous (ceRNA) network (Liu et al., 2018). LncRNAs are 
involved in a broad spectrum of biological processes, especially immu
nity and inflammatory reactions (Atianand et al., 2017; Stojic et al., 
2020). The lncRNA XIST plays a role in inflammation via the 
NF-κB/NLRP3 pathway (Ma et al., 2019). Chen et al. found that the 
lncRNA MALAT1 functions as a negative factor in inflammation in sepsis 
(Chen et al., 2018). It has been revealed that lncRNA SNHG14 enhances 
the inflammatory response by increasing the level of ROCK1 and 
downregulating the expression of miR-136–5p (Zhong et al., 2019). 
Several lncRNAs have been identified in multiple viral infections, such 
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as hepatitis and AIDS (Imam et al., 2015; Sur et al., 2018). Notably, 
lncRNAs were also identified in the process of SARS-CoV-2 infection. 
LncRNA H19 regulates spike transcription of SARS-CoV-2 by binding to 
the genome of SARS-CoV-2, thereby affecting SARS-CoV-2 infection 
(Natarelli et al., 2021). However, the relationship of lncRNAs with viral 
infection and the antiviral inflammatory response in COVID-19 needs to 
be clarified. 

2. LncRNAs in SARS-CoV-2 viral infection 

Some lncRNAs, such as NEAT1 and EGOT, increase in influenza A 
virus and HIV infection (Laha et al., 2021). In addition, NEAT1 sup
presses the replication and growth of HIV and Hantaan virus (HTNV) 
(Pan et al., 2019; Maarouf et al., 2019; Zhang et al., 2013; Ma et al., 
2017). Similarly, in SARS-CoV-2 viral infection, lncRNA NEAT1 and 
DANCR change the level of inflammatory transcripts by regulating the 
expression of immune-related genes (Meydan et al., 2020). Approxi
mately 500 lncRNAs were found to be differentially expressed during 
SARS-CoV-2 infection (Peng et al., 2010). HOTAIRM1, PVT1 and 
AL392172.1 can bind to the SARS-CoV-2 genome with high affinity, 
suggesting the major regulatory role of lncRNAs in COVID-19 (Moaz
zam-Jazi et al., 2021). Transcriptome analysis of bronchial epithelial 
cells in patients with SARS-CoV-2 infection showed that the lncRNA 
MALAT1 had significantly different expression levels. The lncRNA 
MALAT1 may be a potential biomarker of SARS-CoV-2 infection (Vish
nubalaji et al., 2020). An in silico study detected the expression levels of 
lncRNAs both in cell lines and lung tissue. In vitro, there were a total of 
20 overexpressed lncRNAs and 4 downregulated lncRNAs during 
SARS-CoV-2 infection. Moreover, NEAT1 was upregulated in the lung 
tissue of patients with SARS-CoV-2 infection (Laha et al., 2021). Another 
study found that a total of 898 lncRNAs (414 overexpressed lncRNAs; 
484 downregulated lncRNAs) were differentially expressed between 
healthy individuals and patients with SARS-CoV-2 infection. In addition, 
these differentially expressed lncRNAs were likely to be associated with 
exosomes and regulate the inflammatory process (Wu et al., 2021). 
Transcriptome analysis of SARS-CoV-2-infected lung tissues showed that 
three lncRNAs (C058791.1, TTTY15 and TPTEP1) were enriched with 
maximum target genes. These three lncRNAs interact with genes via the 
lncRNA‒miRNA-mRNA pathway and release the mRNA for translation. 
The activity of AC058791.1 has not been identified; TTTY15 is involved 
in proteolysis and ubiquitin-dependent catabolism (Lei et al., 2019), and 
TPTEP1 inhibits STAT3 phosphorylation (Ding et al., 2019). 

