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Abstract

Machine learning is a powerful tool for creating computational models relating brain function 

to behavior, and its use is becoming widespread in neuroscience. However, these models are 

complex and often hard to interpret, making it difficult to evaluate their neuroscientific validity 

and contribution to understanding the brain. For neuroimaging-based machine-learning models 

to be interpretable, they should (i) be comprehensible to humans, (ii) provide useful information 

about what mental or behavioral constructs are represented in particular brain pathways or regions, 

and (iii) demonstrate that they are based on relevant neurobiological signal, not artifacts or 

confounds. In this protocol, we introduce a unified framework that consists of model-, feature- 

and biology-level assessments to provide complementary results that support the understanding 

of how and why a model works. Although the framework can be applied to different types of 

models and data, this protocol provides practical tools and examples of selected analysis methods 

for a functional MRI dataset and multivariate pattern-based predictive models. A user of the 
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protocol should be familiar with basic programming in MATLAB or Python. This protocol will 

help build more interpretable neuroimaging-based machine-learning models, contributing to the 

cumulative understanding of brain mechanisms and brain health. Although the analyses provided 

here constitute a limited set of tests and take a few hours to days to complete, depending on 

the size of data and available computational resources, we envision the process of annotating 

and interpreting models as an open-ended process, involving collaborative efforts across multiple 

studies and laboratories.

Introduction

Machine learning (ML) and predictive modeling1,2—which encompasses many use cases of 

ML to predict individual observations—have provided the ability to develop models of the 

brain systems underlying clinical, performance and other outcomes, and to quantitatively 

evaluate the performance of those models to validate or falsify them as biomarkers. 

Because of these characteristics, ML has rapidly increased in popularity in both basic 

and translational research2–5 and forms the core of several now-common approaches, 

including brain decoding6–10, multivariate pattern analysis11, information-based mapping12 

and pattern-based biomarker development2,13–16. By enabling the investigation of brain 

information that is simultaneously (i) finer-grained and more precise than traditional 

brain mapping and (ii) distributed across multiple brain regions and voxels, the use of 

ML in neuroimaging experiments has provided new answers to many enduring research 

questions11,17–19.

However, this rise in popularity is accompanied by concerns about the ‘blackbox-ness’ 

of ML models20,21. For basic neuroscientists, it is unclear how ML models will advance 

our neuroscientific knowledge if the models rely on hidden or complex patterns that are 

uninterpretable to researchers. For users in applied settings, it is unclear whether, and 

under what conditions, complex ML models will be trustworthy enough to contribute to the 

life-altering decisions made every day in medical and legal settings20. Without knowing why 

and how a model works, it is difficult to know when the model will fail, to which individuals 

or subgroups it applies and how it can advance our understanding of the neurobiological 

mechanisms underlying clinical and behavioral performance. In addition, some models are 

neurobiologically plausible and capture important aspects of brain function, whereas others 

capitalize on confounds such as head movement22. These models do not contribute equally 

to our understanding of the brain. Therefore, there is a pressing need for methods to help 

interpret and explain the model decisions23–26 and provide neuroscientific validation for 

neuroimaging ML models2.

Methods for interpreting predictive models in neuroimaging studies must address several 

key issues. First, neuroscience has a long-standing interest in understanding localized 

functions of individual brain areas or connections, whereas ML often focuses on developing 

integrative brain models (e.g., using patterns of whole-brain activity) that are highly 

complex and difficult to understand. Second, there is a tension between the goals of 

achieving high predictive accuracy versus providing mechanistic insights into underlying 

neural or disease processes27–30. Ideally models would achieve both goals, but these often 
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do not go hand in hand. Biologically plausible models, such as biophysical generative 

models31–33 or biologically plausible neural network models34, use biological constraints 

(e.g., imaging data or findings in literature) and are built upon neurobiological principles. 

Predictive performance is usually less of a concern; rather, the goal is to capture 

and manifest human-like behaviors35. On the other hand, models that focus solely on 

predictive performance may achieve high accuracy but are often not human readable and 

reveal little about the underlying neural mechanisms involved36. Although neuroscientific 

explanation and predictive accuracy are distinct goals, they are not in opposition, and models 

developed for prediction can provide biological insights at several levels of abstraction. 

For example, deep neural networks trained for accurate image classification share common 

properties with the human visual system37 and are being used to understand the types of 

information represented in discrete brain regions38. Predictive models can also be inspired 

by neuroscientific findings, as deep neural networks for image recognition have been39,40. 

Third, ML, as well as traditional statistical methods, can be sensitive to variables that are 

correlated with, but not causally related to, outcomes of interest, and thus can be sensitive 

to systematic noise and confounds in data (e.g., head motion, eye movement, physiological 

noise). Models that use confounding variables to predict are not only uninterpretable but also 

behave unpredictably in new samples.

Therefore, for neuroimaging-based ML models to be interpretable to neuroscientists and 

users in applied settings, the models should (i) be readable and understandable to humans, 

(ii) provide useful information about what mental or behavioral constructs are represented 

in particular brain pathways or regions, and (iii) demonstrate that they are based on 

relevant neurobiological signals, not confounds. These goals require prioritizing model 

simplicity and sparsity over a complete description of brain function. The most interpretable 

models are not necessarily the most ‘correct’ ones—the brain and human behaviors are 

intrinsically complex and high dimensional, creating an unavoidable trade-off between 

biological precision and interpretability. However, as George Box famously wrote41, ‘All 

models are wrong, but some are useful’. On the other hand, this trade-off must be managed 

carefully. More complex models may better reflect the structure of the underlying biological 

mechanisms; therefore, prioritizing interpretability may come at a cost in biological realism, 

undercutting our understanding of how the brain works. As Albert Einstein said, ‘Everything 

should be made as simple as possible, but no simpler’.

Whatever the chosen level of complexity of a model, tools for interpreting it can increase its 

usefulness by showing that the model can provide a useful approximation to more complex 

biological mechanisms. However, the nature of neuroimaging data makes interpretation of 

the models challenging (Fig. 1a). Neuroimaging produces high-dimensional data with a 

low signal-to-noise ratio and strong correlations between features. Moreover, the number 

of observations in neuroimaging studies (the sample size n, often in the tens or hundreds) 

is small in general compared to the number of features (p = ~105 in the case of whole-

brain functional magnetic resonance imaging (fMRI) activation pattern-based models). 

Models built with p ≫ n data are susceptible to overfitting and often do not generalize 

well. Numerous studies have been focused on decreasing dimensionality or solving the 

p ≫ n problem as a way of enhancing interpretability. For example, regularizing model 

parameters by imposing sparsity has often been considered as one of the key strategies for 
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enhancing model interpretability, and thus many different regularization methods have been 

developed42–46. However, these statistical methods do not provide a unified framework that 

can be used with a heterogeneous set of methods and algorithms to evaluate and improve 

interpretability of neuroimaging-based ML models. In addition, the ML algorithms do not, 

in themselves, provide any constraints related to neuroscientific interpretation and validity. 

Therefore, interpreting a neuroimaging ML model is a complex problem that is not solvable 

at the algorithmic level; it requires a multi-level framework and a multi-study approach.

In this protocol, we first propose a unified framework for interpreting ML models in 

neuroimaging based on model-level, feature-level and neurobiology-level assessments. 

Then, we provide a workflow that illustrates how this framework can be employed to 

predictive models, along with practical examples of analyses for each level of assessment 

with a sample fMRI dataset (available for download at https://github.com/cocoanlab/

interpret_ml_neuroimaging). Although these methods can in principle be used for any type 

of model and data (e.g., predicting individual differences in personality or clinical symptoms 

based on structural neuroimaging data or functional connectivity patterns; predicting trial-

by-trial responses within individuals), our example code focuses on classification models 

based on whole-brain, task-related fMRI activity patterns combining multiple participants’ 

data. Nevertheless, the analyses can be easily adapted to regression-based problems (e.g., 

predicting ratings of task stimuli) and can be extended to models built on other feature types, 

such as structural data or functional connectivity data.

Overview of the framework

In this section, we first establish a broader context for our proposed framework. Based on 

this framework, we provide a protocol that includes some selected analysis methods from 

each assessment level. As shown in Fig. 1b, the proposed framework consists of three levels 

of assessment: model-, feature- and biology-level assessments. Table 1 provides descriptions 

and example methods for subcategories of each level of assessment.

Model-level assessment—Model-level assessment treats and evaluates a model as a 

whole and characterizes the model based on its response patterns in different testing contexts 

and conditions. This includes, for example, various measures of model performance. 

Sensitivity and specificity concern whether a model shows a positive response when there 

is true signal (e.g., an outcome of interest has occurred) and negative response when 

there is no true signal. Generalizability concerns whether a model performs accurately 

on data collected in different contexts or with different procedures—e.g., data from out-of-

sample individuals not used in model training or data from different laboratories, scanners, 

populations and experimental paradigms2 (for more detailed definitions of these terms, 

please see ref. 1). These types of measurement properties should be rigorously evaluated 

to understand what the model really measures and how it performs in different test 

contexts2,13,47,48. More broadly, these analyses can be seen as behavioral analyses of a 

model—investigating patterns of model behaviors (e.g., model decisions and responses) 

over multiple instances and examples49. This is similar to the study of human behavior 

using psychological tests. For example, a previous study examined a model’s ‘implicit 

biases’ using behavioral experiments and measures designed for ML models50. In another 
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study, researchers developed a new ML model that can learn other ML models’ internal 

states (e.g., machine theory of mind51). For adaptive models, one can examine changes 

in model behaviors and learning over time, similar to the study of human developmental 

psychology52.

In addition, representational similarity analyses can be used to examine models’ internal 

representations and their relationships with different models and different brain regions53–55. 

Representational similarity analyses examine the similarity among a set of experimental 

conditions or stimuli on two multivariate measures—for example, vector representations 

across units in an artificial neural network or multi-voxel patterns of fMRI activity. As an 

example, a previous study examined representational similarities and differences between 

multiple computational models, including a deep neural network, and activity patterns in the 

inferior temporal cortex56.

