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Abstract

Objective: To investigate the performance of various deep learning (DL) architectures for 

MyoMapNet, a DL model for T1 estimation using accelerated cardiac T1 mapping from four 

T1-weighted images collected after a single inversion pulse (Look-Locker, LL4).

Methods: We implemented and tested three DL architectures for MyoMapNet: (a) a fully 

connected neural network (FC), (b) convolutional neural networks (VGG19, ResNet50), and 

(c) encoder-decoder networks with skip connections (ResUNet, U-Net). Modified Look-Locker 

Inversion Recovery (MOLLI) images from 749 patients at 3T were used for training, validation, 

and testing. The first four T1-weighted images from MOLLI5(3)3 and/or MOLLI4(1)3(1)2 

protocols were extracted to create accelerated cardiac T1 mapping data. We also prospectively 

collected data from 28 subjects using MOLLI and LL4 to further evaluate model performance.

Results: Despite rigorous training, conventional VGG19 and ResNet50 models failed to produce 

anatomically correct T1 maps, and T1 values had significant errors. While ResUNet yielded good 

quality maps, it significantly under-estimated T1. Both FC and U-Net, however, yielded excellent 

image quality with good T1 accuracy for both native (FC/U-Net/MOLLI= 1217 ± 64/ 1208 ± 61/ 
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1199 ± 61 ms, all P<0.05) and post-contrast myocardial T1 (FC/U-Net/MOLLI= 578 ± 57/ 567 ± 

54/ 574 ± 55 ms, all P<0.05). In terms of precision, the U-Net model yielded better T1 precision 

compared to the FC architecture (standard deviation of 61 ms vs. 67 ms for the myocardium for 

native (P<0.05), and 31 ms vs. 38 ms (P<0.05), for post-contrast). Similar findings were observed 

in prospectively collected LL4 data.

Conclusion: U-Net and FC DL models in MyoMapNet enable fast myocardial T1 mapping using 

only four T1-weighted images collected from a single Lock-Locker sequence with comparable 

accuracy. U-Net also provides slight improvement in precision.
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Introduction

Over the past decade, there has been increasing interest in myocardial T1 mapping 

as a quantitative technique for assessing interstitial diffuse fibrosis (1,2). Various T1 

mapping pulse sequences have been proposed for pixel-wise measurement of myocardial 

T1 relaxation times with several recent attempts aimed at improving accuracy, precision, 

coverage, and imaging efficiency (3–5). Among these T1 mapping sequences, Modified 

Look-Locker Inversion Recovery (MOLLI) remains a commonly used part of the myocardial 

tissue characterization clinical protocol due to its excellent image quality and availability 

(6). However, technical improvements are still needed to overcome limitations such as 

lengthy scan times that require long breath-holds.

With advances in artificial intelligence (AI), particularly deep learning (DL), several studies 

have sought AI-based methods for improving cardiac T1 mapping during data acquisition, 

reconstruction, or automatic analysis. Shao et al. developed a DL model for rapid calculation 

of myocardial T1/T2 values based on Bloch equation simulation with improvement in 

accuracy (7). Our group has previously shown how DL-based reconstruction networks 

can reduce the window of a single-shot acquisition and alleviate cardiac motion-induced 

artifacts in the T1 map (8). DL-based reconstruction networks have also been used in 

MR fingerprinting to reduce the time required to calculate MR relaxation times from 

undersampled spiral data (9). Several other DL-based techniques have also been presented 

to automate analysis, motion correction, and quality control (10–12). Recently, we proposed 
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MyoMapNet, a fully connected neural network (FC) for building a T1 map from only four 

T1-weighted images and thus shorten the imaging time of MOLLI with minimal loss in 

T1 precision (13). The MyoMapNet reduces the scan time of standard MOLLI from 11 

second to 4 seconds. In addition, the map reconstruction time remains very fast with near 

instantaneous inline map estimation. However, we did not rigorously study the optimal DL 

architecture for this model.

