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In cooperatively breeding species, socially dominant individuals monopolize
reproduction, while subordinate individuals experience anything from lower
rates of reproductive success to total suppression of reproductive function.
The proximate, physiological mechanisms that allow for such reproductive sup-
pression are of great interest. In this respect, the social mole-rats (subterranean
rodents in the family Bathyergidae) have proven to be exciting species for
studying the evolution and maintenance of cooperative breeding in vertebrates.
The most extreme of these species is the naked mole-rat (Heterocephalus glaber),
which lives in large colonies of up to hundreds of individuals. Breeding is
monopolized by a single female called ‘the queen’ and a male breeder, with
all other colony members suppressed from reproduction [1,2]. This reproduc-
tive suppression is so extreme that the non-breeding colony females—called
the ‘subordinates’—are typically anovulatory [3]. Since the 1990s, it has been
hypothesized that social stress in the subordinates, due to aggression from
the queen, results in chronic elevation of glucocorticoids, thereby inhibiting
reproductive function [4]. However, early tests of that hypothesis [4–6], and
our recent work [7], have failed to find evidence that this is the case. Similarly,
in cooperatively breeding Damaraland mole-rats (Fukomys damarensis), domi-
nant-imposed stress has not been found to be important in subordinate
reproductive suppression. Glucocorticoid concentrations do not differ between
dominant breeders and subordinates, and subordinate individuals do not
reproduce even if the dominants are removed from the group, likely owing
to within-colony inbreeding avoidance [8].

However, in a recent Biology Letters review [9], Medger proposes that domi-
nant-imposed stress, as reflected by elevated glucocorticoid concentrations in
subordinates, may yet play a role in reproductive suppression in these species.
The author hypothesizes that in times of colony instability, aggression by the
dominant female toward the subordinates may increase, thereby elevating subor-
dinate glucocorticoid concentrations and imposing reproductive suppression.
These effects of colony instability would be rare to observe opportunistically in
captive colonies, and so they propose that this may be more common in field
environments with natural seasonal variation. The author concludes by
suggesting the collection of further data to substantiate this hypothesis.

While this review provides interesting and thought-provoking ideas, I raise
several counterpoints to the author’s interpretation and provide an alternative
hypothesis. First, I propose that the colony instability and seasonal data
discussed in the review do not actually support the hypothesis that glucocorti-
coids suppress reproduction in subordinates in these instances. I provide
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evidence for an alternative interpretation: that elevated subor-
dinate glucocorticoid concentrations during colony instability
and seasonal changes are a reflection of increased ovarian
activity, not social stress. Second, while I agree that field
studies are important in understanding the natural biology
of any species, I contest that even if such a relationship were
to be found in the field, it has little bearing on the overall prox-
imate mechanism of reproductive suppression in these
cooperative species. Finally, I outline that the major hole in
our understanding of reproductive suppression in cooperative
breeders is how cues from the social environment are trans-
lated to the reproductive axis in the absence of
glucocorticoid action. I argue that our collective efforts may
be better spent on finding these novel neurobiological mechan-
isms rather than searching for a significant role for
glucocorticoids, which have been rejected time and time
again as a primary mechanism for subordinate reproductive
suppression in cooperative breeders (reviewed in [10,11]).

To emphasize how the glucocorticoid and reproductive
suppression hypothesis in these cooperative mole-rats is
heavily rooted in dogma more than actual data, foundational
papers in the field of endocrinology must be highlighted. Pro-
minent reviews in the early 2000s describe a negative,
suppressive relationship between glucocorticoids and repro-
ductive function, and anything that deviates from this is the
exception to the rule [12–14]. These three reviews have collec-
tively been cited 11 711 times (Google Scholar, 14 August
2022). However, complicating this seemingly direct relation-
ship is evidence that glucocorticoids also promote several
reproductive processes. Many in our field (myself included)
are guilty of colloquially referring to glucocorticoids as
‘stress hormones’ but this can be a problematic oversimplifi-
cation [15]. Glucocorticoids are fundamentally metabolic
hormones that are critical for many life processes and influ-
ence the expression of thousands of genes [15]. They
increase around ovulation in several mammalian species
[16]. They are elevated in most mammals during late preg-
nancy [17] and are essential for normal fetal development
[18,19]. There are examples of species where reproductive
males have elevated glucocorticoids during the breeding
season, and this may be to facilitate processes like territorial
guarding and intra-sexual competition, rather than as a
consequence of those behaviors [20,21].

