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The coronavirus disease 2019 (COVID-19) 
pandemic is a continuing major threat to 
global health and the economy. Infections 
with SARS-​CoV-2 and its variants of 
concern (VOC) evoke a broad spectrum 
of clinical manifestations, ranging from 
asymptomatic infections to disease 
associated with profound tissue damage, 
organ failure and death1–3. The excessive 
release of pro-​inflammatory cytokines, a 
condition termed ‘cytokine storm’ (see Box 1 
with glossary terms for further explanation), 
and massive immune stimulation, resulting 
in macrophage activation syndrome (MAS) 
(Box 1), aberrant neutrophil activation or 
T cell hyperactivation, are characteristic 
features of severe COVID-19 (refs.4–8). 
Extensive efforts have been undertaken to 
reduce viral spread and avoid severe disease 
pathology, including the administration 
of antiviral agents such as Molnupiravir 
(EIDD-2801) or Paxlovid (PF-07321332)9,10 
and, importantly, vaccines, most of which 
induce immune responses targeted at the 
SARS-​CoV-2 spike protein11–13. Another 
strategy is the mitigation of destructive 
hyperinflammation by using steroids such 

angiotensin-​converting enzyme 2 
(ACE2) receptor-​mediated viral entry 
and viral propagation in susceptible 
host cells16 and new insights into innate 
and adaptive immune responses to 
SARS-​CoV-2 infection17,18, less is known 
about cause–consequence relationships 
between the primary virus infection and 
subsequent pivotal pathogenetic events 
that can collectively lead to organ failure. 
SARS-​CoV-2-​related lung disease is 
characterized by extensive activation of both 
M1-​like and M2-​like macrophages (Box 1), 
infiltration by a heterogeneous spectrum 
of neutrophils, neutrophil extracellular 
trap (NET) formation, complement 
activation, and characteristic patterns of 
SARS-​CoV-2-​specific T cell immunity 
composed of predominantly IFNγ-​releasing 
T helper 1 (TH1) cells with a central memory 
phenotype and perforin-​expressing CD8+ 
T cells with an effector phenotype17,19–22. 
This can lead to immunopathology, 
resulting in alveolar and capillary damage, 
including endothelialitis (also referred 
to as endotheliitis) and endothelial 
cytolysis, fibrosis and widespread 
microthrombosis23–26. Interestingly, the most 
destructive phase of immune activation 
often occurs when the viral mRNA is no 
longer detectable.

Disease manifestations of SARS-​CoV-2 
infection might, at least partially, be seen as 
a programmed cellular stress response to 
the initiating viral insult of the upper airway 
respiratory cells. Recently, it was found that 
SARS-​CoV-2 can evoke a form of cellular 
senescence, virus-​induced senescence (VIS) 
(Box 1), through multiple mechanisms27–29 
(Fig. 1).

Cellular senescence is a stress-​inducible 
cellular state switch that includes termi-
nal cell-​cycle arrest and the acquisition 
of a senescence-​associated secretory 
phenotype (SASP). The SASP is predom-
inantly characterized by the secretion of 
pro-​inflammatory cytokines and extracel-
lular matrix-​modifying factors and plays 
important roles in embryonic develop
ment, ageing, oncogene-​evoked and cancer 
therapy-​evoked insults, as well as tissue 
injury30–33 (see Box 2 for details). In this 
Perspective, we propose that a propensity 
to senescence-​governed immune escalation, 
which can be related to ageing or chronic 

as dexamethasone, which has significantly 
reduced mortality rates, or treatment 
with other anti-​inflammatory agents, for 
which clinical results have been mixed14. 
The recently reported promising clinical 
effects observed with the IL-1α/IL-1β 
blocker anakinra and the anti-​IL-6 receptor 
antibodies tocilizumab and sarilumab 
confirm the critical role of overactive 
cytokine networks in COVID-19 (ref.15).

Although vaccines and previous 
infections largely protect against severe 
clinical courses of COVID-19 — particularly 
in the current phase of the pandemic, 
which is dominated by sublineages of the 
SARS-​CoV-2 Omicron variant — there is 
still a significant unmet medical need for 
therapeutics to treat severe courses of disease 
in unvaccinated or immunosuppressed 
individuals as well as in elderly patients and 
patients with chronic disease conditions. 
Moreover, given the high global incidence of 
SARS-​CoV-2 infections, no one can predict 
whether and when a distinct, much more 
virulent VOC might emerge.

Despite an advanced understanding 
of the molecular mechanisms underlying 
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disease, can also be acutely triggered by 
SARS-​CoV-2 infection and lead to severe 
disease. This view of SARS-​CoV-2 infection 
may allow new insights into the triggers and 
effectors involved in COVID-19 and into 
the dynamics of the inflammatory process 
seen in this disease. Moreover, we propose 
that the selective removal of senescent cells 
by candidate agents, termed senolytics, or of 
VIS cells as a collateral result of SARS-​CoV-2 
spike (S) protein-​based vaccination, could 
prevent or mitigate severe COVID-19.

Virus-​evoked cellular stress
VIS appears to be a universal stress response 
in host cells and can be induced by many 
different virus species. These include 

single-​stranded and double-​stranded 
DNA and RNA viruses belonging to 
the Retroviridae, Polyomaviridae, 
Paramyxoviridae, Parvoviridae, 
Rhabdoviridae and Coronaviridae  
families, and has been explicitly shown  
for lentiviruses, adeno-​associated viruses,  
vesicular stomatitis viruses and, notably, 
SARS-​CoV-2 (refs.28,29,34–38). The molecular 
mechanisms by which different viruses 
evoke cellular senescence appear to 
vary as both replication-​competent 
and assembly-​defective viruses that 
cannot produce intact virions can 
induce a senescence response, although 
this requires higher viral titres for 
replication-​incompetent viruses. 

For example, viruses such as the Merkel cell 
polyoma virus, HIV and SIV affect genome 
integrity, which can induce a senescence 
response. Respiratory syncytial or measles 
viruses enforce cell fusions, which act as 
cellular stress that can lead to VIS34–36,39. 
This is also observed in SARS-​CoV-2 
infection, where the Delta variant was 
shown to be particularly fusogenic40.

Although senescence reportedly leads 
to enhanced expression of entry receptors 
for different viruses, with the underlying 
mechanisms and the spectrum of affected 
entry receptors yet to be elucidated27,41,42, 
it can also represses virus propagation, 
which is thought to be due to the enhanced 
release of interferons as part of the SASP43. 
Moreover, at least in certain settings, 
antiviral therapies may induce cellular 
senescence37. However, some agents that 
interfere with viral replication can also 
inhibit VIS responses. For example, this was 
shown for the reverse transcriptase inhibitor 
zidovudine in the context of retroviral 
infection and for the remdesivir derivative 
GS-441425, a viral RNA polymerase 
inhibitor, in the context of SARS-​CoV-2 
infection28 (Fig. 1). Importantly, VIS reflects 
a ‘full-​featured’ senescent state switch of 
host cells, accompanied by a pronounced 
SASP that is detectable by a typical set of 
molecular markers (Box 2).