Finally, one of the most important assessments at the model level is to examine potential 

contributions of noise and nuisance variables to a model and its predictions. Many different 

confounding factors such as physiological and motion-related noise are pervasive in 

neuroimaging data and present challenging issues that need careful attention57–60. These 

confounds can creep into training data and be utilized by predictive models to enhance their 

performance. The problem is that, if a model relies on information from the confounding 

variables, the model cannot be robust across contexts, because it will fail in samples without 

the same confounds or when methodological improvements (e.g., better noise-removal 

techniques) mitigate them. More importantly, those models that rely on nuisance variables 

will teach us nothing about the neurobiology of target outcomes. Therefore, researchers 

should provide evidence that their models are not influenced by confounds and nuisance 

variables to the degree possible. One way to do this is to test and show whether model 

predictions, features or outcomes are independent from nuisance variables. For example, 

one can test whether an ML model based on nuisance variables, such as in-scanner motion 

parameters, can predict either (i) responses/predictions made by a model of interest or (ii) 

the outcomes of interest13,18. If the nuisance model cannot predict these, model performance 

is unlikely to be driven by those nuisance variables.

This protocol includes multiple model-level assessment steps, including evaluation of model 

performance and generalizability (Steps 2 and 3 and Steps 8–10), potential influences of 

confounds (Steps 4–6) and a representational similarity analysis on multiple predictive 

models based on their performance (Steps 12–15).

Feature-level assessment—Feature-level assessment includes methods that evaluate the 

significance of individual features, such as voxels, regions or connections, that are used in 

prediction. The methods can be broadly categorized as (i) methods for evaluating feature 

stability, (ii) methods for evaluating feature importance, and (iii) methods for visualization.

Methods for assessing stability of features measure how stable each feature’s contribution 

(or predictive weight) is over multiple models trained on held-out datasets using resampling 

methods or cross-validation13,61. For example, in bootstrap tests, data are randomly 

resampled with replacement, and a model is trained on the resampled data62. This procedure 
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is repeated multiple times (e.g., 10,000 iterations), and the stability of predictive weights can 

then be evaluated using the z and P values based on the mean and standard deviation of the 

sampling distribution of predictive weights. After correction for multiple comparisons, the 

features with predictive weights significantly different from zero based on the P values can 

be selected and visualized in standard brain space.

Methods for assessing feature importance focus on the impact of a feature on a prediction. 

These include methods that directly use the magnitude of predictive coefficients (e.g., 

recursive feature elimination (RFE)63), methods using feature-wise decomposition of the 

prediction (e.g., layer-wise relevance propagation (LRP)64 and Shapley values65) and 

methods using perturbation or ‘lesions’ (omission) of features47,66–68, among many others 

(see Table 1). For example, in RFE, the importance of a feature is estimated by the absolute 

value of its corresponding predictive weight, and less important features (i.e., with low 

predictive weights) are eliminated recursively. The ‘virtual lesion’ analysis47 has also been 

used to assess the feature importance. In the ‘virtual lesion’ analysis, a researcher first 

defines meaningful groups of features (e.g., brain parcellations or functional networks), 

removes each group of features from a model at each iteration and tests the predictive 

performance of the reduced model. A large decrease in the model performance indicates 

that the virtually lesioned features are necessary for the model to perform well. In LRP, 

the prediction score of a nonlinear classifier (e.g., neural network) is decomposed and 

recursively propagated back to the input feature level so that the contribution of each feature 

to the final prediction can be quantitatively identified and visualized64,69. These methods 

cannot fully explain complex models, because isolated features are often insufficient to 

predict either outcomes or full model performance, but they can help explain what is driving 

a model’s predictions.

Visualization methods provide ways to make a model human readable and thus enhance its 

interpretability. In case of linear models, visualizing important features is straightforward 

because significant predictive weights can be directly displayed on a feature space (e.g., a 

brain map). For nonlinear models, visualizing feature-level interpretation is not simple, but 

it is possible to visualize importance or stability scores calculated at the feature level on a 

feature space (using, e.g., a heat map64 or saliency map70). Another visualization technique 

for artificial neural networks is to examine what individual units or layers in a network 

represent by adjusting input patterns to maximize the activation of a target unit or layer (e.g., 

DeepDream71). Table 2 provides more details on a few selected feature-level assessment 

methods.

In this protocol, we propose four options for feature-level assessment (Step 7 of the 

protocol): bootstrap tests, RFE and ‘virtual lesion’ analysis for linear models and LRP 

for explaining nonlinear models. We visualize the significant features (or feature relevance 

scores in the case of LRP) on a standardized brain space.

Biology-level assessment—Biology-level assessment aims to provide additional 

validation for a model based on its neurobiological plausibility. Plausibility is based on 

converging evidence from other types of neuroscientific data, including previous studies, 

additional datasets or other techniques, particularly those that provide more direct measures 
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of brain function or direct manipulation of brain circuits (e.g., intracranial recordings, 

optogenetics). Such validation is important for at least two reasons. First, it helps to 

elucidate what types of mental and behavioral representations are being captured in a 

predictive model. Second, it provides a bridge between ML models and neuroscience, 

helping neuroimaging-based ML models contribute to understanding mental processes and 

behaviors.

However, there are inherent challenges in identifying the neurobiological mechanisms 

underlying neuroimaging-based ML models and validating them against other techniques 

and datasets. Most ML algorithms have no intrinsic constraints related to neuroscientific 

plausibility. In addition, ML models are usually developed to maximize the model’s 

performance while being agnostic about its neurobiological meaning and validity. It may 

not be possible to provide definitive answers for biology-level assessment in many cases. 

Rather, the assessment should be regarded as an open-ended investigation that requires 

long-term sharing and testing the properties of established models. This is a multi-study, 

multi-technique and multidisciplinary process.

One way to examine neurobiological plausibility and validity of an ML model is to 

evaluate results from feature- and model-level assessments in the light of neuroscience 

literature across various modalities and species. For example, Woo et al.18 developed an 

fMRI-based ML model for predicting pain and examined the local pattern topography of 

predictive weights for some key brain regions in the model, including basal ganglia and 

amygdala, and found that their local patterns of predictive weights were largely consistent 

with previous findings in rodents72–74 and non-human primates75,] as well as in human 

literature76–78. In addition, one can examine what an ML model may represent (‘decode’ 

a model) using a meta-analytic approach77,79—for example, term-based decoding with 

automated meta-analysis tools (e.g., neurosynth.org80) and map-based decoding using an 

open neuroimaging database (e.g., openneuro.org81 or neurovault.org82). Another possibility 

is to examine the current ML model in relation to previously established large-scale resting-

state brain networks48,83–85 or existing multivariate pattern-based neuroimaging markers86. 

The protocol below specifies two options for biology-level assessment: the analysis of the 

model in terms of its overlap with large-scale resting-state networks defined by Yeo et al.87 

and meta-analysis–based decoding using Neurosynth80 (Step 11).

Other types of biological validation are beyond the scope of the current protocol but 

are important, particularly, searching for converging evidence from invasive studies that 

employ molecular, physiological and intervention-based approaches in animal88,89 or human 

studies90,91. Some methodologies may not be practical for widespread use as predictive 

models because they are more invasive, are testable only in special populations or cannot 

be tested in humans at all; however, they can provide valuable converging evidence, 

increasing our understanding of what a model measures. For example, Hultman et al.88 

recently developed electrical neuroimaging biomarkers of vulnerability to depression using 

local field potentials in mice. They then assessed their models using multiple biological 

methods, including gene overexpression (molecular) and drug injection (physiological and 

intervention-based methods), and showed that their models responded to multiple ways of 

inducing vulnerability to depression. For humans, researchers cannot easily use invasive 
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methods, but non-invasive interventions, such as transcranial magnetic stimulation90, and 

some more invasive methods, such as electrocorticography or post-mortem evaluation91, can 

also be used in some cases.

Although converging evidence from existing studies and theories can help validate a model, 

even the models that are not corroborated by existing neurobiological knowledge can also 

play an important role by promoting new discovery and theory building in neuroscience. 

For example, neuroimaging-based ML models for pain could reveal new substrates for pain 

perception in regions not previously understood as ‘pain-processing’ regions, leading to 

new discoveries of potential brain targets for further research and intervention92. Thus, the 

biology-level assessment does not need to be limited to currently available theories. Rather, 

researchers should be open to building new hypotheses and theories inspired by ML models, 

which can be subsequently tested with invasive methods or other modalities.

Development of the protocol

The proposed framework and analyses have been developed and discussed in multiple 

previous publications from our research group2,13,18,19,47,48,93, in which we have developed 

fMRI-based ML models for several different target outcomes. These previous studies used 

different methods and approaches to validate and interpret the models. Here, we aim to 

unify these various approaches into one framework and implement a workflow that can 

guide model validation and interpretation (Fig. 2). To practically demonstrate the use of the 

workflow, we apply its methods to a published fMRI dataset93. In the fMRI experiment, 

participants (N = 59) completed a somatic pain task and a social rejection task. In the 

somatic pain task, participants experienced painful heat or non-painful warmth, whereas in 

the social rejection task, participants viewed photographs of their ex-partners or friends. We 

used these data to build and interpret classification models. Although this protocol provides 

examples of only a few selected analyses and covers only non-invasive methods, other 

validation methods and steps should be employed as available. In addition, although the 

previous studies from our research group have generally used linear models, this framework 

can be applied to any type of ML model, including deep learning models.

Comparison with other methods

Many previous approaches to improving interpretability have focused on model sparsity 

or constraining models to include a small number of variables. Various regularization 

techniques have been used for this purpose. Least-absolute-shrinkage-and-selection-operator 

(LASSO)42 and ElasticNet43 regression, for example, impose non-structured sparsity, 

without constraints on how variables are grouped when considering their inclusion. 