Bearing this in mind, I first discuss the evidence that
Medger [9] suggests supports the stress and reproductive
suppression hypothesis during colony instability in naked
mole-rats. The crux of her argument is that stress-induced
reproductive suppression should kick in during instances of
colony instability when potential usurper females begin to
reproductively activate to become the new queen, and must
be suppressed by the queen’s aggressive attacks. Medger
acknowledges that no relationship has previously been
detected between levels of queen aggression and subordinate
glucocorticoid concentrations [22]. However, she points
toward indirect evidence from a laboratory study where sev-
eral individuals were removed from their colonies, creating a
destabilization event [23]. The remaining colony females dis-
played both elevated progesterone concentrations (signalling
reproductive activation) and elevated cortisol concentrations
[23]. Medger interprets this as the colony females attempting
to become breeders (elevated progesterone), and then their
subsequent punishment by the queen (elevated cortisol),
thereby re-establishing suppression.
However, female naked mole-rats that are removed from
the colony (and hence reproductively activate) and housed
alone also show increased glucocorticoid concentrations
[4,7,23]. This indicates that the glucocorticoid increase is not
related to receiving aggression from the queen. Rather, it is
potentially associated with the onset of reproductive matu-
ration. A comparable relationship has been seen in
cooperatively breeding common marmosets (Callithrix jac-
chus), where females removed from the group and paired
with a male partner have elevated glucocorticoid concen-
trations [24]. Studies in humans [25], laboratory rats [26,27],
sheep [28] and elephants [29] have shown that glucocorticoids
are elevated at ovulation or just prior to ovulation (proestrus).
Hence, it is probable that the elevated glucocorticoid concen-
trations in naked mole-rats that are becoming reproductively
active are related to increasing ovarian function. Similarly,
Medger [9] discusses a study in Damaraland mole-rats
where subordinate females have elevated glucocorticoid con-
centrations in the wet season, which is a time of higher
reproductive activity for this species [30]. Though the author
mentions that there are multiple possible explanations for
this seasonal difference (including increased reproductive
effort) she suggests that it may be an effect of increased domi-
nant aggression causing glucocorticoid-induced suppression
during this time. I again emphasize the positive association
between glucocorticoid concentrations and potential subordi-
nate reproductive activity.

I disagree that the present evidence indicates subordinate
suppression by glucocorticoids in these mole-rat species during
colony instability or seasonal changes. But, even if the hypoth-
esized mechanism does exist, I ask what this means for the
central question of how these cooperative breeders are sup-
pressed at all other times? These two species have been
studied in captivity for decades, and subordinates are reproduc-
tively suppressed in laboratory colonies without elevated
glucocorticoids [4–8]. If the mechanism proposed by Medger
[9] is centrally important, these artificially stable, captive colonies
should lack reproductive suppression. Because this is not the
case, it is unlikely that glucocorticoids play a necessary or
essential role in the maintenance of reproductive suppression.

If glucocorticoids do not play a central role in subordinate
reproductive suppression in cooperative breeders, then the
major unanswered question is how, mechanistically, are
the conditions of the social environment communicated to
the reproductive axis? There are some promising neurobiolo-
gical mechanisms for understanding this. For example,
gonadotropin inhibitory hormone (GnIH), or RFamide-
related peptide-3 (RFRP-3) in mammals, is a neuropeptide
that is generally a negative regulator of the reproductive
axis (reviewed in [31–33]). In naked mole-rats, subordinates
display increased RFRP-3 immunoreactivity in important
reproductive centres of the brain [34]. Work in other species
has shown that RFRP-3 neurons have glucocorticoid and cor-
ticotropin-releasing hormone receptors and thus can be
influenced by the stress axis (as mentioned by Medger [9]).
But, they also have adrenergic receptors, serotonergic recep-
tors, and oestrogen receptors, among others [31–33]. Studies
in birds have shown that GnIH responds to conditions in
the social environment that are unrelated to social stress,
including visual exposure to opposite-sex conspecifics
(thought to be facilitated by norepinephrine [35]) and access
to nesting sites [36]. This is only one example to illustrate
how many pathways may communicate to the reproductive
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axis without the need for signalling by glucocorticoids. There
are many more candidate mechanisms involved in social
reproductive suppression, and mechanisms may differ
across species (reviewed in [37]).

Much can be learned about the natural social dynamics of
different species from continued fieldwork, and hormone
sampling in the field is a good tool for answering certain ques-
tions. However, I contend that in naked mole-rats and
Damaraland mole-rats, the most important future work in
understanding the proximate mechanism of reproductive sup-
pression will be intensive neurobiological and molecular
studies. These species are important model systems for
answering this question because their reproductive
suppression is so extreme and because they can be kept in
the laboratory more readily than other cooperative breeders
(e.g. social carnivores). Thus, continued neurobiological and
molecular work in the social mole-rats should shed light on
mechanisms of reproductive suppression, with potential appli-
cations to the maintenance of cooperative breeding in general.
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