The direct induction of senescence 
through infection with SARS-​CoV-2 was 
demonstrated in vitro with a SARS-​CoV-2- 
​susceptible kidney cell line (Vero) as 
detected by an increase in lipofuscin (Box 1), 
the secretion of SASP factors, including 
IL-1β, IL-6 and IL-8, and the DNA damage 
mark γH2A.X, as well as a loss of Ki67 
expression44 (Box 1). It is not entirely clear 
whether virus propagation stress or specific 
viral molecular components induce VIS. 
Interestingly, isolated recombinant S protein 
has been shown to increase the SASP in 
senescent ACE2-​expressing cells27,29, similar 
to other pathogen-​associated molecular 
patterns such as LPS45. However, whether the 
internalization of the S protein alone would 
suffice to induce senescence in non-​senescent 
cells remains to be determined. Moreover, 
an elevated expression of the ACE2 receptor, 
which could contribute to enhanced 
susceptibility to SARS-​CoV-2 in the elderly, 
became detectable in primary human lung 
epithelial cells in vitro in response to the 
SASP from pre-​adipocytes or endothelial 
cells that had become senescent owing to 
ageing27. Senescent cells also express elevated 
levels of Toll-​like receptor 3 (TLR3), which 
can detect SARS-​CoV-2 viral RNA in 
endosomes. It is therefore conceivable that 

Box 1 | Glossary terms used in this article

Acute respiratory distress syndrome. Is a life-​threatening response to lung-​damaging insults, 
leading to respiratory failure characterized by rapid onset of widespread inflammation and fluid 
leakage into the alveoli, thereby severely impairing alveolar gas exchange.

Classic senescence response. Is a full-​featured senescence response composed of a terminal 
cell-​cycle arrest, signs of DNA damage and enhanced DNA damage response signalling, elevated 
MAPK pathway activity, global genomic reorganization, and chromatin remodelling (such as 
‘senescence-​associated heterochromatin foci’), expansion of the lysosomal compartment and a 
pronounced senescence-​associated secretory phenotype (SASP).

Cytokine storm. This is the secretion of vast amounts of largely pro-​inflammatory cytokines, also 
known as cytokine release syndrome, that occurs in various hyperinflammatory disease contexts; it 
serves as an indicator and mediator of immune hyperactivation and subsequent immune-​mediated 
tissue damage.

Ki67 expression. Is widely used in routine pathological investigation as a nuclear proliferation 
marker as its expression is strongly associated with cell division.

Lipofuscin. Also considered ‘age pigment’, is brownish-​yellowish, electron-​dense material that 
progressively accumulates in the lysosomes of postmitotic cells and hence plays some role as a 
senescence surrogate marker.

M1-​like and M2-​like macrophages. ‘M1’ and ‘M2’ are classifications historically used to define 
macrophages activated in vitro as pro-​inflammatory (when ‘classically’ activated with IFNγ and 
lipopolysaccharides) or anti-​inflammatory (when ‘alternatively’ activated with IL-4 or IL-10), 
respectively. However, in vivo macrophages are highly specialized, transcriptomically dynamic and 
extremely heterogeneous with regards to their phenotypes and functions, which are continuously 
shaped by their tissue microenvironment. Therefore, the M1 or M2 classification is too simplistic  
to explain the true nature of in vivo macrophages, although these terms are still often used to 
indicate whether the macrophages in question are more pro-​inflammatory or anti-​inflammatory.

Macrophage activation syndrome. Is an uncontrolled, mechanistically not fully elucidated, often 
life-​threatening activation and proliferation of macrophages with a marked increase in circulating 
cytokines (see ‘cytokine storm’) in response to virus infections or other pro-​inflammatory triggers.

Paracrine senescence. Is a form of secondary, full-​featured senescence evoked by adjacent, 
primary senescent cells owing to their secretion of SASP factors with pro-​senescent potential  
(for example, plasminogen activator inhibitor 1 (PAI1)).

Pyroptosis. Is a highly inflammatory mode of regulated cell death, which plays a role in the removal 
of intracellular pathogens such as viruses. Initiated by a large supramolecular complex termed the 
inflammasome, a specific subset of caspases triggers pro-​inflammatory cytokine activation and 
eventual cell pore formation.

scATACseq. Single-​cell assay for transposase-​accessible chromatin-​sequencing is a sequencing 
method used to assess genome-​wide chromatin accessibility (for transcription factor binding,  
for instance) by probing open chromatin with a hyperactive transposase that inserts sequencing 
adapters selectively into open regions of the genome.

Virus-​induced senescence. A stress-​induced state switch of host cells in response to virus entry 
and propagation as the sensed cellular insult, comprised of a lasting cell-​cycle arrest and an 
associated secretory response (termed SASP).
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SARS-​CoV-2 infection of senescent cells 
may amplify their pro-​inflammatory SASP, 
potentially inducing a positive feedback loop 
in a VIS-​dependent manner29 (Fig. 1).

The programmed VIS response is 
morphologically and transcriptionally 
largely indistinguishable from other 
types of senescence, in particular from 
oncogene-​induced senescence28,46,47. It is 
also similar to the senescence induced 
by the retrovirus-​related endogenous 
retrotransposon LINE-1 (refs.48,49). 
Importantly, in vitro experiments showed 
that cells that lack functional p53 or 

overexpress the H3K9me3 demethylase 
JMJD2c46,50 — which therefore cannot enter 
senescence in response to pro-​senescent 
oncogenes such as Ras-​G12V or 
Braf-​V600E46,51 — also failed to enter VIS 
and lacked a SASP upon infection with 
SARS-​CoV-2 (ref.28). This demonstrates that 
SARS-​CoV-2-​related cytokine production 
by infected cells is dependent on an intact 
capacity of these cells to enter cellular 
senescence. Additional experiments in 
SARS-​CoV-2-​susceptible but genetically 
senescence-​compromised animal models are 
needed to confirm this observation in vivo.

Cells that undergo VIS show signs 
of DNA damage such as γH2A.X foci. 
Such foci were also detected in epithelial 
and endothelial cells from the lungs of 
patients with COVID-19 (ref.52), and 
are presumably caused by an increase in 
reactive oxygen species (ROS) produced 
by mitochondria. In turn, lowering cellular 
ROS levels with N-​acetyl-​cysteine in in vitro 
VIS models profoundly reduced DNA 
damage foci and senescence-​associated 
β-​galactosidase (SA-​β-​gal) reactivity (Box 3). 
Of note, mitochondrial outer membrane 
shedding has been reported in response to 
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Fig. 1 | Senescence-modulated host cell responses upon SARS-CoV-2 
infection. SARS-​CoV-2 cellular entry induces senescence-​typical transcrip-
tional responses (see also Boxes 2 and 3), in both non-​senescent or pre-​existing 
senescent cells via viral replication stress, reactive oxygen species (ROS) pro-
duction and cellular stress sensors such as toll-​like receptor 3 (TLR3) and 
cGAS–STING signalling. Virus-​induced senescence is characterized by 
senescence-​associated, H3K9me3-​positive heterochromatin foci (repressing, 
among others, S-​phase-​promoting E2F target genes), marks of DNA damage 
(that is, γH2A.X foci), the induction of cell-​cycle inhibitors such as p16INK4a and 
p21CIP1, and pro-​inflammatory, extracellular matrix-​degrading, complement- 
​activating, pro-​coagulatory and pro-​fibrotic senescence-​associated secretory 

phenotype (SASP) factors (predominantly via IRF3, NF-​κB and C/EBPβ  
transcription factors) that exacerbate tissue-​destructive host immunity and 
potentiate the burden of senescent cells through paracrine and endocrine 
spread of senescence27–29,44 and may include elevated angiotensin-​converting 
enzyme 2 (ACE2) expression27. Notably, pro-​survival mechanisms selected 
for in stressed senescent cells, among them induction of anti-​apoptotic 
BCL-2 family members and survival signalling-​enhancing kinase networks 
involving, for example, SRC family kinases, are attractive targets for the 
selective pharmacological elimination of these cells; such agents are termed 
‘senolytics’. ECM, extracellular matrix; MMP, matrix metalloproteinases;  
TF, transcription factors.
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infection-​induced stress. It has also been 
discussed as a potential mechanism for DNA 
damage induction in SARS-​CoV-2-​infected 
cells, where the viral protein Orf9b is 
thought to inhibit the translocase of the 
mitochondrial outer membrane complex53,54. 
Collectively, these observations indicate that 
ROS levels appear to play a crucial role in 
triggering VIS in the context of SARS-​CoV-2 
infection.