GraphNet44 and hierarchical region-network sparsity45 are examples of methods that impose 

structured sparsity, incorporating prior knowledge of brain anatomical specialization into the 

model-selection process. These structured methods result in grouped voxels in few clusters 

and promise easier interpretation than non-structured sparse models. However, imposing 

sparsity may not always be relevant to establishing neurobiologically valid brain models: 

sparse solutions may not provide the whole picture of complex interactions among many 

different players involved in a complex biological system.
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Other studies have considered additional objective functions beyond predictive accuracy. 

Model stability, or reproducibility of model parameters across samples, is important for 

interpretability: models with unstable parameters have no consistent biological features 

to interpret. For example, Rasmussen et al.94 showed that there is a trade-off between 

prediction accuracy and the spatial reproducibility of a model, and concluded that 

regularization parameters should be selected considering both model reproducibility and 

interpretability. Baldassarre et al.95 also investigated the effects of several regularization 

methods on model stability and suggested that model stability can be enhanced by adding 

reproducibility as a model selection criterion.

Another important approach for enhancing model interpretability is dimensionality 

reduction. Principal component analysis or independent component analysis has often been 

used, and they can be combined with methods imposing sparsity96,97. However, at present, 

principal component analysis and independent component analysis are also used to extract 

characteristic features from single-modality or multimodal neuroimaging data98–100.

Most of these studies, however, focused only on one or a small number of aspects of 

model interpretation that can partially improve the interpretability. We aim to provide a 

unified framework for assessing model interpretability in multiple ways, along with concrete 

example analyses.

Limitations

This protocol aims to provide concrete analysis examples of the minimum set of components 

for the different levels of model interpretation. However, interpreting ML models in 

neuroimaging is intrinsically an open-ended process, and therefore the protocol provided 

here cannot cover all possible methods. In addition to the presented methods, users of the 

protocol may want to, for example, support the biological interpretation of their models by 

thorough literature review or conducting additional experiments focusing on the underlying 

neurobiological mechanisms of the models using invasive animal and human studies.

In this protocol, we sometimes make choices on algorithms and parameters based on 

previous research, though some of the decisions could have a direct impact on the model 

performance and interpretation. We recommend that researchers do not blindly use our 

choices as defaults. The algorithms we use (e.g., support vector machines (SVMs)) are 

not the only or even the best for many applications. The validation and process we 

implement could be used with many choices of algorithms (including both regression and 

classification algorithms), many outcomes (e.g., decoding stimulus conditions, predicting 

within-person behavior or predicting between-person clinical characteristics) and multiple 

types of data (e.g., structural images, functional task-related images, functional connectivity 

or arterial spin labeling/positron emission tomography/magnetic resonance spectroscopy 

images). However, for all of these choices, additional data- and outcome-type specific 

validation procedures are likely to be useful. Therefore, this protocol is a useful starting 

point but should not be taken as a complete description of the validation steps for all 

algorithms, data types and outcome types. Researchers should make deliberate choices on 

algorithms and parameters to answer their research questions. In addition, although our 

model interpretation framework can be applied to many types of models and data (e.g., fMRI 
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connectivity, structural MRI and other imaging modalities), we do not provide example code 

for all possible applications.

This protocol provides analysis examples for feature-level assessment for a nonlinear model 

as well as a linear model. For a nonlinear model, we used LRP64, but only one previous 

neuroimaging study has used this method69. Although the method for the nonlinear model 

yielded similar results to the methods for the linear model in our analyses, the method for 

the nonlinear model presented here should be considered as an example and investigated 

further in future studies. In addition, other components of the model-level assessment (e.g., 

noise analysis and representational analysis) have not been tested with nonlinear models.

Finally, this protocol includes only two simple methods for biology-level assessment. 

However, in practice, biology-level validation should involve experiments using multiple 

modalities and approaches and collaborative efforts among multiple laboratories to search 

for converging evidence. We emphasized the importance of these approaches above, but 

such methods cannot be fully summarized in one protocol.

Overall, this protocol should serve as a sample practical implementation of the framework. 

There can be multiple equally valid analysis options that can achieve the same level of 

model interpretation. We encourage investigators to use the analysis methods and workflow 

proposed here but also to use different methods and a workflow that suits their research 

goals and experimental contexts.

Overview of the procedure

In this protocol, we provide a workflow that can guide a practical implementation of the 

framework (Fig. 2). To achieve most of the components of the workflow, we use the CANlab 

interactive fMRI analysis tools (Box 1), which are publicly available MATLAB-based 

analysis tools (see Materials for details on availability). The list of functions from the 

CANlab tools used in the protocol can be found in Table 3.

Step 1 of the workflow is model building. It is a prerequisite step, which is not included in 

the model interpretation framework, but successful and correct implementation of this step 

defines the success of the following methods of model interpretation. A crucial point in Step 

1 is to divide data into a training set and a test set for cross-validation performed in Steps 

2 and 3 (for more detailed information, see Step 1A). Steps 2–15 can then be divided into 

three parts: model development (Steps 2–6), feature-level assessment (Step 7) and model- 

and biology-level assessment (Steps 8–15).

In the model development stage, Steps 2 and 3 and Steps 4–6 evaluate the intrinsic 

quality of the new model in terms of its predictive power and a potential contribution of 

confounds. More specifically, Steps 2 and 3 evaluate the model’s accuracy, sensitivity and 

specificity. In these steps, it is critical to obtain unbiased estimates of model performance 

using cross-validation (though cross-validation is prone to bias in some cases101) and, 

ideally, held-out test data tested on only a single, final model. In this protocol, we provide 

examples of leave-one-subject-out (LOSO) and 8-fold cross-validation. If the model shows 

good performance, one can go to the next step. Steps 4–6 aim to ensure that a model is 
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independent of potential confounds. However, obtaining a definitive answer to this question 

is challenging (e.g., potential confounds may be unmeasured), and therefore this should be 

an open-ended investigation. Although the order of these analysis steps is flexible, Steps 2–6 

should logically precede other analyses as they validate the quality of the model.

Step 7 includes methods for the feature-level assessment of the model. We propose several 

options to identify important features, and these options can be selected depending on 

the types of models (e.g., linear or nonlinear) or desired properties (e.g., stability or 

importance). In this protocol, we describe (i) bootstrap tests as an example of feature 

stability evaluation in linear models, which were used in previous studies13,93; (ii) RFE 

as an example of evaluation of feature importance in linear models commonly used in 

neuroimaging63; and (iii) a ‘virtual lesion’ analysis in which features are groups of voxels 

defining regions or networks of interest47. We also describe (iv) LRP64 as an example 

of feature importance evaluation in nonlinear models. There are numerous other ways to 

identify significant features in models, and thus we encourage investigators to use other 

methods that suit their goals. For a list of possible options, see Table 1. When visualizing 

important features, researchers need to examine whether the identified important features 

make sense based on a priori domain knowledge. For example, important features should 

not be located outside of the brain, and if a condition involves a visual process, some of the 

important features should be located in the visual cortex.

Following the feature-level assessment of the model, investigators should examine whether 

the new model can generalize across individuals and populations, different scanners and 

test contexts (Steps 8–10) and whether the model is biologically plausible (Step 11). The 

order of these two analyses is not important, but both analyses are critical in evaluating 

how robust and useful the model is for both an applied use and neuroscience. These steps 

should also be an open-ended process; for Steps 8–10, the generalizability tests can start 

with testing the model on a few independent datasets locally collected, but the tests should 

be scaled up to new data from broader contexts, such as data from different laboratories, 

populations, scanners and task conditions, with increasing levels of evidence. For Step 

11, investigators need to keep seeking converging evidence from related literature and 

invasive studies with different experimental modalities and multiple species to understand 

the model’s neurobiological meaning. In the current protocol, for Steps 8–10, we provide an 

example of testing generalizability of two previously developed predictive models for pain, 

the Neurologic Pain Signature (NPS)13 and Stimulus Intensity Independent Pain Signature-1 

(SIIPS1)18, on example fMRI data from a previous publication93 (for more details of the 

models and dataset, see Materials). For Step 11, we provide two basic analyses: first, term-

based decoding based on a large-scale meta-analysis database, Neurosynth80, and second, 

comparisons of the model to large-scale networks identified by Yeo et al.87.

Representational and behavioral analyses can further our understanding of the model 

(Steps 12–15). For example, one can better understand the model’s decision making by 

examining the patterns of model behaviors (e.g., decisions and responses) over multiple 

instances and examples. Investigators can also analyze model representations by directly 

comparing weight vectors or measuring representational distances among different models. 

In this protocol, we provide an example of the representational analysis using two a 
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priori predictive models applied to the sample dataset (see Materials for details about the 

predictive models and sample dataset).

Level of expertise needed to implement the protocol

Creating one’s own codes to perform the analyses described below is a demanding task in 

terms of programming abilities and knowledge of statistics and ML. However, we provide 

CanlabCore tools (https://github.com/canlab/CanlabCore), a MATLAB-based interactive 

analysis tool for fMRI data. With the CanlabCore tools, one can readily run most of the 

analyses described. To successfully use the CanlabCore tools, users should be familiar with 

the MATLAB programming environment, and they should be able to implement simple 

codes using predefined functions and different variable types (e.g., objects, structures and 

cell arrays). To implement the nonlinear model and LRP analysis, users should be familiar 

with Python and some deep learning libraries in Python, such as Tensorflow and Keras.

Materials

Equipment

Software

• A computer with MATLAB and a web browser to access Neurosynth at http://

neurosynth.org (or one can also use the Neurosynth Python toolbox available at 

https://github.com/neurosynth)

• For linear models: The CanlabCore toolbox is available at https://github.com/

canlab/CanlabCore ▲CRITICAL For full functionality, it is necessary to install 

the following dependencies: (i) MATLAB Statistics and Machine Learning 

toolbox, (ii) MATLAB Signal Processing toolbox, (iii) Statistical Parametric 

Mapping (SPM) toolbox available at https://www.fil.ion.ucl.ac.uk/spm/, and (iv) 

some external toolboxes (in the directory named ‘/External’), including the 

Spider toolbox (for SVMs), contained in the CanlabCore ▲CRITICAL Ensure 

that all the toolboxes are added with subfolders to the MATLAB path.