When estimating T1, the input to the neural network can be pixel-wise, image-patch, 

or whole image, depending on the type of neural network and training strategy. A pixel-

wise neural network, such as FC, is similar to the conventional curve-fitting method for 

performing T1 calculation at a single pixel (7,9,13). However, this approach does not 

incorporate neighboring pixels. In contrast, two-dimensional (2D) convolutional neural 

networks such as VGG19 (14), ResNet50 (15), ResUnet (16), and U-Net (17) can be 

advantageous for extracting deep features and have successfully been used in various image 

classification and segmentation problems (18,19). Such convolutional or encoder-decoder 

methods utilize neighboring pixels within the same tissue to improve T1 map quality, albeit 

potentially reducing sensitivity. The impact of alternate DL architectures on MyoMapNet 

performance has not been rigorously investigated.

In this study, we sought to investigate the performance (i.e., accuracy and precision) 

of different DL architectures on MyoMapNet by implementing pixel-wise (i.e., FC) and 

convolutional-based neural networks. MOLLI T1 data were used for training, validation, and 

testing of each model. Model performance was further studied using a Look-Locker 4 (LL4) 

sequence collected from four T1-weighted images after a single inversion pulse.

Methods

Figure 1 shows the study overview. Existing MOLLI data was used for training, validation, 

and testing (Figure 1A). Additional independent testing was done in a prospectively 

collected LL4 imaging dataset (Figure 1D). Specifically, the first four images from MOLLI 

were used for network training (Figure 1B-C) followed by testing using (a) the first four 

T1-weighed images of MOLLI, and (b) prospectively collected LL4 images from phantom 

and in-vivo scans (Figure 1E-F).

To investigate DL architecture performance, we studied five state-of-the-art models: FC, 

VGG19, ResNet50, ResUnet, and U-Net. Each architecture and their hyper-parameters 

were selected based on their reported DL performance (20). The input to the FC network 

consisted of four T1-weighted signals and their corresponding inversion-recovery times. The 

input for other networks consisted of four T1-weighted images and their corresponding 

inversion-recovery times. To use inversion times as input to the neural network, the T1-

weighted images and inversion times were combined into eight channels: the first four 

channels consisted of the T1-weighted images, and the last four channels comprised the 

inversion times (Supplementary Figures 1, 2, and 3).

The FC consisted of 6 layers with 400 neurons in the first two layers, 100 neurons in the 3rd 

and 4th layers, 50 neurons in the 5th layer, and one in the output. The activation function was 

Amyar et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Leaky ReLU. VGG19 (14) consisted of 19 layers with small convolutional filters size 3×3 

and an ReLU activation function, and the number of feature maps was doubled after each 

max-pooling operation. The last fully connected layer contained 1000 neurons adjusted to 

160×160 neurons to output the T1 map.

ResNet50 (15) is a very deep neural network consisting of 50 layers and a residual block 

designed to tackle the vanishing/exploding gradient problem of deep convolutional neural 

networks (CNN) (21). A residual block consists of 2 convolutional layers, with each 

followed by an activation function ReLU and a batch normalization. Identity mapping of 

the input to the block is created and concatenated to the output of the second convolutional 

layer allowing for skip connections. ResUnet (16) uses a U-Net encoder/decoder as its 

backbone in combination with residual connections. There are no fully connected layers 

in the network, and the output is a 2D matrix directly representing the T1 map of size of 

160×160 (Supplementary Figure 3).

The last architecture we investigated is U-Net (17), an encoder-decoder neural network with 

skip connections. The encoder is used to obtain the disentangled feature representation. 

The encoder consists of eight convolutional layers with convolution filters of 3×3 and 

a max-pooling of 2×2 after every two convolutional layers. After the first convolutional 

operation, the resulted feature map has 64 channels, which will be combined later with the 

latest convolutional layers with the same number of channels (64). This is followed by the 

last convolutional operation with a kernel size of 1×1 to output the T1 map (Supplementary 

Figure 2). The number of feature maps increases from 64 for the two first layers to 512 for 

the last two layers. We opted for ReLU activation function. Each decoder level began with 

an up-sampling layer followed by a convolution to reduce the number of features by a factor 

of 2. Then, the up-sampled features were combined with features from the corresponding 

level of the encoder part using concatenation. All the neural networks were trained from 

scratch and optimized for T1 estimation.