Senescence-​associated DNA damage 
is sensed via the cGAS–STING pathway, 
which activates the transcription factors 
interferon regulatory factor 3 (IRF3) and 
NF-​κB, thereby inducing an interferon and 
SASP response55–58 (Fig. 1). Although cGAS–
STING inhibitors have limited impact on 
primary VIS, they can reduce the SASP 
and its subsequent non-​cell-​autonomous 
effects28,55. Lasting cGAS–STING activation 
in response to SARS-​CoV-2 infection 
was recently confirmed to drive type I 
interferon responses and the secretion 
of other pro-​inflammatory cytokines, 
such as IL-1α, IL-6 and tumour necrosis 
factor (TNF), by CD163+ macrophages 
and damaged lung endothelial cells in 
patients with severe COVID-19 (ref.59). 

Notably, in vitro experiments showed that 
cells that were engineered to be unable to 
undergo senescence failed to activate the 
cGAS–STING pathway in response to viral 
infection28. These observations indicate that 
viral entry causes high levels of cytokine 
secretion in host cells via the induction  
of VIS.

Senescence in patients with COVID-19
If VIS is of relevance as a cellular response 
to SARS-​CoV-2 infection, then signs of 
cellular senescence should be detectable 
in ACE2-​expressing ciliated epithelial 
cells of the upper airway mucosa — the 
site of primary virus–host encounter 
and viral replication — in patients with 
COVID-19. In general, the definitive 
demonstration of cellular senescence 
in vivo is a long-​standing and challenging 
goal in the field because no single marker 
exists that defines senescence30,32 (Box 3). 
In addition, cryopreserved clinical samples 
from patients with COVID-19 cannot 
be analysed without virus-​inactivating 
fixation, thereby precluding their use for 
enzymatic assays such as SA-​β-​gal staining 
in situ. Nevertheless, when comparing 

samples of nasopharyngeal mucosa from 
patients with COVID-19 to pre-​pandemic 
biopsy samples from individuals without 
a manifest respiratory tract infection, a 
panel of senescence markers was shown to 
robustly discriminate these two groups, with 
significantly higher reactivity in samples 
from patients with COVID-19 (refs.28,29,44,52). 
Specifically, senescence markers, such as 
p16INK4a, p21CIP1, H3K9me3 and lipofuscin 
(detected by the GL13-​SenTraGorTM 
reagent in fixed tissues60), as well as 
IL-8 (a component of the SASP) were 
markedly elevated in samples from the 
upper respiratory mucosa from patients 
with COVID-19 (ref.28) (Fig. 2). Similar 
analyses of lung specimens from patients 
with COVID-19, consistent with multiple 
independent patient datasets29,44,52, also 
showed much stronger signs of senescence 
compared to SARS-​CoV-2 negative 
controls28. Notably, SARS-​CoV-2 mRNA 
was detectable by in situ hybridization in 
many but not all VIS-​positive samples, 
suggesting that VIS may persist beyond the 
initial infection28,61,62 and may be further 
aggravated by SASP-​mediated paracrine 
spreading of senescence28,63 (paracrine 
senescence; Box 1). The results are also 
consistent with the observed gradient of 
SARS-​CoV-2 infectivity, where proximal 
pulmonary epithelial cells from patients 
with COVID-19 show higher levels of 
infection compared to cells from the distal 
respiratory tract64. Moreover, these findings 
might explain, at least in part, the limited 
clinical efficacy of convalescent plasma in 
preventing severe COVID-19 given that 
the severe course of disease is thought to be 
caused by immune-​mediated tissue damage 
independent of persistent virus65.

Bulk and single-​cell transcriptomic 
analyses further support the concept 
that SARS-​CoV-2-​triggered senescence 
drives pathology in COVID-19. Ciliated 
epithelial cells of the upper and lower 
airway mucosa of patients with COVID-19 
displayed elevated levels of transcription 
of p16INK4a and various SASP factors28,66. 
Moreover, lungs from patients who died 
from severe COVID-19 showed higher 
levels of p16INK4a-​positive cells compared to 
lungs from individuals who died from other 
causes29. The levels of SASP-​typical cytokines 
and extracellular matrix-​active proteases 
as well as SASP-​related pro-​coagulant 
and complement-​activating factors 
(such as IL-1α, IL-6, CC-​chemokine 
ligand 2 (CCL2, also known as MCP-1), 
CXC-​chemokine ligand 10 (CXCL10), 
matrix metalloproteinase 9 (MMP9), 
plasminogen activator inhibitor 1 

Box 2 | The biology of cellular senescence

Senescence30–33 was originally observed in cells that have exhausted their proliferative potential 
owing to the critical erosion of their telomeres190,191. This process occurs during ageing and disease 
as well as at critical developmental steps in embryogenesis192,193. Importantly, it is also an essential 
component of wound healing194, indicating its tissue-​protective and tissue-​restoring role if it 
occurs at an adequate level and at the right time. Cellular insults, especially DNA damage but 
also other severe functional impairments, during tissue injury halt proliferation, which ensures 
that only intact cells contribute to the parenchymal cell pool. Driven by the cGAS–STING pathway 
and NF-​κB and C/EBPβ signalling in response to DNA damage, senescent cells typically activate 
a vast, largely pro-​inflammatory secretome that constitutes the senescence-​associated secretory 
phenotype (SASP), which operates as a central component of wound healing but also causes tissue 
pathology74,194. Regardless of the initiating stress, ‘full-​featured’ senescence locks the cells into 
an essentially terminal growth arrest, typically accompanied by the release of predominantly 
NF-​κB-​driven pro-​inflammatory cytokines (for example, IL-1α/IL-​β, IL-6 and IL-8) and chemokines 
(such as CCL2 or CXCL10), extracellular matrix-​remodelling peptides (among them matrix 
metalloproteases (MMPs), serpins and thrombospondins), reactive metabolites, bradykinins 
and prostanoids, and secreted non-​coding, potentially tissue-​destructive nucleotides (such as 
microRNAs or mitochondrial DNA)71,72,74,75,195. SASP-​mediated paracrine (secondary) senescence 
ensures that critically damaged but not primarily senescent cells also stop dividing — normally 
a tissue-​safeguard principle that may also lead to paracrine senescence of non-​damaged 
parenchymal cells in pathological settings with an excessive production of SASP factors63,71,72. 
SASP factors, such as MMP1 and MMP3, digest extracellular matrix barriers and attract immune 
cells to clear up cellular debris and, if present, microbial pathogens28,194,196. Once exogenous stresses 
are resolved, functional tissue cellularity might be replenished by senescence-reprogrammed 
cells177,197,198, which acquired stem cell-​like capacity and may occasionally re-​enter the cell 
cycle50,177,199. Cellular senescence also occurs in other pathological stress scenarios, such as 
profound metabolic deregulation200–202, the activation of oncogenes or cancer therapy-​conferred 
cell damage, which function as a barrier to tumour development or as an alternative effector 
mechanism to treatment-​induced apoptosis46,47,51,203–205. Hence, senescence plays a critical role 
in tissue homeostasis, bearing the risk that chronically senescent cells, owing to their ongoing 
secretion of pro-​inflammatory factors and their reprogrammed nature, account for detrimental 
biological outputs33, implying that their selective removal can be beneficial112,138.