Note that our protocol could be readily adapted to other software platforms, 

particularly open-source alternative programming languages such as Python. 

Although we do not provide sample code in this protocol, the COSAN Lab 

(led by Luke Chang) has developed a Python package based on the CANlab 

tools, called NLTools, available at https://github.com/cosanlab/nltools. This 

package relies on Nilearn (http://nilearn.github.io) and scikit-learn (https://scikit-

learn.org), providing an alternative, open-source format for implementing this 

protocol

• For deep learning models: Python 3.6.5 or higher available at https://

www.python.org/downloads/; NumPy 1.14.5 (Python library for scientific 

computing) available at https://github.com/numpy/numpy; Keras 2.2.4 (Python 

library for Deep Learning) available at https://keras.io/ and TensorFlow 

1.8.0 available at http://www.tensorflow.org/install/; Matplotlib 3.0.2 (Python 

library for plotting) available at https://matplotlib.org/users/installing.html; 
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scikit-learn 0.20.3 (Python library for ML) available at https://scikit-learn.org/

stable/install.html; pandas 0.25.1 (Python library for data analysis) available 

at https://pandas.pydata.org/pandas-docs/stable/install.html; Scipy 1.3.0 (Python 

library for mathematics, science and engineering); Nilearn 0.5.2 (Python 

library for ML on neuroimaging data) available at http://nilearn.github.io/

introduction.html#installation; Nipype 1.2.0 (Python library for an interface to 

neuroimaging analysis pipelines) available at https://pypi.org/project/nipype/; 

iNNvestigate102 1.0.8.3 (Keras explanation toolbox) available at https://

github.com/albermax/innvestigate; other dependencies: Compute Unified Device 

Architecture (CUDA) and CUDA Deep Neural Network (CuDNN) library with 

an appropriate graphical processing unit (GPU)

Input data

• Statistical parametric maps (used in all steps): The level of input data can be 

varied. For example, one can use first-level contrast or beta maps for event 

regressors, single-trial beta series, or repetition time (TR)-level images. The 

amount of data needed for model training depends on whether a researcher 

aims to build a model to predict between-person individual differences 

or within-person behaviors or stimulus conditions. In the case of between-

individual prediction, N > 100 participants is usually required, but N > 300 

is recommended1. For the prediction of within-person effects using group-level 

data, data from >20 participants are usually used, but >50 participants and 

1–2 h of scanning for each person are recommended103. The recommended 

amount of data can also be varied depending on the types of data or algorithms 

(e.g., refs. 104,105). Note that these recommendations are heuristic only, as a 

full discussion of power and model reproducibility is beyond the scope of 

this review. In addition, it is extremely beneficial to have an independent 

hold-out dataset for prospective model validation and generalizability testing 

▲CRITICAL The CanlabCore tools can read images in NIfTI format (.nii) 

or Analyze format (.img and .hdr). For deep learning models, we used data 

with 4D matrices (x, y, z, t) for each subject, created by the Nibabel library. 

The CanlabCore toolbox provides an easy way to create 4D matrices (see 

reconstruct_image.m) ▲CRITICAL If you are using single-trial level 

data, some trial estimates could be strongly affected by acquisition artifacts or 

sudden motion. For this reason, we recommend excluding images from trials 

with high variance inflation factors (VIFs). In previous studies, we usually 

removed trials with VIFs that exceeded 2.518,106. VIFs can be calculated with 

getvif.m in the CanlabCore toolbox ▲CRITICAL If you are using TR-level 

data, ensure that the data are properly filtered (e.g., high-pass filtering) and 

denoised (e.g., confound regression or signal decomposition methods)60. For 

in-depth quality checks for image data, please refer to ref. 60 or use the 

MRI Quality Control (MRIQC) tool107 to perform an automated data quality 

check. In the case of individual- or group-level preprocessed data (e.g., contrast 

maps), one can use the qc_metrics_second_level.m function from the 

CanlabCore toolbox. The function assesses, for example, signals from white 
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matter and ventricles and their effect sizes or scale inhomogeneities across 

subjects in gray matter and ventricles. To use this tool, data should be spatially 

normalized to the Montreal Neurological Institute (MNI) template ! CAUTION 
A study collecting neuroimaging and behavioral data must be approved by an 

appropriate institutional ethical review committee, and all subjects must provide 

informed consent to the acquisition and use of the data in the case of a local 

study. In the case of certain public datasets, a data-sharing agreement must be 

approved. In the example dataset used in this protocol, all participants provided 

written informed consent in accordance with a protocol approved by Columbia 

University’s Institutional Review Board.

• Nuisance data (used in Steps 4–6): Here, we used time series data for six 

head-motion parameters (x, y, z, roll, pitch and yaw)

• A priori pattern-based predictive models (used in Steps 8–10 and 12–15): To 

run the example analyses provided here, one also needs two a priori pattern-

based predictive models, the NPS and the SIIPS1. The NPS is available upon 

request with a data use agreement. The SIIPS1 can be downloaded from 

the CANlab Neuroimaging_Pattern_Masks repository (https://github.com/canlab/

Neuroimaging_Pattern_Masks)

• Functional Atlas data (used in Steps 7 and 11): We used seven functional 

networks from Yeo et al.87 (available at https://github.com/ThomasYeoLab/

CBIG/tree/master/stable_projects/brain_parcellation)

Example dataset

• We used an fMRI dataset (N = 59) from a previous publication93 as an example 

dataset for demonstration

• In an fMRI experiment, all participants completed two tasks: a somatic pain 

task, in which participants experienced painful heat or non-painful warmth, and a 

social rejection task, in which participants viewed pictures of their ex-partners or 

friends

• In this protocol, trial-level data are used for Steps 1–7 and Step 11, and 

participant-level contrast images are used for Steps 8–10 and 12–15. For the 

trial-level data, we use data from the painful heat trials (heat condition, eight 

trials per participant) and the ex-partner trials (rejection condition, eight trials per 

participant). For the contrast images, we use data from all four conditions (59 

images per condition)

• The example data and codes can be downloaded from https://github.com/

cocoanlab/interpret_ml_neuroimaging. Its directory structure can be found 

below, and our example codes use this data structure

/data

   /derivatives
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      /trial_images/

       /sub_01

          heat_trial01.nii

          heat_trial02.nii

          …

          rejection_trial08.nii

       /sub_02

       …

       /sub_59

   /contrast_images

      heat_sub_01.nii

      heat_sub_02.nii

      …

      friend_sub_59.nii

/masks

/scripts

Procedure

Build a model ● Timing 20 min to a few hours

1. This step builds fMRI-based ML models that are predictive of a target 

outcome. This is a prerequisite step to the workflow of the model interpretation 

framework. Although details of this step are not the main focus of the current 

protocol, we briefly describe the procedure for the model building to provide 

information about the two types of models used in this protocol. Option A 

describes the training of a widely used linear algorithm, SVMs. We chose SVMs 

because it is one of the most popular ML algorithms in current neuroimaging 

literature—for example, from the survey we conducted in ref. 2, 46.4% of the 

481 ML models in neuroimaging studies used SVMs, which were followed by 

discriminant analysis and logistic regression with 12.7% and 7.5% prevalence, 

respectively. The steps in option A describe how to build an SVM model using 

the CanlabCore tools (Box 1). Option B is a procedure to build a nonlinear 

model. As an example of nonlinear models, we chose a Convolutional Neural 

Network (CNN), a successful deep learning model for a variety of applications 

on prediction. The steps in option B describe how to build a CNN model using 

Keras108.

Option Module

1A Linear model (SVMs)

1B Nonlinear model (CNN)

A. Training SVMS

Kohoutová et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



i. Prepare a data matrix. You can use the following lines to 

import the fMRI data from image data with a gray matter 

mask.

basedir = ‘/The/base/directory’; % base directory

gray_matter_mask = which(‘gray_matter_mask.img’);

heat_imgs = filenames(fullfile(basedir, ‘data’, 

‘derivatives’, … ‘trial_images’, ‘sub*’, 

‘heat_*.nii’));

    % read image file names for the heat condition

rejection_imgs = filenames(fullfile(basedir, 

‘data’, … ‘derivatives’, ‘trial_images’, ‘sub*’, 

‘rejection_*.nii’));

    % file names for the rejection condition

data = fmri_data([heat_imgs; rejection_imgs], 

gray_matter_mask);

The variable data.dat contains the activation data in a flat 

(2-D) and space-efficient # voxels × # observations matrix.

? TROUBLESHOOTING

ii. (Optional) Apply a mask. One can apply a mask to include 

only selected brain features before training a model. For 

example, the following lines of code apply the mask that was 

used in Woo et al.93:

mask = fullfile(basedir, ‘masks’, 

‘neurosynth_mask_Woo2014.nii’);

data = apply_mask(data, mask);

iii. Prepare an outcome variable and add it into dat.Y. For 

classification tasks, the outcome vector is defined using 

a categorical variable (e.g., binary values for different 

conditions), and for regression, the outcome vector is a 

continuous variable (e.g., trial-by-trial ratings). The following 

code defines the outcome vector for the SVM binary classifier 

in our example analysis. Coding observations with [1, −1] 

values is compatible with the Spider package and should be 

used:

data.Y = [ones(numel(heat_imgs),1); … 

−ones(numel(rejection_imgs),1)]; % heat:1, 

rejection:−1
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iv. Define training and test sets for cross-validation. To obtain 

an unbiased estimate of model performance, one should 

internally validate the model using cross-validation. A crucial 

step in cross-validation is to choose a suitable strategy of 

splitting the data into training and test sets. One can define 

a certain percentage of data as the test set (k-fold cross-

validation) (e.g., 10% for 10-fold cross-validation) or use 

one subject’s data as test data in each fold (LOSO cross-

validation). Because with increasing k, bias of the predictive 

accuracy decreases and variance increases, one needs to find a 

suitable solution for the trade-off, taking into account the size 

of the available dataset. LOSO cross-validation can be used 

in small datasets, whereas in large datasets, 5-fold or 10-fold 

cross-validation can be more efficient1. Care should be taken 

that no dependencies between training and test data have been 

introduced (see below).