DL Models and Training

Our local Institutional Review Board (IRB) approved use of a consent waiver for 

retrospective data and written informed consent was prospectively collected from subjects 

prior to scanning. Patient information was handled in compliance with the Health Insurance 

Portability and Accountability Act. We retrospectively identified 749 subjects (407 male, 

56±16 years) who underwent clinical scans at Beth Israel Deaconess Medical Center 

(BIDMC) from January 2019 to October 2020, in whom native and/or post-contrast T1 

images were collected. All patients were imaged on a 3T MRI scanner (MAGNETOM Vida 

Siemens Healthcare, Erlangen, Germany). Native and post-contrast T1 mapping in three 

short-axis views of the left ventricle were imaged using MOLLI5(3)3 and MOLLI4(1)3(1)2 

with the following imaging parameters: balanced steady-state free-precession readout, 

field-of-view = 360×325 mm2, spatial resolution = 1.7×1.7×8 mm3, TR/TE/flip angle= 

2.5 ms/1.02ms/35°, receiver bandwidth= 1093 Hz/pixel, GRAPPA acceleration rate = 2, 

readout lines per shot = 75, and slice gap = 16 mm. T1-weighted images were motion-

corrected using vendor-provided inline motion correction. Pixel-wise MOLLI T1 maps were 

reconstructed off-line by fitting T1-weighted signals at each pixel to a three-parameters 
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conventional fitting model (22). T1 maps were not scaled to account for inversion pulse 

inefficiency. The database was divided into training (~80%), validation (~10%) and testing 

(~10%). To create T1 mapping using only four T1-weighted images collected after a single 

inversion pulse, we used the first four images collected after the first inversion pulse of 

MOLLI5(3)3 and MOLLI4(1)3(1)2 and discarded the remaining T1-weighted images.

All models were implemented using PyTorch and trained on an NVIDIA DGX-1 system 

equipped with 8 Tesla V100 graphics processing units (GPUs; each with 32 GB memory and 

5120 cores) and a central processing unit (CPU) of 88 cores: Intel Xeon 2.20 GHz each, and 

504 GB RAM.

Images from 607 patients and 78 patients were used for training and validation, respectively. 

Each model was trained by minimizing the mean absolute error (MAE) between the ground 

truth and the estimated T1. All networks were trained with a mini-batch of 64, an Adam 

optimizer with a learning rate of 0.01, and a weight decay of 0.0001. To avoid overfitting 

or underfitting, T1 estimation errors of the training and validation dataset were monitored 

during training. Error monitoring in the blood pool and myocardium also ensured that 

the model learned a good representation of these two regions of interest. For the training 

dataset, the T1 estimation error across the entire image was calculated. For validation, the T1 

estimation error of the myocardium and blood were used to select the best model.

Evaluation

We first evaluated all trained models using existing MOLLI images from 64 patients (36 

male, 56±17 years), 47 of which had post-contrast T1 images. T1 maps for MyoMapNet 

were estimated from the first four images collected after the first inversion pulse of 

MOLLI5(3)3 or MOLLI4(1)3(1)2 and compared to original MOLLI T1 values, estimated 

from all T1-weighted images. In addition, we prospectively collected phantom and in-vivo 
data to further evaluate the performance of all trained models (Figure 1D). An LL4 sequence 

was implemented in which four T1-weighted images were collected after the first inversion 

time. All imaging parameters and inversion times were matched with MOLLI. To assess 

accuracy and precision, a phantom experiment was performed with an agarose gel-based 

phantom using nickel chloride as the paramagnetic relaxation modifier with twelve vials 

(23). Reference T1 and T2 times of each vial were measured by inversion-recovery spin-echo 

(IR-SE) and Carr-Purcell-Meiboom-Gill spin-echo (CPMG-SE) sequences, respectively, as 

previously reported (24). MOLLI5(3)3 and LL4 were performed at a simulated heart rate 

of 60 bpm. Each sequence was repeated 10 times, and repetitions of all sequences were 

performed in a random order.