The identification of senescent cells and their discrimination from other types of cell-​cycle arrest, 
such as quiescence, are confounded by the phenotypic heterogeneity of the senescent cell state, 
thereby necessitating the analysis of multiple markers.
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(PAI1, encoded by SERPINE1) and 
metalloproteinase inhibitor 1 (TIMP1)) 
were also strongly elevated in the serum 
of patients with COVID-19 compared 
to healthy controls28,52,67–70. Importantly, 
WHO-​graded clinical severity of COVID-19 
correlated positively with increasing 
concentrations of the pro-​inflammatory 
SASP cytokine IL-6, the coagulation- 
related SASP representative SERPINA3 
and D-​Dimer-​based clotting activity28. 
In particular, patients with COVID-19 
who had detectable microthrombosis in 
their lungs presented with more pronounced 
levels of SASP-​typical factors28, giving 
rise to the hypothesis that more extensive 
senescence underlies more profound 
COVID-19 pathobiology.

Macrophages in senescence spreading
Importantly, the senescent state can spread 
to non-​senescent and, potentially, to 
non-​infected cells as the increase in SASP 
evoked by viral infection can lead to the 
induction of paracrine senescence63,71,72. 
This observation was further supported 
by single-​cell analyses that detected 
senescence marker profiles in cells that were 
not susceptible to primary SARS-​CoV-2 
infection owing to the lack of ACE2 
expression28. We suspect that senescent cells 
acutely reinforce systemic inflammatory 
responses to pathogens and facilitate the 
spread of senescence, a hypothesis termed 
the ‘SASP amplifier/rheostat model’27,28. This 
model might also explain the increased risk 
of a cytokine storm and adverse outcomes 
after SARS-​CoV-2 infection in the elderly 
or in individuals with chronic conditions 
associated with an increased burden of 
senescent cells such as obesity, diabetes or 
previous chemotherapy.

A central aspect of severe COVID-19 
is the MAS8,73. Consistent with the 
recruitment of macrophages to VIS cells 
within the upper airway mucosa, the 
macrophage chemoattractant CCL2 and 
other macrophage-​recruiting chemokines 
were identified as prominent components 
of the SASP of VIS cells28,74,75. Recruited 
macrophages may clear some of the 
senescent cells by phagocytic engulfment76. 
Importantly, in vitro and in vivo 
experiments have shown that resident and 
non-​resident macrophages in the vicinity 
of SASP-​producing virus-​infected epithelial 
cells can undergo paracrine secondary 
senescence or acquire a senescence-​like 
condition28,63,66,77,78. They are characterized 
by positive SA-​β-​gal staining and elevated 
p16INK4a expression, and present with 
a SASP, thus further amplifying the 

senescent secretory profile28. The state 
switch induced by the encounter with VIS 
cells reprogrammes the macrophages into 
CD86+CD14+CD163+ pro-​inflammatory, 
M1-​like cells79. Given their mobility, 
these macrophages may then respond to 
chemokines secreted by cells in the lower 
airway that were damaged by SARS-​CoV-2 
infection66. Accordingly, lungs from 
patients with severe COVID-19 exhibited 
much higher levels of infiltration by 
CD86+ macrophages and much stronger 
SASP-​reminiscent cytokine expression 
compared to lungs from patients who 
died without notable signs of a respiratory 
infection and who were not infected with 
SARS-​CoV-2 (refs.28,61). The finding that 
SARS-​CoV-2 triggers a profibrotic response 
in CD14+CD163+ macrophages, which 
promotes manifest pulmonary fibrosis 
and acute respiratory distress syndrome 
(Box 1), complements these observations 
and further underscores the previously 
established link between cellular senescence 
and fibrosis in the lung via pro-​fibrogenic 
SASP components52,80,81. Moreover, using a 
combination of single-​cell RNA sequencing, 
mass cytometry and single-​cell assay 
for transposase-​accessible chromatin 
sequencing (scATAC-​seq; Box 1) of blood 
samples from young and elderly individuals 
as well as patients with COVID-19, it 
was found that coronavirus susceptibility 
genes, among them CD147, CD26 and 
ANPEP (encoding aminopeptidase N; see 
ref.82 for details), are upregulated with age. 
Additionally, SARS-​CoV-2 infection was 
shown to induce polarization of peripheral 
blood immune cell subsets that is typical 
for ageing and includes the expression 

of genes associated with inflammation 
and senescence82. Specifically, the authors 
reported T cell polarization from naive 
and memory cell populations to effector, 
cytotoxic, exhausted and regulatory 
T cell populations, and found increased 
levels of inflammatory monocytes in the 
blood of elderly patients with COVID-19. 
Collectively, the data indicate that activated 
monocytes and decreased T cell activity 
characterize hyperinflammation in severe 
COVID-19.

Notably, although activation status, 
pro-​inflammatory M1-​like polarization  
and mobility of macrophages make it 
compelling to view these as senescence-​ 
primed messengers that further spread 
senescence in a paracrine manner in the 
lungs or systemically28, it is still debated 
whether the macrophages enter a classic 
senescence response (Box 1) as opposed to 
a senescence-​like condition characterized 
by the secretion of factors typical for the 
SASP77,78. Moreover, it was recently shown 
that monocytes and macrophages not 
only act as cytokine-​releasing sensors of 
SARS-​CoV-2-​infected cells but that a small 
fraction of macrophages is susceptible 
to Fcγ receptor-​mediated SARS-​CoV-2 
uptake and subsequent termination of virus 
replication via inflammasome activation 
and IL-1β-​induced pyroptosis (Box 1). 
These features partially overlap with the 
senescence-​like and SASP-​reminiscent 
condition described here43,83. More detailed 
profiling, dynamic tracing and functional 
analyses are required to delineate the roles  
of senescence marker-​positive tissue- 
​resident versus senescence-​marker positive 
infiltrating macrophages and circulating 