The optional input argument, ‘nfolds’, of the predict 

function can specify which types of cross-validation will 

be used. With a scalar value input k, it will run k-fold 

cross-validation. The optional input can also be a vector for 

using customized cross-validation folds (e.g., LOSO, leave-

two-trials-out). If the optional input equals one, the function 

will not run cross-validation. If no optional input is given, 

it will run fivefold cross-validation stratified on the outcome 

variable as a default. For example, we can use LOSO cross-

validation in our example dataset. That is, we reserve one 

subject’s data as test data and use the remaining 58 subjects’ 

data as the training set. The input argument ‘nfolds’ can then 

be defined as follows.

n_folds = [repmat(1:59, 8,1) repmat(1:59, 8,1)]; % 

Each subject % has 8 trial image data for each 

condition

n_folds = n_folds(:); % flatten the matrix

▲CRITICAL STEP It is crucial to keep the training and 

test sets truly independent. Performing some analyses, such 

as denoising, feature selection or scaling, across training 

and test sets can create dependence between the training 

and test datasets, resulting in a bias in the estimate of the 

prediction performance1,2. Dependence between the training 

and test datasets can also occur if participants are related, as 

is typical in twin studies and occurs in some other studies, 

such as the Human Connectome Project109, ABCD110 and 
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UK Biobank111 studies. In addition, other common situations 

can introduce some dependence, such as nesting participants 

within a scanning day, variation in scan timing relative to 

academic deadlines and other seasonal variables, or subsets 

tested by the same experimenter in a multi-experimenter study. 

These issues do not categorically invalidate cross-validation, 

but they make it more important to test generalizability 

in independent test cohorts—and ultimately in cohorts that 

are explicitly dissimilar in population and procedures to the 

training sample.

▲CRITICAL STEP If k-fold cross-validation is used with 

the regression approach, we recommend using stratified 

cross-validation—stratifying holdout test sets for each fold 

based on the level of the outcome. To see how the 

CanlabCore tools implement stratified cross-validation, see 

stratified_holdout_set.m.

v. Fit an SVM model to the training data. We use the predict 

function, which is a method of the fmri_data object in the 

CanlabCore tools (see Box 2). This function allows us to 

easily run many different ML algorithms on fMRI data with 

cross-validation. The following lines of code will fit an SVM 

classifier to the data and test the cross-validated error rate of 

the classifier. We explain the details of cross-validation in Step 

2.

[cverr, stats_loso] = predict(data, 

‘algorithm_name’, …’cv_svm’, ‘nfolds’, n_folds, 

‘error_type’, ‘mcr’);

The output variable stats provides many kinds of 

information, including model weights, predicted y values (y)
based on cross-validation, and performance values (for more 

details, see Box 2).

Note that one can use nested cross-validation to find the 

optimal hyper-parameters of the model. In nested cross-

validation, an additional, nested cross-validation loop is 

performed on the training set to tune the hyper-parameters, 

while the outer cross-validation loop is used to estimate the 

model performance1,101. In our example, for simplicity, we 

use the default setting of the function for the SVM algorithm, 

where C = 1.
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If multiple models with a number of different parameters 

are tested on a single training set, a correction for multiple 

comparisons (e.g. False Discovery Rate (FDR) correction) 

must be conducted. Note that the corrections for multiple 

comparisons are designed to protect against false-positive 

feature identification but not against the inflated accuracy 

that comes from testing multiple models outside of cross-

validation loops. Therefore, a more important step is to test 

the final model on additional validation or independent test 

datasets.

In the following steps, we apply the analysis methods to 

the linear SVM model, a classifier model. Nonetheless, the 

predict function can also build regression-based models for 

predicting continuous outcomes. For example, the code below 

runs principal component regression (PCR):

[cverr, stats_loso] = predict(data, 

‘algorithm_name’, …’cv_pcr’, ‘nfolds’, n_folds, 

‘error_type’, ‘mse’);

? TROUBLESHOOTING

B. Training a CNN

i. Prepare the data matrix. We used the pandas DataFrame (to 

create a data template) and Nilearn (to load data from NIfTI 

files). These are implemented in ‘Part 1: Initializing Data 

Matrix’ and ‘Part 2: Loading Data Function’ of our example 

Jupyter Notebook file, cnn_lrp.ipynb, which is available 

at https://github.com/cocoanlab/interpret_ml_neuroimaging/

blob/master/scripts/cnn_lrp.ipynb.

ii. Define a CNN model. With Keras, one can define a 

CNN model using the following code, which defines four 

convolution layers and two fully connected layers, followed by 

a softmax output layer. One can also define the loss function 

with the Adam optimizer112 for the model training (‘Part 3: 

CNN Model’ of cnn_lrp.ipynb).

def make_custom_model_cnn_2D():

    model = Sequential()

    model.add(Conv2D(8, (3,3), 

kernel_initializer=‘he_normal’, padding=‘same’, 

input_shape=fmri_shape))
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    model.add(Activation(‘relu’))

    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(16, (3,3), 

kernel_initializer=‘he_normal’, padding=‘same’))

    model.add(Activation(‘relu’))

    model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(32, (3,3), 

kernel_initializer=‘he_normal’, padding=‘same’))

    model.add(Activation(‘relu’)) 

model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Conv2D(64, (3,3), 

kernel_initializer=‘he_normal’, padding=‘same’))

    model.add(Activation(‘relu’)) 

model.add(MaxPooling2D(pool_size=(2,2)))

    model.add(Flatten())

    model.add(Dense(128, 

kernel_initializer=‘he_normal’))

    model.add(Activation(‘relu’))

    model.add(Dense(2, 

kernel_initializer=‘he_normal’))

    model.add(Activation(‘linear’))

    model.add(Activation(‘softmax’))

    adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, 

epsilon=1e-08, decay=0.0)

    model.compile(loss=‘categorical_crossentropy’, 

optimizer=adam, metrics=[‘accuracy’])

    return model

iii. Split the data into training and test sets. As described above in 

the case of the linear SVM model, define the amount of data 

used as training and testing data for cross-validation. We used 

scikit-learn to create the cross-validation testing framework, 

which is implemented in ‘Part 4: Model Training example’ 

and ‘Part 5: Leave-One-Subject-Out Cross-validation’ of 

cnn_lrp.ipynb.

iv. Fit a CNN model on the training data. A CNN model can 

be trained with a variant of a mini-batch stochastic gradient 

descent method, such as Adam112, which is realized by the 

fit function in the Keras package. In the example code, we 

trained the model with 32 mini-batch size for every iteration. 

When running the train_model function we defined here, 

we evaluate the training loss (error) every epoch with the 

evaluate function in Keras. The following code also defines 

the number of epochs for training the CNN model (the second 

section of ‘Part 3. CNN Model’ of cnn_lrp.ipynb).
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import tensorflow as tf

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

session = tf.Session(config=config)

def train_model(train_X, train_y, test_X, test_y):

    # Optional: when you do not have enough GPUs, 

add the following line:

      # with tf.device(‘/cpu:0’):

      tr_data = {}

      tr_data[‘X_data’] = train_X

      tr_data[‘y_data’] = train_y

      te_data = {}

      te_data[‘X_data’] = test_X

      te_data[‘y_data’] = test_y

tr_data[‘y_data’] = 

keras.utils.to_categorical(tr_data[‘y_data’], 2)

te_data[‘y_data’] = 

keras.utils.to_categorical(te_data[‘y_data’], 2)

# Initialize and compile the model

model = make_custom_model_cnn_2D()

model.compile(loss=“categorical_crossentropy”, 

optimizer=Adam(), metrics=[“accuracy”])

history = model.fit(tr_data[‘X_data’], 

tr_data[‘y_data’], batch_size=mini_batch_size, 

epochs=20, verbose=1)

score = model.evaluate(te_data[‘X_data’], 

te_data[‘y_data’], verbose=0)

return model,score

v. Test the model on test data. Once the training of CNN is done, 

we can test the model on a separate test dataset as in the 

following code, which returns the prediction accuracy on the 

test set.

score = model.evaluate(te_data[‘X_data’], 

te_data[‘y_data’], verbose=0)

Assess the cross-validated performance ● Timing 5–20 min

▲CRITICAL This step evaluates the new model’s predictive performance in terms of 

accuracy, sensitivity and specificity. It is critical to obtain unbiased estimates of model 

performance using cross-validation or held-out test data. Below, we provide an analysis 

example of LOSO and eightfold cross-validation. Note that we made an arbitrary choice of k 
= 8 cross-validation folds for convenience, as cross-validation is typically largely insensitive 
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to the choice of k, but researchers should consider other choices and/or cross-validation 

strategies. For further discussion on this topic, please see Step 1A(iv) and refs. 1,101.

2. Iteratively fit models using a training set, test the models on each fold’s holdout 
set and aggregate predicted outcome values across folds. In Step 1, we divided 

the data into the training and test sets. As an example, we split the data to 

perform LOSO cross-validation. Therefore, we reserve one participant’s data 

as a test set and fit a model (an SVM in our example) to the remaining 58 

participants’ data. Subsequently, we use the model to classify the left-out data 

and save the distance from the hyperplane for each data point. We repeat this 

process 59 times. This process is automated in the predict function.

In addition, the following code shows how to run eightfold stratified cross-

validation.

[~, stats_8fold] = predict(data, ‘algorithm_name’, ‘cv_svm’, … 

‘nfolds’, 8, ‘error_type’, ‘mcr’);

▲CRITICAL STEP Hyper-parameters of the models should be kept the 

same for all iterations of cross-validation, but a nested cross-validation, a 

common method to choose an optimal hyper-parameter, can use different hyper-

parameters for each fold.