Prospective in-vivo T1 mapping data were collected in 28 subjects, consisting of eight 

healthy subjects (5 male; 27±14 years) and 20 patients (12 male, 61±12 years) undergoing 

a clinically-indicated cardiac MRI. Native T1 mapping with MOLLI5(3)3 and post-contrast 

T1 mapping by MOLLI4(1)3(1)2 (if applicable) were included in their clinical protocols. 

LL4 images were collected at one mid-cavity short axis slice before and after contrast in 

patients with clinically indicated use of gadolinium. For patients who received contrast, 

MOLLI4(1)3(1)2 and LL4 were scanned ~15 min after administration of 0.1 mmol/kg 

Gd-DTPA (Gadavist, Bayer Healthcare, Berlin, Germany).
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Data Analysis

T1 values in each vial were manually measured by drawing a region of interest (ROI) to 

calculate the mean and standard deviation (SD). The mean and SD of T1 of each vial 

were averaged across all measurements. SD was used to compare T1 precision among 

different methods. For each in-vivo T1 map, the endocardium, epicardium, and blood pool 

were manually delineated to measure the mean and SD of T1 of the left ventricle (LV) 

myocardium and blood pool.

The paired two-tailed Student’s t-test was used to assess statistical significance, and a 

p-value less than 0.05 was considered statistically significant. Bland-Altman was used to 

investigate agreement in T1 measurements between MOLLI and the different MyoMapNet 

DL models. All data analysis was performed using MATLAB R2009b and R2018b 

(MathWorks, Natick, MA, USA). Statistical analyses were performed using GraphPad Prism 

version 9.2.0 (GraphPad Software, San Diego, CA, USA), and python library scikit-learn 

(0.19.1).

Results

All models converged before reaching the 3000 maximum iterations. U-Net was the 

fastest model during learning with less than 500 iterations, while FC continued learning 

to more than 1000 iterations. CNN based models converged at approximately 500 

iterations. Learning was stopped if the model did not improve after 70 iterations to avoid 

overfitting. The loss curves and trained models are publicly available (https://github.com/

HMS-CardiacMR/MyoMapUnet).

In-Vivo Evaluation using Existing MOLLI Data

Figures 2 and 3 show representative native and post-contrast T1 maps for one subject. 

VGG19 and ResNet50 could not correctly predict T1. ResUnet yielded a map that preserves 

anatomical regions without visual artifacts; however, there were substantial errors in the 

estimated T1 in both the blood and myocardium. Visually, FC and U-Net provided excellent 

T1 maps with similar image quality as MOLLI5(3)3. Similar results were achieved for 

post-contrast T1 maps.

Table 1 summarizes mean and SD values of myocardial and blood native post-contrast 

T1 values across all subjects. For native myocardial and blood T1, good agreement was 

achieved between (1) FC and MOLLI5(3)3 and (2) U-Net and MOLLI5(3)3. FC had a 

mean T1 difference of 18 ms and 15 ms, and U-Net had a mean T1 difference of 9 ms and 

−12 ms (all P<0.05). Bland-Altman plots (Figure 4) confirmed this agreement. The 95% 

confidence interval (CI) of T1 differences between FC and MOLLI5(3)3 ranged from −1.8 

ms to 39.3 ms for myocardial T1 and from −45.6 ms to 75.5 ms for blood T1. The 95% CI 

of T1 differences between U-Net and MOLLI5(3)3 ranged from −10.8 ms to 29.6 ms for 

myocardial T1 and from −54.1 ms to 30.2 ms for blood T1. Bland-Altman analysis (Figure 

4C-D) demonstrated FC and U-Net were in excellent agreement with MOLLI4(1)3(1)2 for 

post-contrast T1. Mean myocardial and blood T1 differences between them were 4.2 ms and 

3.7 ms (FC vs. MOLLI4(1)3(1)2) and −6.2 ms and 0.1 ms (U-Net vs MOLLI4(1)3(1)2), all 
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P<0.05 except for U-Net vs. MOLLI for blood T1 (P=0.91). Due to large estimation errors 

from the other MyoMapNet models, the Bland-Altman analysis is not shown.