Box 3 | Markers of senescence

Compared to their normal counterparts, senescent cells are enlarged, have a more granule-​rich 
cytoplasm and appear to exhibit vanishing cell borders under light microscopy. Their typically 
expanded lysosomal compartment, reflecting enhanced autophagocytotic activity owing to 
senescence-​associated secretory phenotype-​related proteotoxic stress206,207, forms the basis for 
the senescence-​associated β-​galactosidase (SA-​β-​gal) assay. This assay detects senescence- 
​enhanced lysosomal galactosidase activity at a suboptimal, acidic pH, which is a condition that 
achieves best discrimination from non-​senescent cells208. Beyond the ‘gold-​standard’ SA-​β-​gal 
assay in its classic blue-​stained end point form in fixed cells or as a fluorescence-​based variation 
applicable to viable cells, there is no single senescence-​defining, highly sensitive and specific 
marker of the senescent condition; hence, numerous markers are typically applied to collectively 
label a cell status as being senescent209,210. Among the most robustly established and widely applied 
markers in this regard are the cell-​cycle inhibitors p16INK4a and p21CIP1, signs of DNA damage such 
as histone variant H2A.X phosphorylated at its serine 139 (γH2A.X), hypophosphorylated (that is, 
G1 phase-​reminiscent) retinoblastoma (Rb) protein, activated MAPK signalling (such as phospho- 
​ERK1/ERK2), and the transcriptionally repressive lysine 9-​trimethylated histone H3 (H3K9me3) 
mark33. DAPI (4,6-​diamidino-2-​phenylindole)-​dense senescence-​associated heterochromatin  
foci indicate the profound epigenomic reorganization observed in senescent cells211–218. The  
Rb/E2F-​mediated formation of H3K9me3-​containing senescence-​associated heterochromatin  
foci accounts for the stable senescent G1-​phase arrest via the firm transcriptional repression  
of S-​phase-​promoting E2F target gene promoters, thereby turning off genes, such as CDK2 or 
CCND2, that are flanked by decreased expression of the proliferation marker Ki-67 (refs.47,50,211).
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monocytes as well as the poorly  
understood functional consequences of 
paracrine senescence on distinct resident or 
mobile T cell subsets84,85. Notably, age-​ 
related immunosenescence, a term often 
used to describe immune dysfunction in 
the elderly, seems to enhance COVID-19 
severity via T cell-​mediated cytotoxicity 
directed at virus-​infected or collaterally 
damaged host tissues86,87. However,  
the precise functional consequences of the 
induction of senescent T cell subsets, which 
is an emerging field of research, specifically 
in COVID-19, are much less clear, with 
limited data on the presence, quantity and 
function of T cells that display markers of 

immune senescence such as CD57 or other 
cellular features associated with ‘classic 
cellular senescence’88.

Overall, the escalating production of 
SASP-​related factors in patients with severe 
COVID-19 appears to be mediated by the 
direct induction of primary senescence 
in virus-​susceptible cells by SARS-​CoV-2 
infection, the paracrine senescence 
effects on adjacent cells and the systemic 
impact of the SASP even on distant 
cells. The disease-​promoting effects of 
senescence-​primed macrophages in different 
organs (see below) is likely to be further 
aggravated by the age-​related burden of 
pre-​existing senescent cells (Fig. 2).

Senescence-​induced COVID-19 
pathology
Despite the strong correlation between the 
extent of senescence (including VIS) and 
COVID-19 severity, a causal relationship 
between these processes is yet to be 
demonstrated. Based on the concept that the 
SASP links virus-​evoked and pre-​existing 
cellular senescence to macrophage priming 
and to specific pathognomonic features, 
such as endothelial cell senescence 
and complement-​mediated cytolysis, 
NET formation, platelet activation and 
microthrombosis, in the damaged lung 
and other organ systems of patients with 
COVID-19, functional in vitro assays 

Fig. 2 | A mechanistic working model of senescence-driven severe 
COVID-19. The infection of susceptible respiratory mucosa cells in the 
upper airways with SARS-​CoV-2 evokes virus-​induced senescence (VIS). 
Like pre-​existing, ageing-​associated and chronic disease-​associated senes-
cent cells, they release large amounts of largely pro-​inflammatory cytokines 
and other senescence-​associated secretory phenotype (SASP) factors (see 
Fig. 1). Macrophages that are attracted to senescent cells via cytokines and 
chemokines (such as macrophage colony-​stimulating factor (M-​CSF) or 
CCL2 (ref.28)) can acquire a senescence-​like condition via paracrine SASP 
action. These macrophages amplify the production of SASP factors and 
serve as ‘mobile messengers’ that provide a broad spectrum of SASP factors 
to more distal airways. Together with the direct viral infection of cells in 
the lower respiratory tract and an enhanced burden of senescent cells 
due to paracrine, SASP-​mediated induction of secondary senescence, 

macrophages and other SASP-​producing cells collectively promote lung 
pathology by contributing to local tissue damage. This is partly due to 
SASP-​mediated cytotoxicity and partly via direct macrophage phagocyto-
sis of infected or otherwise altered cells. Moreover, SASP factors attract 
other immune cells and excessive activation of these cells can result 
in direct or indirect cytotoxicity at lung epithelial and endothelial 
cells. Specifically, VIS-​driven features of severe, tissue-​destructive corona-
virus disease 2019 (COVID-19) include endothelial cell senescence, 
complement-​mediated cytolysis of endothelial cells, neutrophil extracel-
lular trap (NET) formation, platelet activation and microthrombosis and, 
presumably, SASP-​enhanced T cell-​mediated cytotoxicity towards alveolar 
epithelial cells (AECs) I and II. Pre-​existing senescent, virus-​induced senes-
cent and secondary SASP-​induced senescent cells are depicted in blue.  
See main text for details.
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have been developed that can reproduce 
the aforementioned cellular responses 
to SARS-​CoV-2 infection. For example, 
it was demonstrated that exposure to 
the supernatant of VIS cells induced 
macrophage activation that was marked 
by an M1-​like polarization profile79,89, 
CD86 upregulation and signs of secondary 
macrophage senescence as detected by 
SA-​β-​gal staining and senescence-​typical 
gene expression. By contrast, the culture 
supernatant of equally virus-​infected but 
senescence-​incapable cells failed to evoke 
these cellular effects28.

Another hallmark of COVID-19 
is widespread thrombo-​occlusive 
microangiopathy, which comprises 
lymphocytic endothelialitis with endothelial 
damage, platelet activation and capillary 
microclots. Neutrophils contribute to 
thrombosis by ejecting DNA, leading to 
intravascular net structures that activate 
platelets23,90,91. All of these individual 
components were recapitulated in vitro and 
mechanistically dissected as senescence 
inflicted28. Specifically, conditioned 
medium from senescent cells that is 
rich in SASP-​associated factors evoked 
paracrine senescence in endothelial cells 
or triggered their complement-​mediated 
cytolysis, promoted NET formation 
by neutrophils, activated platelets, and 
accelerated clotting. These effects represent 
highly disease-​relevant components of 
COVID-19-​related immunothrombosis, 
which were detected to a much lesser extent 
if the supernatant from virus-​infected 
but senescence-​resistant cells was tested28 
(Fig. 2). Of note, complement activation 
has recently been shown to aggravate 
tissue injury in patients with COVID-19 
by inducing excessive T cell cytotoxicity 
via immune complex-​induced and T cell 
receptor-​independent degranulation, 
thereby potentially linking VIS and the 
SASP to uncontrolled T cell-​mediated 
tissue damage92. Overall, these in vitro 
observations suggest an essential, 
secretome-​dependent role of VIS and 
senescence in general in the pathobiological 
manifestation of the infection27–29.

Senolytic strategies
VIS cells, pre-​existing senescent cells in 
the elderly and in those with underlying 
conditions, and SASP-​induced secondary 
senescent cells appear to play a key role 
in the development of severe COVID-19. 
If cellular senescence is indeed a causative 
component of severe COVID-19, then the 
early elimination of senescent cells would 
be expected to attenuate disease severity. 

This would confirm that senescent cells 
are a pivotal trigger of rapidly uncontrolled 
SASP-​governed hyperinflammation in 
patients with severe COVID-19, thus 
expanding current therapeutic strategies. In 
addition to VIS, the burden of pre-​existing 
senescent cells that is associated with older 
age or with chronic diseases, even in younger 
individuals, could also represent a key target 
to reduce complications and mortality in 
patients with COVID-19 (ref.93).