3. Calculate the predictive accuracy, sensitivity and specificity by comparing the 
model prediction and the actual outcome. In the context of classification, the 

accuracy can be defined as 1 minus the misclassification rate, which is the ratio 

of the number of incorrectly classified data points and total number of data 

points. Classification decision can be made with a single threshold value θ (in 

SVMs, typically θ = 0 if the bias term is included in the model). One can 

also use a two-alternative forced-choice (2AFC) test if each data point has its 

counterpart (e.g., which of two conditions was the heat condition?). Sensitivity is 

defined as the ratio of correctly classified positives to the number of positive data 

points, and specificity as the ratio of correctly classified negatives to the number 

of negative data points. Figure 3a illustrates results of the accuracy estimation of 

the cross-validated classification. The roc_plot function from the CanlabCore 

tools provides all these performance metrics:

% LOSO cross-validation

ROC_loso = roc_plot(stats_loso.dist_from_hyperplane_xval, … data.Y 

== 1, ‘threshold’, 0);

% 8-fold cross-validation

ROC_8fold = roc_plot(stats_8fold.dist_from_hyperplane_xval, … 

data.Y == 1, ‘threshold’, 0);

Example output:
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LOSO cross-validation

ROC_PLOT Output: Single-interval, A priori threshold

Threshold: 0.00 Sens: 94% CI(92%–
96%)

Spec: 91% 
CI(88%–93%)

PPV: 91% 
CI(88%-93%)

Nonparametric AUC: 
0.97

Parametric d_a: 
2.53

Accuracy: 92% +− 
0.9% (SE),

P = 0.000000

Eightfold cross-validation

ROC_PLOT Output: Single-interval, A priori threshold

Threshold: 0.00 Sens: 96% CI(94%–
97%)

Spec: 95% 
CI(93%–97%)

PPV: 95% CI(93%–
97%)

Nonparametric AUC: 
0.98

Parametric d_a: 
2.83

Accuracy: 96% +− 
0.7% (SE),

P = 0.000000

! CAUTION Examining the reliability of the outcome measures and model 

responses can be helpful to make sure that the model performance is not 

biased113,114. In general, the model performance cannot exceed the reliability of 

the outcome measures. However, this is not strictly true, as reliability measures 

are themselves estimated with error, and the estimated reliability can be affected 

by variables other than the brain-outcome relationship114. Nonetheless, the 

reliability of the outcome generally provides an upper bound for any predictive 

model and therefore can be considered as a sanity check.

Analyze the model for the presence of confounds and artifacts ● Timing 5–20 min

▲CRITICAL To ensure that the model responses cannot be explained by confounds 

or artifacts, investigators can use the relevant confounding and nuisance variables (e.g., 

in-scanner head motion) to predict the responses of the model. If the confounds and nuisance 

variables can predict the model response, the model is likely to be influenced by them. 

Similarly, one can also examine whether the outcomes of interest are related to potential 

confounds and other nuisance variables (see refs. 1,60 for more detailed discussion about 

other considerations related to confounds and nuisance variables).

The following steps describe an example of how to perform this type of analysis.

4. Create a set of nuisance variables (e.g., trial-level mean framewise displacement 
for six movement parameters (roll, pitch, yaw, x, y and z)). One can also 

use different types of confounding variables (e.g., physiology confounds, noise 

components from independent component analysis) or TR- or subject-level data. 

In this example analysis, we used trial-level movement parameters.

5. Prepare an fmri_data object variable. The nuisance variable should be assigned 

to the obj.dat field, and the model response (in the example analysis, we used 

distance from hyperplane) into the obj.Y (outcome) field.
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6. Predict the model response using the nuisance data. For an example analysis, 

we used multiple regression because there are only a few features in this 

example. We did not use cross-validation in this example, but one can also 

use cross-validation (e.g., 5- or 10-fold cross-validation; see Step 1A(iv)). The 

model’s predictive performance can be examined with the correlation between 

the predicted (y) and actual values (y).

% Load nuisance data that are previously saved

nuisance_file = fullfile(basedir, ‘data’, ‘derivatives’, 

‘nuisance.mat’);

    % Example nuisance data: Mean framewise displacement (z-scored;

    % roll, pitch, yaw, x, y, z; 6 columns)

load(nuisance_file);

% prepare fmri_data object variable

dat_nuistest = fmri_data;

dat_nuistest.dat = R’;

dat_nuistest.Y = stats_loso.dist_from_hyperplane_xval;

% train a regression model (without cross-validation)

[~, stats_nuistest] = predict(dat_nuistest, ‘algorithm_name’, … 

‘cv_multregress’,’nfolds’, 1, ‘error_type’, ‘mse’);

? TROUBLESHOOTING

Identify significant features ● Timing 20 min to a few days

7. Identify significant features. Here, we propose four methods of evaluation of 

feature significance: bootstrap tests as an example of a method evaluating feature 

stability in linear models, RFE and ‘virtual lesion’ analysis as examples of 

methods evaluating feature importance in linear models and LRP as an example 

of a method evaluating feature importance in nonlinear models.

Bootstrap tests identify features that make reproducible (stable) contributions to 

prediction across units (e.g., participants in this example). Bootstrap tests have 

been successfully used in previous publications13,19,47,93. The steps in option A 

describe the bootstrap test in more detail.

Unlike bootstrap tests, RFE is primarily a wrapper feature selection method. 

The model is repeatedly trained while a certain number of features, defined by 

an elimination step, are removed in each iteration until a stopping criterion is 

satisfied (e.g., when it reaches a specified number of features). The investigator 

can also select the final model according to the highest cross-validated predictive 

accuracy. The steps in option B describe how to perform RFE generally in linear 

models.

In a ‘virtual lesion’ analysis47, the importance of features can be evaluated 

by examining (i) how much predictive performance decreases when a set of 

features (regions or networks) is removed from a model or (ii) how well a model 
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performs if only a set of features is used. The analysis is illustrated in Fig. 4, 

and its example results are shown in Table 4. The analysis can be performed 

according to the steps in option C.

The goal of the LRP (described in option D) is to decompose the final prediction 

score and highlight the contribution of each input feature of the model to the 

prediction. LRP is particularly useful for hierarchical nonlinear models like CNN 

(see Step 1B), since it can efficiently propagate the decomposed contributions 

from the upper layers of the model down to the input feature level. A unique 

property of LRP that differentiates it from other assessment methods is that it can 

separately obtain the importance assessment of each feature for each prediction 

class of the model. Moreover, the assessments computed by LRP can have either 

positive or negative values, which concretely show whether each feature is for 

or against increasing the prediction score of the prediction class for which the 

assessments are computed, respectively. Although this method originally serves 

to explain predictions for individual instances, in the current protocol, we focus 

on the group-level explanations and present the final explanation as an average 

over the individual explanations (Fig. 5).

Option Module

7A Bootstrap tests

7B RFE

7C ‘Virtual lesion’ analysis

7D LRP

A. Bootstrap tests

i. Resample the data. The essential step in the bootstrap tests 

is to create a sufficient number of new data samples (i.e., 

bootstrap samples). Create m bootstrap samples by sampling 

n data points with replacement from the dataset of size n. For 

example, our dataset contains 944 trials (i.e., n = 944), and we 

randomly draw 10,000 bootstrap samples (m = 10,000), each 

consisting of 944 data points.

ii. Train a model with each bootstrap sample. Each bootstrap 

sample serves as training data for a new model. The hyper-

parameters of the model should be the same as the original 

model. This step is computationally expensive as it requires 

a large number of iterations depending on the number of 

bootstrap samples. With 1,000 samples, the minimum P value 

is 1/1,000 or 0.001. Thus, ≥10,000 samples is desirable when 

one wishes to have reasonable numerical precision in the tails 

of the distribution, which is often the case in neuroimaging.
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iii. Calculate P values for the predictive weights. Calculate two-

tailed uncorrected P values as the proportion of weights above 

and below zero across the models. An alternative option is to 

calculate z and P values with the mean and standard deviation 

of the sampling distribution.

iv. Perform a correction for multiple comparisons. For example, 

a popular choice of correction for multiple comparisons is 

the FDR correction, which we used to achieve the results 

visualized in Fig. 3b. The corrected threshold determines 

which features consistently contribute to the prediction over 

bootstrap samples.

All these analysis steps can be performed using the 

‘bootweights’ optional input argument of the predict 

function. The optional input, ‘bootsamples’ can be used 

to set the number of bootstrap samples. The default is 

100, but 5,000 or 10,000 was used in our previous 

publications13,19,47,93.

[~, stats_boot] = predict(data, ‘algorithm_name’, 

‘cv_svm’, … ‘nfolds’, 1, ‘error_type’, ‘mcr’, 

‘bootweights’, … ‘bootsamples’, 10000);

The results of bootstrap tests are stored in stats_boot.WTS. 

In addition, stats_boot.weight_obj also contains the 

bootstrap test results in a statistic_image object, 

including model weights and P values. The threshold method 

of the statistic_image object can be used to perform 

a correction for multiple comparisons (e.g., q < 0.05, FDR 

corrected).

data_threshold = threshold(stats_boot.weight_obj, 

.05, ‘fdr’);

▲CRITICAL STEP If the size of data is large, the 

bootstrap tests can take several days. To shorten the duration, 

investigators can use the ‘useparallel’ option for parallel 

processing, or if multiple computers or nodes are available, 

one can use the optional input, ‘savebootweights’, to save 

the bootstrapped weights from multiple bootstrap samples, and 

combine the results afterward.