Furthermore, lncRNA H19 can bind to the 5′UTR of the SARS-CoV-2 
genome and modulate the spike transcript in viral infection (Natarelli 
et al., 2021). LncRNA-based oligosequences can be candidates to combat 
SARS-CoV-2. Of note, these results need to be experimentally validated 
at the patient level. Clinically, a comprehensive profile of 
COVID-19-related lncRNAs in peripheral blood mononuclear cells of 
patients with SARS-CoV-2 infection and healthy individuals was built. 
More specifically, 1072 lncRNAs were differentially expressed between 
the two populations. The top three increased lncRNAs are 
ENSG00000231412 (AC005392.2), followed by ENSG00000274173 
(AL035661.1) and ENSG00000231535 (LINC00278). The top decreased 
lncRNAs are ENSG00000229807 (XIST) and ENSG00000273160 
(AL359962.2) (Cheng et al., 2021). These differentially expressed 
lncRNAs may be potential biomarkers for the diagnosis and prognosis of 
patients with SARS-CoV-2 viral infection. Collectively, these 
COVID-19-related lncRNAs may be possible innovative candidates 
against SARS-CoV-2 infection. Further studies are needed to fully 
identify and understand the functions of lncRNAs in COVID-19. 

3. LncRNAs and interferon in COVID-19 

LncRNAs were shown to modulate interferon-stimulated genes 
(ISGs) in the inflammatory process. LncRNA#32/LUARIS can combat 
EMCV, HBV and HCV infection by regulating the transcription factor 

ATF2 to alter the expression of ISG (Nishitsuji et al., 2016). Interestingly, 
angiotensin I converting enzyme 2 (ACE2), the receptor for COVID-19, is 
an ISG. SARS-CoV-2 could exploit species-specific interferon-driven 
upregulation of ACE2 to aggravate the host immune response and 
enhance infection (Ziegler et al., 2020). Additionally, lncRNAs can be 
stimulated by interferon (IFN). The expression of NRIR/lncCMPK2 can 
be activated by IFN and then modulated by signal transducer and acti
vator of transcription 2 (STAT2). There was a reliable association be
tween the expression of IFN and SARS-CoV-2 infection both in 
laboratory and clinical studies (Vishnubalaji et al., 2020). It was 
observed that lncRNAs can modify ISG levels in different viral infections 
(Nishitsuji et al., 2016; Kambara et al., 2014; Xie et al., 2018; Carpenter 
et al., 2013). In contrast, Laha et al. found that the expression of 
lncRNAs had no correlation with interferons. Then, they investigated the 
interaction between lncRNAs and heterogeneous nuclear ribonucleo
proteins (hnRNPUs), a group of RNA-binding proteins. They found that 
several lncRNAs could be regulated by interferon regulatory factors 
(IRFs) and STAT in response to SARS-CoV-2 infection (Laha et al., 2021). 
LncRNAs might be involved in the antiviral response by regulating IFN. 
However, several host lncRNAs can repress the viral immune response 
by downregulating type I interferons (IFN-1). In the early stage of 
SARS-CoV-2 viral infection in asymptomatic patients, the production of 
IFN, especially IFN-b, was delayed. More importantly, SARS-CoV-2 N 
protein can inhibit IFN production by disturbing the retinoic 
acid-induced gene I (RIG-I) pathway (Yang et al., 2021). Clinically, 
IFN-α is a common interferon for antiviral therapy in patients with 
COVID-19. These lncRNAs mediate IFN regulation in COVID-19 and 
should be validated to explore effective antiviral strategies in future 
studies. 