Box-and-whisker plots show T1 precision (SD) of different DL models for native and 

post-contrast myocardium and blood pool (Figure 5). In native T1 images, the U-Net model 

yielded better T1 precision than the FC architecture (61 ms vs. 67 ms for the myocardium 

(P<0.05) and 27 ms vs. 51 ms for the blood pool for native T1 (P<0.05)). Similar results 

were observed for post-contrast T1 values (31 ms vs. 38 ms (P<0.05) for the myocardium 

and 12 ms vs. 17 ms for the blood pool (P<0.05)) (Table 1 and Figure 5).

Phantom Experiments

Figures 6 and 7 show the accuracy and precision of T1 values in different phantom vials 

with various T1 and T2 values across different DL models. Table 2 shows the measured T1 

values. Consistent with in-vivo findings in the existing dataset, MyoMapNet with VGG19, 

ResNet50, and ResUnet had large T1 estimation errors compared to MOLLI. Both FC and 

U-Net yielded excellent maps (Supplementary Figure 4) with a T1 mean difference of 10.6 

ms and −5.57 ms, respectively (all P<0.05).

In-Vivo Evaluation using Prospectively Collected LL4

In the prospective LL4 study, the models exhibited similar performance as in the 

retrospective dataset (Figure 8). VGG19 and ResNet50 failed to generate anatomically 

correct images and had significant artifacts. ResUnet provided anatomically correct T1 

maps; however, T1 values were significantly lower than those by MOLLI (Table 3). FC 

and U-Net yielded excellent image quality compared to MOLLI (Figure 8). Bland-Altman 

plots showed very good agreement between MOLLI and FC (mean-difference: 29.5 ms, 

36.5 ms, 7.4 ms, 10.8 ms for native and post-contrast myocardium and blood pool) and 

between MOLLI and U-Net (mean-difference: 26.5 ms, 30.6 ms, 7.9 ms, 3.6 ms for native 

and post-contrast myocardium and blood pool) (Figure 9).

Similar to the retrospective dataset, LL4 box-and-whisker plots show good T1 precision for 

FC and U-Net for native and post-contrast myocardium and blood pool (Figure 10). In native 

T1 images, the U-Net model yielded better T1 precision than the FC architecture (57 ms vs. 

63 ms for the myocardium (P<0.05) and 25 ms vs. 50 ms for the blood pool for native T1 

(P<0.05)). There was no difference in precision between MOLLI and U-Net for native T1 of 

blood or post-contrast T1 of myocardium or blood (all P>0.05) (Figure 10).

Discussion

In this study, we evaluated the performance of several DL architectures for estimating T1 

values using MyoMapNet, an accelerated T1 mapping sequence, in four heartbeats. Our 

results show that both FC and U-Net can successfully create T1 maps from only four 

images with similar accuracy and precision as MOLLI. Furthermore, other DL convolutional 

networks such as VGG19 and ResNet50 failed to reliably estimate T1 values. While the 

accuracy was similar between U-Net and FC, our finding shows a statistically significant 

improvement in T1 precision with U-Net. Despite higher precision, the difference between 
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the two methods yielded values that would likely not change clinical interpretation. 

Therefore, both ML models are potentially interchangeable.

ResUnet has shown promising results generating visually correct maps; however, it 

significantly underestimated T1. ResUnet uses both U-Net and residual learning (ResNet). 

Since ResNet failed with respect to T1 estimation, we hypothesize that its combination with 

U-Net degraded its performance instead of improving it, as usually expected when adding 

residual blocks to U-Net. Further studies are needed to investigate what caused this failure.

The FC network does not consider the information available in neighboring pixels since 

each pixel is treated independently. With the use of a convolutional-based network, we 

hypothesized that an improvement in precision could potentially be achieved even if 

accuracy did not improve. Nonetheless, in our study, well-established CNNs, such as 

VGG19 and ResNet50, performed poorly. The presence of max-pooling layers and fully 

connected layers after convolutions could be the main reason for this low performance. 