B. RFE
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i. Set the parameters of RFE. The basic parameters of RFE 

include a stopping criterion and elimination step. The stopping 

criterion determines when the process of repeated elimination 

and training should terminate. It depends on the desired 

characteristics of the final model. The elimination step is the 

number of features eliminated at each iteration. The size of 

the elimination step, often defined as a percentage of the 

remaining features, has varied in previous studies63,115. To 

achieve our results shown in Fig. 3c, we used a fixed size 

(5,000 features) of the elimination step.

ii. Iteratively train a model on the gradually reduced number of 
features using predefined model parameters. In every iteration, 

fit a new model to the surviving feature set and evaluate its 

performance with cross-validation. The cross-validated results 

should be saved for later assessment. Sort the weights of 

the model by their absolute values and eliminate a certain 

number of features corresponding to the weights with the 

smallest absolute values. The number of eliminated features 

is defined by the elimination step. In the next iteration, fit a 

new model to the dataset with the reduced feature set. Repeat 

this procedure until the stopping criterion is satisfied.

All these analysis steps can be performed with the svm_rfe 

function, which performs the RFE with SVMs. In the example 

below, the input data is an fmri_data object containing the 

training data, the ‘n_removal’ option specifies the number of 

features eliminated in each iteration and the ‘n_finalfeat’ 

option defines the stopping criterion. The remaining options 

are the same as for the predict function.

out = svm_rfe(data, ‘n_removal’, 5000, 

‘n_finalfeat’, 20000, … ‘algorithm_name’, ‘cv_svm’, 

‘nfolds’, n_folds, … ‘error_type’, ‘mcr’);

C. ‘Virtual lesion’ analysis

i. Prepare a parcellation mask. Choose the parcellation of 

interest (e.g., large-scale networks or contiguous supra-

threshold regions) and prepare a mask for the parcellation. For 

the protocol, we prepared a mask for the large-scale networks 

defined by refs. 87,116,117.

%% Load mask: BucknerLab_wholebrain

img = fullfile(basedir, ‘masks’, … 
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‘Bucknerlab_7clusters_all_combined.nii’);

mask = fmri_data(img, gray_matter_mask);

network_names = {‘Visual’, ‘Somatomotor’, 

‘dAttention’, … ‘vAttention’, ‘Limbic’, 

‘Frontoparietal’, ‘Default’};

ii. Iteratively remove a set of features and test the reduced 
models. In each iteration, a network or a region is removed 

from the full model, and the predictive performance is 

recorded while the reduced model is tested.

%% One network removed for prediction in each 

iteration

for network_i = 1:7

    for subj_i = 1:59

        masked_weights = … 

stats_loso.other_output_cv{subj_i,1}.* … 

double(mask.dat ~= network_i);

        dat_subj = data.dat(:, n_folds==subj_i);

        pexp(:,subj_i) = masked_weights’ * dat_subj;

    end

    pexp_sorted = [reshape(pexp(1:8,:), … 

numel(heat_imgs), 1); reshape(pexp(9:16,:), … 

numel(rejection_imgs), 1)];

    roc = roc_plot(pexp_sorted, data.Y==1);

    out.num_vox(network_i,1) = sum(mask.dat ~= 

network_i);

    out.acc(network_i,1) = roc.accuracy;

    out.se(network_i,1) = roc.accuracy_se;

    out.p(network_i,1) = roc.accuracy_p;

end

▲CRITICAL STEP If the training dataset is used for the 

‘virtual lesion’ analysis, the analysis should also be conducted 

with cross-validation. In each iteration, one should apply the 

mask to the full model from the cross-validation folds and test 

the reduced model on the left-out data. One can calculate the 

predictive performance of the reduced models after collecting 

all the cross-validated predictions.

▲CRITICAL STEP To obtain the predictions of the reduced 

model, we calculated pattern expression values using the 

dot product, but other similarity metrics (e.g., Pearson’s 

correlation, Spearman correlation, cosine similarity) can also 

be used:
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Patternexpression = w ⋅ x = ∑i = 1
n wixi

where n is the number of voxels of the model, w is the voxel-

level predictive weights and x is the test data. A predictive 

model is composed of predictive weights (w ) across voxels, 

specifying locations and patterns of activation. The weights 

tell us how to integrate fMRI data into a single prediction, 

which then can be used for classification tests or regression 

analyses.

▲CRITICAL STEP As the model is not optimized for a zero 

threshold after removing a part of the model, one can use the 

balanced accuracy threshold option of the roc_plot function, 

which finds and uses an optimal threshold that maximizes the 

balanced classification accuracy (the average accuracy across 

classes). Enter the input keyword ‘Optimal balanced error 

rate’ to threshold based on balanced accuracy.

iii. Iteratively keep a set of features for prediction, and test 
the reduced models. The second option for the ‘virtual 

lesion’ analysis is removing all features except for a target 

set of features (e.g., those belonging to a particular resting-

state network) and testing the predictive performance of the 

retained set of features jointly.

%% Only one network used for prediction in each 

iteration

for network_i = 1:7

    for subj_i = 1:59

        masked_weights = … 

stats_loso.other_output_cv{subj_i,1} .* … 

double(mask.dat == network_i);

        dat_subj = data.dat(:, n_folds==subj_i);

        pexp(:,subj_i) = masked_weights’ * dat_subj;

    end

    pexp_sorted = [reshape(pexp(1:8,:), … 

numel(heat_imgs), 1); reshape(pexp(9:16,:), … 

numel(rejection_imgs), 1)];

    roc = roc_plot(pexp_sorted, data.Y==1);

    out.num_vox(network_i,1) = sum(mask.dat == 

network_i);

    out.acc(network_i,1) = roc.accuracy;

    out.se(network_i,1) = roc.accuracy_se;
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    out.p(network_i,1) = roc.accuracy_p;

end

D. LRP

i. For a given set of data, run the classifier (e.g., CNN) to obtain 
the prediction score for each output class. Choose a prediction 

class c for which the importance assessment of each feature 

will be computed. The chosen prediction score is set as the 

initial relevance score and denoted as Rc
(L) where L denotes 

the final output layer.

ii. Propagate the relevance score to the lower layer. By assuming 

there are total d nodes in the layer right before the final 

prediction layer, we compute

Ri
(L − 1) =

zic
zc

Rc(L)

for each i = 1, …, d, in which zic is the contribution of the 

activation value for node i to the classification score for class 

c, and zc = ∑i = 1
d zic.

iii. Recursively propagate the relevance score to the input layer. 
For any intermediate layer l + 1 of the neural network, given 

that the relevance scores of all j nodes of the layer, Rj
(l + 1), 

are given, compute the decomposition of the scores to the i-th 

node of the lower layer as follows:

Ri j
(l, l + 1) =

zij
zj

Rj
(l + 1),

in which zij is again the contribution of the activation of the 

i-th node of layer l to the activation of the j-th node of layer l 
+ 1, and zj = ∑izij. Then, the relevance score for the i-th node 

of layer l is obtained by

Ri
(l) = ∑

j
Ri j

(l, l + 1)

Moreover, when the widely used Rectified Linear Unit 

(ReLU) is used as an activation function for the i-th node, 

the relevance score becomes
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Ri
(l) = Ri

(l), ai
(l) > 0

0, otℎerwise

in which ai
(l) is the activation value of the i-th node.

This process is continued all the way down to the input layer, 

and the relevance scores for each input feature are computed.

By iterating the process above for all available input data, 

one can obtain a group-level explanation for the feature-

level relevance by averaging the individual explanations. In 

addition, a one-sample t-test can be used to examine which 

features consistently have relevance scores above or below 

zero. After obtaining P values from the t-test, one needs to 

perform a correction for multiple comparisons using FDR or 

family-wise error rate.

To realize LRP, one can use the iNNvestigate package 

that is compatible with Keras (‘Part 7. Layer-wise Relevance 

Propagation’ of cnn_lrp.ipynb).

import innvestigate

import innvestigate.utils as iutils

import innvestigate.utils.visualizations as ivis

# Create model without softmax

model_wo_softmax = 

iutils.keras.graph.model_wo_softmax(model)

# Create analyser

method = (“lrp.epsilon”, {“epsilon”:1, 

“neuron_selection_mode”: “max_activation”}, 

ivis.heatmap, “LRP-Epsilon”)

analyzer = innvestigate.create_analyzer(method[0], 

model_wo_softmax, **method[1])

R = []

for i in range(len(test_X)):

    a = analyzer.analyze(test_X[i])

    R.append(a)

Once the important features are identified, investigators need 

to visualize them to see if they make sense. There are 

numerous ways and tools for model visualization, and one 

can choose any visualization tools that are suitable for their 

purposes. Generally, for the linear model, the significant 

features can be visualized on a standardized brain space, such 
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as the MNI space. In our examples, we visualize significant 

weights identified by the bootstrap tests (Fig. 3b) and by the 

RFE method (Fig. 3c) using the following MATLAB code:

% visualizing bootstrap test results 

orthviews(data_threshold);

montage(data_threshold);

% writing thresholded bootstrap test results as a 

Nifti file

data_threshold.fullpath = fullfile(basedir, 

‘results’, … ‘svm_bootstrap_results_fdr05.nii’);

write(data_threshold, ‘thresh’);

% visualizing RFE results

orthviews(out.smallestnfeat_stats.weight_obj);

montage(out.smallestnfeat_stats.weight_obj);

% writing RFE analysis results as a Nifti file

out.smallestnfeat_stats.weight_obj.fullpath = … 

fullfile(basedir, ‘results’, ‘svm_RFE_results.nii’);

write(out.smallestnfeat_stats.weight_obj, ‘thresh’);

With the orthviews function, you can display images on 

the canonical MNI brain image. In addition, using the write 

function with an optional input, ‘thresh’, you can save the 

result images as NIfTI image files, which then can be used 

with other visualization tools. For the LRP results with a CNN 

model, we show the thresholded mean relevance scores in Fig. 

5a, which visualizes relevance scores that explain prediction 

of the heat condition when the input was an image acquired 

during the heat condition. Figure 5b shows the visualization of 

the relevance scores that explain the prediction of the rejection 

condition when the input was an image acquired during the 

rejection condition.