4. LncRNAs regulate cytokine storms in COVID-19 

The organ damage caused by the inflammatory reaction accounts for 
the high mortality and morbidity in COVID-19 (Tay et al., 2020; Perl
man and Dandekar, 2005). Studies in human and animal models implied 
that immunopathological events might lead to the death of patients with 
SARS-CoV-2 viral infection (Channappanavar et al., 2016; Rockx et al., 
2009). In addition, the lung tissue of patients with SARS-CoV-2 infection 
displayed pathological infiltration of immune cells such as macrophages 
and monocytes (Yao et al., 2020). It has been validated that an inflam
matory cytokine storm, an overwhelming inflammatory immune 
response with hyperproduction of mainly proinflammatory cytokines, 
such as IL-1, IL-6, IL-12, IFN-γ, and TNF-α, contributes to the develop
ment of SARS-CoV-2 infection and is the cause of severe COVID-19 
(Zumla et al., 2020; Zhang et al., 2020; Costela-Ruiz et al., 2020). 
LncRNAs can target cytokines in inflammatory cytokine storms in 
COVID-19. LncRNAs with the potential to regulate the inflammatory 
response showed differential expression in patients with SARS-CoV-2 
infection compared with healthy individuals (Wu et al., 2021). 
LncRNAs MALAT1 and NEAT1 may contribute to the development of 
inflammation in SARS-CoV-2-infected cells (Moazzam-Jazi et al., 2021). 
In contrast, 22 lncRNAs bound to 10 important cytokines, and 8 of 22 
lncRNAs targeted multiple cytokines. RAD51-AS1 and lnrCXCR4 each 
can target 3 cytokines. Notably, the lncRNA NORAD, which is activated 
by DNA damage, can bind with 5 cytokines, including interleukin (IL)−
6, IL-10, CSF3, tumor necrosis factor (TNF)-α and CXCL10 (Morenikeji 
et al., 2020). LncRNAs may target and bind important cytokine nucle
otide sequences and possibly decrease the expression of cytokines, thus 
reducing the emergence of cytokine storms in the infection. Given the 
interaction between lncRNAs and inflammatory cytokines, some 
methods, such as viral gene therapy, RNAi knockdown, viral vectors and 
antisense oligonucleotides, have been used in clinical practice (Fatemi 
et al., 2014; Roberts et al., 2020). Agents targeting lncRNAs show 
promise in enhancing the anti-SARS-CoV-2 response by inhibiting the 
cytokine storm. 
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5. LncRNAs function as potential targets for COVID-19 

Several functional lncRNAs involved in viral infection and cytokine 
storms in COVID-19 are summarized in Table 1. In a coexpression 
network analysis of human lung epithelial cell lines and bronchoalveolar 
lavage fluid from patients with SARS-CoV-2 infection, four lncRNAs 
(WAKMAR2, EGOT, EPB41L4A-AS1, and ENSG00000271646) were 
upregulated. These four lncRNAs were associated with multiple cytokine 
pathways and overactivated inflammatory responses (Mukherjee et al., 
2021). LncRNAs can regulate the expression of IL-6 and NLRP3 through 
epigenetic, transcriptional, and post-transcriptional mechanisms. 
Agents targeting these signaling pathways have been developed. Toci
lizumab, an IL-6 receptor antagonist, effectively inhibits the IL-6 re
ceptor (IL-6R) and reduces the serum levels of C-reactive protein (CRP) 
and serum amyloid A (SAA) (Nishimoto et al., 2003; Nishida et al., 
2009). Similarly, BML-111, an IL-6 blocker, can increase the level of 
lncRNA MALAT1 and then downregulate the expression of inflamma
tory factors, such as monocyte chemotactic protein-1 (MCP-1) and IL-6 
(Li et al., 2018; Gong et al., 2012). A drug perturbation analysis found 
that digoxin and proscillaridin can regulate gene expression levels by 
increasing or decreasing the expression levels of some lncRNAs. By 
conducting molecular docking and drug perturbations on gene expres
sion, we found that digoxin and proscillaridin can be used to treat severe 
COVID-19 infections (Aishwarya et al., 2020). Moreover, a bio
informatic analysis implied that the TGF-beta signaling pathway is 
interactive and involved in the network of lncRNAs, human proteins, 
and miRNAs. The TGF-beta signaling pathway may be a promising 
target for COVID-19 treatment (Yousefi et al., 2020). These studies 
suggested that lncRNAs can interact with several inflammatory factors, 
including inflammatory genetic processes and cytokine release in 
COVID-19. LncRNAs may serve as potential therapeutic enhancers in 
combatting SARS-CoV-2. 

6. Summary 

In SARS-CoV-2 infection, lncRNAs have been demonstrated to be 
related to viral infection, interferon and cytokine storms in COVID-19 
(Fig. 1). These lncRNAs interacted with genes of SARS-CoV-2 via the 
lncRNA‒miRNA-mRNA pathway. LncRNAs can also modulate the 
expression of interferon. Conversely, interferon can stimulate the 
expression of lncRNAs. In addition, lncRNAs bind with important or 
multiple cytokine storm cytokines. LncRNAs identified in the COVID-19 
cytokine storm have the potential to serve as disease markers or drug 
targets. Thus, we can speculate that developing drugs targeting some 
specific sites in the pathway or network of lncRNAs may be a promising 
strategy to treat SARS-CoV-2 infection. More experimental studies are 
needed to further confirm the regulatory mechanism of lncRNAs in 
COVID-19. 
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