Targeting senescent cells is increasingly 
viewed as a novel opportunity for delaying, 
preventing, alleviating or treating a wide 
spectrum of human diseases, among 
them age-​related disorders, cancer and, 
now, viral infections with profound 
hyperinflammatory tissue damage, with 
early clinical trials currently running 
in many of these indications94–97. A 
fundamental property and dependency 
of senescent cells is their protection from 
apoptotic death despite the stresses they 
encounter98. Hence, a characteristic shared 
across senescent cells, especially those 
with a profound SASP, is their enhanced 
insensitivity to pro-​apoptotic signals, 
which is mediated via upregulation of 
anti-​apoptotic BCL-2 family members or 
kinase networks that promote pro-​survival 
signalling — collectively referred to as 
senescent cell anti-​apoptotic pathways 
(SCAPs)98,99.

The SCAPs vary between different types 
of senescent cells (for example, between 
senescent human endothelial cells versus 
fat cell progenitors). In addition to BCL-2 
family members, SCAPs are mediated 
by SRC family tyrosine kinases as well as 
pro-​survival pathways related to serpin, 
heat shock protein and p21CIP1 (refs.99–104). 
Indeed, the expression of BCL-​xL and 
BCL-​w and the activity of SRC, AKT and 
p38 kinases were found to be elevated in 
retrovirus-​infected fibroblast models of 
VIS, in SARS-​CoV-2-​infected hamsters 
and in patients with COVID-19 (ref.28). 
This suggests therapeutic opportunities 
in COVID-19 for senolytic agents that 
interfere with SCAPs, thereby inducing 
apoptosis in VIS cells and in pre-​existing 
senescent and secondary senescent cells. 
Drugs that have been shown to be effective 
in killing senescent cells in various clinical 
and preclinical models are of particular 
interest: these include the investigational 
BCL-​xL and BCL-​w inhibitor navitoclax 
(ABT-263)100,101, BCL-​xL-​degrading 
proteolysis-​targeting chimeric proteins 
with reduced platelet toxicity105–108, and 
the kinase-​inhibiting flavonoids fisetin 
and quercetin99,103,104, the latter typically 

employed in combination with the SRC 
kinase inhibitor dasatinib99,100,109–114.

In vitro findings with senolytics in VIS. 
Navitoclax, fisetin, and a combination of 
dasatinib and quercetin demonstrated 
significant cytotoxic activity against VIS 
cells (including human nasal epithelial cells 
exposed to SARS-​CoV-2) in vitro, leaving 
uninfected or virus-​infected but genetically 
senescence-​incapable cells virtually 
unaffected28. Importantly, the SARS-​
CoV-2 Alpha and Beta variants elicited a 
significantly stronger pro-​inflammatory 
SASP upon infection compared to the 
ancestral SARS-​CoV-2 strain, and these 
VIS cells exhibited excellent susceptibility 
to the aforementioned senolytics in vitro, 
comparable to cells infected with the 
ancestral virus28. Additional investigations 
are needed to determine the relevance 
of senescence-​related and SASP-​related 
pathophysiology induced by Delta and 
Omicron variants given their distinctly 
different degrees of clinical severity115. Of 
note, senescent cells have enhanced activity 
of the apolipoprotein B mRNA-​editing 
catalytic polypeptide-​like (APOBEC) 
enzymes. Given that APOBEC enforces 
viral mutagenesis, it is also conceivable that 
host cell senescence actually promotes the 
generation of new SARS-​CoV-2 variants44,116.

A machine learning-​based assessment of 
45 FDA-​approved drugs for their potential 
to be repurposed as antiviral agents in 
COVID-19 failed to predict a significant 
direct anti-​viral activity of navitoclax and 
dasatinib, further underscoring that the mode 
of action of these agents in COVID-19 might 
be indirect, for example, through the selective 
elimination of senescent cells117. However, 
given the complexity of virus entry and 
replication, additional direct anti-​viral activity 
cannot be excluded for any of the candidate 
senolytics tested and was reportedly observed 
upon quercetin pre-​treatment118. Thus, 
to what extent the cytotoxicity exerted by 
anti-​viral compounds is due to their direct 
interference with viral propagation or rather 
relates to VIS as a state-​specific vulnerability 
of the host cell needs to be dissected in 
appropriate model systems, including the use 
of in vitro tests using cells that are genetically 
incapable of undergoing senescence. Given 
the broad deregulation of prominent 
pathways such as NF-​κB, MAPK, ROS, 
JAK–STAT, p53–p21CIP1 and Rb–p16INK4a in 
senescent cells in general and in VIS cells 
in particular, there is an encouragingly large 
and growing list of additional compounds 
that may indeed have senolytic potential in 
COVID-19 (refs.113,119–121).
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In vivo testing of senolytics in COVID-19. 
Importantly, animal models of SARS-​
CoV-2 infection, such as the Syrian golden 
hamster (these animals typically have a 
mild course of disease) and the Roborovski 
dwarf hamster, as well as mice transgenic 
for human ACE2 (these have a more 
severe, typically fatal course of disease), 
implicated VIS as a feature of both mild and 
severe COVID-19, especially as a central 
driver in the latter, and highlighted the 
clinical potential of senolytics as a novel 
interventional therapeutic strategy28,122–127. 
Navitoclax, fisetin, or a combination of 
dasatinib and quercetin were found to 
quantitatively eliminate senescent cells 
in situ and to improve at least some of 
the central histopathological findings of 
SARS-​CoV-2 infection in the lung in all the 
animal models mentioned28. Particularly 
pronounced effects were observed in the 
Roborovski dwarf hamster model, where 
treatment with a combination of dasatinib 
and quercetin resulted in significantly 
attenuated disease features with respect 
to the overall pneumonia score, bronchial 
epithelial hyperplasia and alveolar damage28. 
Strikingly, the broadly elevated levels of 
SASP-​typical cytokines and interleukins — 
among them granulocyte colony-​stimulating 
factor (G-​CSF), IFNγ, IL-1α, IL-7, IL-17A, 
TNF and vascular endothelial growth factor 
(VEGF) — that were detected (despite the 
challenge to do this at the protein level in 
hamsters) in the serum of infected animals, 
were reduced by all agents tested to levels 
that were virtually indistinguishable from 
those in uninfected animals28. In animal 
models of fatal COVID-19, senolytic 
regimens based on flavonoids, such as 
the dasatinib and quercetin combination 
or fisetin, enhanced survival rates28. 
Targeting of the cGAS–STING axis, which 
induces type I interferons and other SASP 
factors, with the small-​molecule STING 
inhibitor H-151 had a SASP-​suppressing, 
senomorphic effect28,121,128,129 and led to 
reduced lung pathology and prolonged 
survival in a human ACE2-​transgenic 
mouse model of COVID-19 (ref.59). These 
observations provide further evidence 
for the pathogenic connection between 
senescence, SASP and severe COVID-19. 
Similarly, the inhibition of pro-​inflammatory 
JAK signalling in the same model was shown 
to attenuate pathogenesis by reducing the 
infiltration of monocytes to the lung130–132. 
Age-​related elevations of eicosanoid levels, 
especially prostaglandin D2 (PGD2), 
were detected in mouse models of SARS-​
CoV infection133. The levels of PGD2 and 
related prostaglandins were also found to 

be increased in older individuals and in 
individuals infected with SARS-​CoV-2 
(ref.134). These prostaglandins are known to 
promote senescence and the SASP135–137. In 
turn, genetic or pharmacological blockade of 
eicosanoid signalling was shown to protect 
aged mice from severe COVID-19 (ref.134), 
unveiling another mechanism by which 
inflammation, senescence, ageing and severe 
COVID-19 appear to be linked.