In a pilot study, we investigated the performance of the modified architectures based on 

VGG19 (mVGG) and ResNet50 (mResNet) without max pooling or fully connected layers 

after convolution and reported our preliminary findings (Supplementary Materials). The 

mVGG yielded improved map estimation and the mResNet exhibited better results; however, 

there was significant T1 estimation error. We further investigated the cause of the failure 

and found that it was due to batch normalization in the residual blocks. We also modified 

the original ResUnet (mResUnet) which showed underestimation of T1 values by updating 

the residual blocks containing batch normalization (the source of the issue). Next, the 

identity map was replaced by a convolutional layer followed by an activation function ReLU 

before concatenation, which resulted in a significant improvement. Further investigation is 

needed to rigorously study the impact of such architectures on MyoMapNet. Jun et al. (25) 

recently demonstrated that reasonably accurate brain T1 values can be achieved by removing 

max pooling and fully connected layers. Another solution, albeit expensive in terms of 

calculation, could be the use of small patches as input and estimates the T1 value of the 

central pixel of each patch (26,27).

Our choice of the various architectures was based on their previously reported performance 

(20). It is well known that the basic choice for image processing is CNN and rarely FC. 

Unlike U-Net, CNN uses FC after the last convolutional layer. As a result, CNN uses global 

information where the spatial arrangement of the input disappears. Thus, CNNs do not take 

into account spatial relationships between underlying objects. While this is an advantage 

for image classification and prediction, spatial relationship is important for T1 estimation. 

Without the ability to preserve the structural integrity of images, the CNN was not able to 

generate anatomically correct T1 maps. Indeed, in classification, learning feature mapping of 

an image allows conversion of it into a vector with high-level features that can be used with 

an FC to learn a non-linear combination of these features and generate an output. The use of 

pixel-wise based information with FC, or whole image information with an encoder-decoder 

U-Net, results in better representation learning and thus improved estimation.

To further facilitate clinical adoption of MyoMapNet, we integrated the two top-performing 

models for inline reconstruction of T1 mapping such that MyoMapNet T1 maps could be 
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readily available upon completion at the scanner. This allows visualization of the maps 

on the scanner console without the need for off-line processing. While U-net has more 

significant computational burden, we did not notice any differences in computation time for 

map processing.

One of the major challenges of DL is its generalizability and robustness. Due to limited 

data access and widespread challenges due to the COVID-19 pandemic at the time of this 

study, we were unable to test the performance of our models on different MRI systems 

or field strengths. It is difficult to speculate how the performance of the models could be 

impacted by acquiring data from different scanners. We have previously reported rigorous 

analysis of various training schemes and their required number of T1-weighted images for 

MyoMapNet with the FC model (13). In this study, we did not perform a similar analysis, 

as we expect the result to be similar. In an ad-hoc study, we evaluated whether we could 

measure T1 values using only three T1-weighted images with U-Net; however, we found 

significant errors in T1 values (data not shown). The imaging parameters could potentially 

impact accuracy of T1 estimates using MyoMapNet. All images were also collected at 3T. 

Further studies are needed to evaluate the performance of the model for different field 

strengths and vendors. Further transfer learning-based training may be necessary to further 

develop this approach for different systems.

In our training, we used the MOLLI sequence for the training of the model. However, 

MOLLI underestimates actual T1 values (3,4). It also suffers from many confounders such 

as T2, inflow, and B0 and B1 inhomogeneity (3,4). Other sequences, such as SASHA or 

SAPPHIRE (28,29) with improved accuracy could potentially be used to train MyoMapNet; 

however, since we did not have a large dataset for training using these sequences, MOLLI 

data was used. Numerical simulation can also potentially further improve accuracy by 

simulating T1 recovery using the Bloch equation. There are several potential solutions for 

improving MyoMapNet accuracy using different training schemes, but further investigation 

is warranted.

