Table 6.
TCM | Model | Methods | Memory | Neuroprotective effect | Reference |
---|---|---|---|---|---|
Gas | Mice | D-gal | Improved | LPS↓,proinflammatory cytokine↓ | (189) Fasina OB, et al. 2022 |
Se-Ps | Mice | LPS | Improved | pro-inflammatory mediator↓, anti-inflammatory cytokines↑ | (190) Wu S,et al. 2022 |
QWF | Rats | Aβ1-42 | Improved | pro-inflammatory mediator↓, Improved the hippocampal morphology | (191) Xiong W, et al. 2022 |
XAN | Rats | Aβ1-42 | Improved | Regulation of neurotransmitter, amino acids, bile acids, and SCFAs metabolism | (192) Zhou H, et al. 2022 |
OMO | Rats | D-gal Aβ1-42 |
Improved | Improve neurotransmitter synthesis and secretion | (193) Chen D,et al. 2017 |
Rg1 | Mice | 3xTg-AD | / | Linoleic acid metabolism,arachidonic acid metabolism,tryptophan metabolism,sphingolipid metabolism | (194) Li G, et al .2019 |
HAL | Mice | hyoscine | Improved | cholinergic function↑,pro-inflammatory mediator↓ | (195) Li SP, et al.2018 |
Ge | Mice | Aβ1-42 | / | Lysophosphatidylcholine metabolism, phenylalanine metabolism | (196) Li J, et al. 2018 |
BSTSF | Rats | Aβ1-42 | Improved | Linoleic acid metabolism,beta-linolenic acid metabolism,glycerophospholipid metabolism,tryptophan metabolism, arginine, proline metabolism | (197) Zhang Z, et al. 2020 |
HLJDD | Rats | Aβ25-35 | / | Methionine metabolism, glutamine metabolism,tryptophan metabolism | (198) Gu X, et al. 2020 |
The '↑' means up-regulation and '↓' means down-regulation.