Therapeutic targeting of pre-​existing 
senescent cells was also addressed in a 
model of coronavirus infection in aged 
mice. A cohort of aged INK-​ATTAC 
transgenic mice, in which cells with high 
INK4a promoter activity, which is indicative 
of senescence, can be forced to undergo 
apoptosis138,139, exhibited increased resilience 
to pathogens, including the mouse hepatitis 
virus (MHV, a mouse β-​coronavirus), when 
p16INK4a-​high senescent cells were subjected 
to ATTAC-​dependent depletion27. Of 
note, the therapeutic benefit was evident 
not only if the senescent cell burden was 
reduced prior to infection but also following 
infection, consistent with an increased 
burden of senescent cells that persists 
following pathogen encounter.

The central role of senescent cells and 
the potential of senolytics as therapeutics 
were further investigated in aged 
specific-​pathogen-​free mice that were 
exposed to pet-​store mouse pathogens, 
including MHV, termed a ‘normal microbial 
experience’ (NME)140–142. Nearly all of the 
aged mice exposed to NME died within 
2 weeks, whereas there was no mortality 
observed in younger mice27. Within 7 days 
following NME exposure, the expression 
of senescence markers (such as p16INK4a 
and p21CIP1) and SASP factors (such as 
IL-6, CCL2 and TNF) in liver, lung and 
kidney significantly increased in old mice 
compared to young mice27. Treatment before 
and/or following NME exposure with the 
senolytic fisetin or the combination of 
dasatinib and quercetin reduced mortality. 
This is consistent with the adverse effects 
of an increased senescent cell burden with 
age and the lethal spread of senescence 
and inflammation following pathogen 
exposure, possibly through both VIS and the 
exacerbated tissue-​destructive SASP caused 
by pathogen-​associated molecular patterns27. 
Notably, the mitigating activity observed 
when these agents were applied prior to 
NME exposure reflects a reduction of the 
pre-​existing load of senescent cells, and not 
a direct antimicrobial mechanism, as the key 
mode of action.

Further corroborating and extending 
these preclinical findings to the human 

condition, two randomized clinical 
trials (NCT04578158 and NCT04861298) 
that, in addition to standard care, used 
a special formulation of quercetin with 
enhanced oral bioavailability as an early 
intervention in patients with mild COVID-19 
symptoms, met their clinical end points143–145. 
Specifically, a collective analysis of both trials 
demonstrated a significantly better outcome 
in terms of avoiding hospitalization, need 
for oxygen, referral to the intensive care 
unit and death28. Of note, a recent clinical 
pilot study exploring a lecithin-​based 
formulation of quercetin in combination 
with dasatinib as a senolytic treatment for 
idiopathic pulmonary fibrosis, an age-​related 
and senescence-​associated disease also 
occurring as a fibrotic complication in the 
course of COVID-19 (refs.52,80,81,146), showed 
encouraging signals of clinical improvement 
as evaluated by walk distance, speed and 
coordination tests, demonstrating the 
feasibility of this approach147.

The clinical trials underscored that 
quercetin exerts meaningful senolytic 
activity when tested as a single agent in 
individuals with SARS-​CoV-2 infection 
and appeared to have relevant clinical 
potential to prevent severe COVID-19. 
Several other randomized clinical trials are 
currently investigating the use of fisetin in 
patients with COVID-19 (NCT04476953, 
NCT04537299 and NCT04771611). These 
trials examine whether fisetin decreases 
SARS-​CoV-2 morbidity and mortality in 
PCR-​positive older individuals (as well 
as in younger patients with pre-​existing 
cellular senescence-​associated comorbidities, 
including diabetes, obesity, cardiovascular 
disorders or chronic lung diseases)148. If 
successful, larger randomized studies with 
optimized dosing schedules will be needed 
to establish senolytics as preventive or early 
interventional treatments for patients with 
severe COVID-19 (ref.149).

VIS and vaccination
The majority of COVID-19 vaccines are 
designed to evoke humoral and cellular 
immune responses against the SARS-​CoV-2 
spike protein — responses that may not 
prevent infection but robustly protect 
against severe COVID-19, at least for certain 
periods of time11,150–157. Increasing numbers 
of breakthrough infections in vaccinated 
individuals, including those with detectable 
antibody responses, are observed, albeit 
with increasing evidence that disease 
severity is less pronounced in vaccinated 
compared to unvaccinated patients with 
COVID-19 (ref.158). Moreover, asymptomatic 
infections are likely to be underreported in 
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vaccinated individuals because they tend 
to be less frequently monitored when local 
regulations do not require testing. It is 
becoming increasingly clear that community 
protection owing to reduced viral loads in 
infected but fully vaccinated individuals is 
diminishing over time159, thereby facilitating 
further outbreaks and the rapid expansion 
of new VOCs160–162. The fact that viral entry 
and replication occur despite successful 
vaccination is interesting as VIS would 
be the assumed consequence and could 
trigger a cytokine storm potentially leading 
to severe COVID-19. The fact that this 
is typically not the case might be either 
owing to reduced viral replication and 
a limited viral load that does not elicit a 
significant senescence response and/or may 
be a consequence of vaccine-​evoked T cell 
responses.

Unlike neutralizing antibodies that 
inhibit virus entry but require high levels 
to fully protect, SARS-​CoV-2-​specific 
T cells cannot block primary host 
cell infection. However, pre-​existing 
SARS-​CoV-2-​specific cytotoxic T cells can 
selectively eliminate infected cells — similar 
to the removal of VIS cells by early senolytic 
intervention. Hence, such intrinsic ‘T cell 
immunity-​based senolysis’ might interrupt 
a potentially deleterious cytokine cascade 
upon SARS-​CoV-2 infection in vaccinated 
individuals, possibly even in those with a 
compromised humoral but intact cellular, 
and hence discordant, immune response. 
Such discordance is frequently detected 
in patients with rheumatological diseases 
or haematological cancers, particularly 
after anti-​CD20 antibody treatment163–166. 
Consistent with this view, convalescent 
plasma or recombinant therapeutic 
S protein-​targeted antibodies achieved 
modest or mixed results in preventing severe 
COVID-19 (however, the emergence of 
SARS-​CoV-2 VOC with mutations in the 
spike protein that may allow the evasion 
of neutralizing antibodies may further 
complicate the interpretation of these 
results) (refs.65,162,167).

In essence, the early elimination of 
spike peptide-​presenting VIS cells either 
by exogenous pharmacological intervention 
using prototypic senolytics or by endogenous 
immune clearance, especially by vaccination- 
primed spike peptide-​specific T cells or 
a virus-​specific T cell response elicited by 
previous SARS-​CoV-2 infection, targets 
a critical pathogenic inflexion point for 
COVID-19. Both approaches might be 
complementary and synergistic as they 
eliminate, in a partly overlapping fashion, 
virus-​infected and hence virus-​propagating 

cells as well as VIS and pre-​existent and 
secondary senescent cells, all of which are 
a source of the SASP that can contribute 
to a SARS-​CoV-2-​triggered cytokine storm.