Conclusion

U-Net and FC DL models in MyoMapNet enable fast myocardial T1 mapping from only 

four T1-weighted images collected by a single Lock-Locker sequence with comparable 

accuracy and precision.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

Reza Nezafat receives grant funding from the National Institutes of Health (NIH) 1R01HL129185, 1R01HL129157, 
1R01HL127015 and 1R01HL154744 (Bethesda, MD, USA); and the American Heart Association (AHA) 
15EIA22710040 (Waltham, MA, USA). Xiaoying Cai and Kelvin Chow are employees of Siemens Medical 
Solutions USA, Inc. Reza Nezafat has a research agreement with Siemens.

Amyar et al. Page 9

NMR Biomed. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations

DL Deep learning

AI Artificial Intelligence

FC Fully connected neural networks

CNN Convolutional neural network

LL Look-Locker

CI Confidence interval

CPU Central processing unit

GPU Graphics processing units

MOLLI Modified look-locker inversion recovery

MAE Mean-absolute error

IR-SE Inversion-recovery spin-echo

CPMG-SE Carr-Purcell-Meiboom-Gill spin-echo

ROI Region of interest

LV Left ventricle

SD Standard deviation

RAM Random access memory
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Figure 1: 
Study overview. (A) The retrospectively collected dataset is divided into three subsets: 

training, validation, and testing. (B-C) The input to the neural network is 4 T1-weighted 

images and four inversion times. FC uses pixel-wise values as the input, while convolutional 

neural networks use the whole image. (D-F) Study design for evaluation of MyoMapNet 

in the retrospective dataset and the prospectively accelerated LL4 myocardial T1 mapping 

sequence in four heartbeats.
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Figure 2: 
Native and post-contrast T1 maps generated using MOLLI and MyoMapNet for three 

different DL architectures calculated from the first four T1-weighted images, extracted 

from corresponding MOLLI sequence and their differences. ResUNet created anatomically 

correct images but with significant T1 errors. Both U-Net and FC resulted in similar image 

quality as MOLLI.
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Figure 3: 
Native and post-contrast T1 maps generated using MOLLI and MyoMapNet using two 

different DL architectures calculated from the first four T1-weighted images, extracted from 

the corresponding MOLLI sequence and their differences. The VGG19 and ResNet50 failed 

to estimate T1 maps and resulted in blurry images.
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Figure 4: 
Bland-Altman plots demonstrating agreement between MOLLI and MyoMapNet for 

myocardial and blood T1 values as calculated by FC and U-Net models using the existing 

in-vivo dataset (N=64). Mean differences and 95% limits of agreement are indicated in red 

and dotted lines, respectively. Each data point is averaged across three left-ventricular slices 

for each subject.
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Figure 5: 
Box-and-whisker plots showing T1 standard deviation of the myocardium and blood 

for existing MOLLI data from two MOLLI sequences (MOLLI5(3)3 for native T1 and 

MOLLI4(1)3(1)2 for post-contrast T1) and MyoMapNet via different DL architectures.
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Figure 6: 
T1 accuracy and precision across phantom vials for MOLLI and MyoMapNet with FC, 

ResUnet, and U-Net models. FC and U-Net showed good precision, while ResUnet resulted 

in substantial measurement errors for different vials.
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Figure 7: 
T1 accuracy and precision across phantom vials for MOLLI and MyoMapNet with VCG19 

and ResNet50 models. Both VCG19 and ResNet50 resulted in large errors for different vials.
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Figure 8: 
Native (A) and post-contrast (B) T1 maps generated using MOLLI and MyoMapNet 

with different DL architectures calculated from the prospectively collected LL4 sequence. 

VGG19 and ResNet50 failed to correctly estimate T1 maps and resulted in blurry images. 

ResUNet was able to create anatomically correct images but with significant T1 errors. Both 

U-Net and FC resulted in similar image quality as MOLLI.
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Figure 9: 
Bland-Altman plots demonstrating agreement between MOLLI and MyoMapNet for 

myocardium and blood T1 values as calculated by FC and U-Net in patients imaged using 

the prospectively collected LL4 sequence (N=28). Mean differences and 95% limits of 

agreement are shown in red and dotted lines, respectively.
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Figure 10: 
Box-and-whisker plots for the prospective LL4 dataset showing T1 standard deviation of the 

myocardium and blood using MyoMapNet via different DL models.
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