Conclusions and outlook
Rapidly expanding evidence implicates 
cellular senescence as a host cell response 
to viral infection in general and to 
SARS-​CoV-2 in particular, similar to 
other cellular insults such as telomere 
dysfunction, oncogene activation or 
chemotherapy27–29. Although alternative 
mechanisms independent from VIS may 
contribute to the hyperinflammation 
observed in severe COVID-19, senescence 
operates as a central pathogenic principle 
in severe COVID-19 and may also be a 
general feature of other viral infections 
that induce hyperinflammatory responses. 
This could potentially also be of relevance 
in future epidemics or pandemics with 
viruses that induce VIS28. Accordingly, 
targeting VIS and senescent cells in general 
is a testable objective for attenuating 
the potentially severe course of disease 
following SARS-​CoV-2 infection. However, 
a key role for senescence as a pathogenic 
driver and potential therapeutic target in 
other non-​SARS-​CoV-2 infection-​related 
pathologies, such as other types of viral 
pneumonia, infectious and non-​infectious 
acute respiratory distress syndrome, as 
well as non-​pulmonary manifestations in 
viral infections, needs to be determined. 
A large variety of viruses have been 
shown to induce senescence in vitro and 
in vivo27,28,38, whereas no VIS phenotype 
was observed upon infection with the 
mild seasonal influenza A (H1N1) virus in 
Syrian hamsters62, implying that not all virus 
infections might be susceptible to senolytic 
strategies. Although preclinical and first 
clinical data are encouraging27,28,62,143–145, 
additional clinical studies are required to 
optimize regimens and dosing schedules. 
Appropriate timing of such intervention 
might be important. The preclinical 
data discussed here support further 
investigation of senolytic intervention with 
respect to their anti-​inflammatory and 
pneumonia-​attenuating efficacy and to 
minimize toxicities. Notably, the toxicities 
of agents with senolytic potential that are 
approved or currently in clinical trials, such 
as the tyrosine kinase inhibitor dasatinib 
or the BCL-2 family inhibitors navitoclax 
and venetoclax, profoundly differ between 
the dose/scheduling regimens as used in 
haemato-​oncological indications compared 
to the regimens tested in preclinical and 
clinical investigations of COVID-19. 

Flavonoids, such as fisetin or quercetin, are 
freely available ‘over-​the-​counter’ agents 
and have favourable safety profiles168. 
Specifically, in the two COVID-19 trials 
referred to above, quercetin was generally 
well tolerated with no apparent toxicity and 
no particular side effects were reported 
by the patients143–145. Moreover, strategies 
that combine a senolytic agent with a viral 
replication blocker, such as Molnupiravir or 
Paxlovid, or possibly with TLR3 antagonists 
to attenuate viral induction of senescence 
appear attractive29 as mechanistically distinct 
approaches to reduce the prevalence of 
VIS cells may complement each other. 
However, more definitive preclinical data 
from SARS-​CoV-2-​infected animal models 
are needed to demonstrate that such 
approaches truly lead to disease attenuation 
via SASP reduction and not to extended 
viral persistence owing to impaired virus 
clearance.

The underlying reasons for the 
well-​established higher risk in the elderly 
or in individuals with chronic disease 
to experience severe COVID-19 or to 
succumb to SARS-​CoV-2 infection are 
multifactorial84,93. As recently shown in 
mice, the accumulation of (pre-)senescent 
cells during ageing primes for particularly 
SASP-​intense VIS manifestation upon 
SARS-​CoV-2 infection27, even if the 
senescent status of host cells might suppress 
further virus propagation as currently 
debated41,43. COVID-19-​related VIS may 
also aggravate age-​related pathologies via 
enhanced SASP-​mediated inflammation29,169, 
as demonstrated for cardiovascular 
diseases and diabetes in preclinical models170, 
and might further deteriorate immune 
competence by inducing senescence in 
immune cells171,172. Further analyses into 
the mechanisms underlying immune cell 
senescence are urgently needed as is research 
into general similarities and differences 
between immune cell senescence and other 
types of cellular senescence, specifically 
in the context of immune cell senescence 
as a paracrine effect of VIS.

Damaged mucosal cells are subject to 
turnover in their respective tissues, foremost 
being the respiratory epithelia in the upper 
and lower airway tract during regeneration 
after acute COVID-19. More specifically, 
senescent cells are, at least in part, cleared by 
cells of both the innate and adaptive immune 
systems76,173–175 if such clearing function 
is not compromised, which remains to be 
studied in greater detail in the context of 
COVID-19 (ref.176). Persistent senescent cells 
are known to exert detrimental long-​term 
effects on organ function and can promote 
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tumorigenesis33,96,112,177,178. So far, no evidence 
has been reported for SARS-​CoV-2-​induced 
senescent cells in this regard and no direct 
pro-​tumorigenic role has been attributed to 
SARS-​CoV-2. However, given that a chronic 
SASP can deregulate immune functions, 
it remains to be investigated to what extent 
non-​cleared VIS cells may contribute to the 
long-​term disabilities collectively referred 
to as ‘long COVID’, which include fatigue, 
dyspnoea and cognitive dysfunction93,179–181. 
If the burden of senescent cells is chronically 
enhanced in patients with long COVID, then 
senolytic interventions might help to reduce 
the associated clinical symptoms.

Encouragingly, the senolytic agent 
navitoclax was shown to significantly reduce 
extended signs of cellular senescence and 
SASP in SARS-​CoV-2-​infected mice that 
survived beyond 2 weeks after infection 
at a time when the virus was no longer 
detectable62. Additionally, clearing VIS 
could further reduce the viral load in 
patients who exhibit viral persistence 
for months following infection182. 
Lastly, beyond a potential link between 
SARS-​CoV-2 infection, immunosenescence, 
autoinflammatory disease and autoimmunity 
following COVID-19 (refs.86,183,184), there is 
increasing evidence for viral infections as 
triggers of autoimmune diseases in general. 
For example, type 1 diabetes mellitus was 
linked to enterovirus infections185 and 
multiple sclerosis to Epstein–Barr virus 
(EBV) infections186. This may imply that 
VIS operates as a pivotal amplifier of 
the underlying chronic and destructive 
autoinflammation in these conditions.  
EBV infection has long been known to 
induce the expression of central signalling 
mediators of the senescence response 
such as p16INK4a or p21CIP1. These proteins 
act as a primary host defence against 
virus propagation, and EBV-​positive 
cells losing expression of these mediators 
subsequently get selected for in manifest 
chronic infection187,188. Therefore, research 
focusing on VIS and SASP in these contexts 
is urgently needed as it may not only help to 
elucidate the mechanism of autoaggressive 
pathogeneses but also to open new 
therapeutic avenues.

With new insights into COVID-19 
pathogenesis and the potential for novel 
treatment opportunities, a central point 
has yet to be addressed: what factors, 
beyond age, determine the strength of 
the SASP response in individuals newly 
infected with SARS-​CoV-2? Are predictors 
of the individual susceptibility to VIS or 
their senescent cell burden also indicators 
for a more severe clinical course upon 

SARS-​CoV-2 infection? Are the induction 
of senescence, the extent of the SASP 
and symptomatic disease linked to the 
quantitative load of infectious virions 
as some preclinical data suggest33,189? In 
addition to senolytics, can we empower 
endogenous mechanisms that help to clear 
VIS cells more thoroughly during the initial 
phase of infection by stimulating NK cell 
or CD8+ T cell functions, for example? 
Will we be able to collect the relevant 
patient-​individual data at the outset of the 
disease to inform personalized COVID-19 
intervention strategies, including potential 
senolytic administration for those at need? 
And, is it possible that individuals who are at 
risk for severe COVID-19 may benefit from 
prophylactic, perhaps repetitive, exposure 
to senolytics in the context of very high 
incidence rates and a clinically challenging 
VOC? Finally, can these approaches be used 
to improve the effectiveness and duration 
of the immune response to COVID-19 
vaccines in the elderly?
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