For the purpose of creating publication-quality brain 

figures, the CanlabCore toolbox provides the fmridisplay 

object. For example, canlab_results_fmridisplay.m 

with the fmridisplay object is very useful. In 

addition, the CanlabCore toolbox also provides for 

creating surface images, cluster_surf.m and surface() 

methods for the fmri_data and region object 

classes. In Python, one can use many different 

visualization options, including plotting.plot_stat_map, 

plotting.plot_glass_brain and 

plotting.plot_surf_stat_map. We included some 
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examples in our Jupyter notebook, cnn_lrp.ipynb, available 

at https://github.com/cocoanlab/interpret_ml_neuroimaging.

Test generalizability with independent datasets ● Timing 1 – 2 h

▲CRITICAL This stage tests the new model’s ability to generalize over new individuals, 

multiple datasets from different laboratories and scanners and variants in experimental and 

testing conditions. The test for generalizability is an open-ended process of evaluating a 

model’s robustness across variations, and thus this stage should be repeatedly performed 

with many different datasets from different contexts and test conditions. For demonstration, 

here we provide example analyses of testing the generalizability of two a priori predictive 

models developed to predict pain intensity in previous studies: the NPS13 and the SIIPS118 

(Fig. 6a,c). The example dataset93 is used as an independent test dataset.

8. Prepare the predictive models to be tested and test data. Make sure that the masks 

are included in the MATLAB path. We read the contrast image data using the 

fmri_data object.

% Prepare a priori models: NPS and SIIPS1

nps = which(‘weights_NSF_grouppred_cvpcr.img’);

siips = which(‘nonnoc_v11_4_137subjmap_weighted_mean.nii’);

% load contrast image data

cont_imgs{1} = filenames(fullfile(basedir, ‘data’, ‘derivatives’, 

… ‘contrast_images’, ‘heat*nii’), ‘char’);

cont_imgs{2} = filenames(fullfile(basedir, ‘data’, ‘derivatives’, 

… ‘contrast_images’, ‘warmth*nii’), ‘char’);

cont_imgs{3} = filenames(fullfile(basedir, ‘data’, ‘derivatives’, 

… ‘contrast_images’, ‘rejection*nii’), ‘char’);

cont_imgs{4} = filenames(fullfile(basedir, ‘data’, ‘derivatives’, 

… ‘contrast_images’, ‘friend*nii’), ‘char’);

data_test = fmri_data(cont_imgs, gray_matter_mask);

? TROUBLESHOOTING

9. Calculate the pattern expression values. We used the apply_mask function 

with the ‘pattern_expression’ option to calculate a dot product between the 

model weights and brain data. We obtained one pattern expression value per 

participant and condition, resulting in 59 values per condition.

% calculate pattern expression values

pexp_nps = apply_mask(data_test, nps, ‘pattern_expression’, … 

‘ignore_missing’);

pexp_siips = apply_mask(data_test, siips, ‘pattern_expression’, … 

‘ignore_missing’);

% reshape pexp values to have different conditions in different
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columns pexp_nps = reshape(pexp_nps, 59, 4);

pexp_siips = reshape(pexp_siips, 59, 4);

10. Evaluate the models’ predictive performance, including specificity and 
sensitivity. In this example analysis, we tried to discriminate between the heat 

and warmth conditions and between the rejection and friend conditions using 

the NPS and SIIPS1. Given that we have one value per person, we used the 

2AFC test, which compares the pattern expression values for the two contrasting 

conditions within the same participant without using a threshold. The higher 

value within a participant is classified as a positive condition. The 2AFC test 

can be performed using the roc_plot function with the ‘twochoice’ option. 

The inputs to the function are a vector of pattern expression and a corresponding 

binary outcome. The results are illustrated in Fig. 6b,d.

% NPS for pain vs. warmth

roc_nps_pain_warmth = roc_plot([pexp_nps(:,1);pexp_nps(:,2)], … 

[true(59,1);false(59,1)], ‘twochoice’);

% NPS for rejection vs. friend

roc_nps_rejection_friend = roc_plot([pexp_nps(:,3); … 

pexp_nps(:,4)], [true(59,1);false(59,1)], ‘twochoice’);

% SIIPS1 for pain vs. warmth

roc_siips_pain_warmth = roc_plot([pexp_siips(:,1); … 

pexp_siips(:,2)], [true(59,1);false(59,1)], ‘twochoice’);

% SIIPS1 for rejection vs. friend

roc_siips_rejection_friend = roc_plot([pexp_siips(:,3); … 

pexp_siips(:,4)], [true(59,1);false(59,1)], ‘twochoice’);

Evaluate the neurobiological validity of the model ● Timing 1–2 h

11. Evaluate the neurobiological validity of the model. This step aims to evaluate the 

neurobiological plausibility and validity of a model by examining converging 

evidence from previous literature and more invasive studies. As discussed 

above, it may not be possible to provide definitive answers to this biology-level 

assessment, but rather it should be regarded as an open-ended investigation that 

requires long-term and collaborative efforts from diverse disciplines and multi-

modal and multi-level approaches. One way to examine the neurobiological 

plausibility of the model is to evaluate results from feature- and model-level 

assessments in the light of neuroscience literature. Therefore, in the current 

protocol, we provide two examples of biology-level assessment: evaluating 

overlaps of the model with large-scale resting-state functional networks 

and term-based decoding based on a large-scale meta-analysis database, 

Neurosynth80.

The analysis in Option A examines which resting-state functional networks play 

important roles in a predictive model by calculating the overlaps (or pattern 

similarity) between a thresholded or unthresholded map (predictive weights 

Kohoutová et al. Page 34

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or feature importance) and the functional networks. For the analysis results 

shown in Fig. 7a, we used the thresholded predictive weight map from Step 

7A (bootstrap tests) and examined its overlaps with seven large-scale functional 

brain networks87,116,117.

Follow the steps in option B to perform decoding analysis based on a meta-

analytic database.

Option Module

11A Overlap with resting-state functional networks

11B Decoding analysis based on a meta-analytic database

A. Overlap with large-scale resting-state functional networks

i. Prepare a parcellation of interest. Here we loaded the mask 

image file that had unique values for seven resting-state 

functional networks using the fmri_data object. For the 

next step of the analysis, we created an indicator matrix, of 

which the dimension is the number of voxels × the number of 

networks.

img = fullfile(basedir, ‘masks’, … 

‘Bucknerlab_7clusters_all_combined.nii’);

mask = fmri_data(img, gray_matter_mask);

dat = [mask.dat==1 mask.dat==2 mask.dat==3 

mask.dat==4 … mask.dat==5 mask.dat==6 mask.dat==7];

ii. Prepare a thresholded image vector based on the feature 
significance. For this example, we prepared the thresholded 

map based on bootstrap test results from Step 7A.

pattern_thresh = stats_boot.weight_obj.dat .* … 

double(stats_boot.weight_obj.sig);

iii. Calculate the proportions of overlap between the thresholded 
pattern map and each of the networks. For this analysis, 

one can use the canlab_pattern_similarity.m function 

with the ‘posterior_overlap’ option, which provides the 

posterior probability of observing the thresholded map given 

each network. We calculated the overlap-based similarity 

separately for positive and negative predictive weights.

% calculate posterior probability of observing 

Kohoutová et al. Page 35

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



thresholded

% regions given each network

overlap_pos = canlab_pattern_similarity(dat, 

… pattern_thresh>0, ‘posterior_overlap’, 

‘ignore_missing’);

overlap_neg = canlab_pattern_similarity(dat, 

… pattern_thresh<0, ‘posterior_overlap’, 

‘ignore_missing’);

B. Decoding analysis based on a meta-analytic database

i. Using a large-scale meta-analytic decoding framework 

provided by Neurosynth80, one can identify the psychological 

terms associated with a thresholded or unthresholded map 

of predictive weights or feature importance values. The 

Neurosynth decoder uses meta-analytic maps generated for 

various psychological terms and assesses their similarity 

to the input brain maps. It returns a list of the terms 

with correlation coefficients between the input and the meta-

analytic maps. Investigators can use either the decoder in the 

Neurosynth Python package (https://github.com/neurosynth/

neurosynth/blob/master/neurosynth/analysis/decode.py) or the 

Neurosynth decoder web application (http://neurosynth.org/

decode/). Here, we provide a Python code for the decoding 

analysis, and Fig. 7b shows an example result of the decoding 

analysis for the unthresholded SVM model.

import neurosynth as ns

ns.dataset.download(path=‘.’, unpack=True)

from neurosynth import decode

from neurosynth.base.dataset import Dataset

dataset = Dataset(‘data/database.txt’)

dataset.add_features(‘data/features.txt’)

decoder = decode.Decoder(dataset)

data = 

decoder.decode([‘svm_heat_rejection_pattern.nii’], 

save=‘decoding_ svm_heat_rejection_pattern.txt’)

Perform representational similarity analysis ● Timing 1–2 h

▲CRITICAL This step aims to clarify the model’s representations and decision principles 

by examining and comparing model decisions over multiple instances and conditions. There 

can be many different ways to achieve this step, but here we provide an example of 

representational similarity analysis on two a priori predictive models for pain, the NPS13 and 

the SIIPS118. We tested these predictive models on the example dataset93, which has data 

from four conditions: pain, warmth, rejection and friend. Then, we conducted forced-choice 
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tests for each pair of conditions to obtain the classification accuracy matrix, which was then 

used as a distance metric (i.e., a higher classification accuracy for [A vs. B] means that A 

and B conditions are far from each other for the predictive model). The example analysis 

results are shown in Fig. 7c.

12. Obtain classification accuracy matrices for different models. Using the pattern 

expression values obtained from Step 9, run the forced-choice classification tests 

for different pairs of conditions.

nps_acc = zeros(4,4);

siips_acc = zeros(4,4);

for i = 1:4

    for j = 1:4

        if i < j

           roc_nps = roc_plot([pexp_nps(:,i); pexp_nps(:,j)], … 

[true(59,1); false(59,1)], ‘twochoice’, ‘noplot’);

           nps_acc(i,j) = roc_nps.accuracy;

           nps_acc(j,i) = roc_nps.accuracy; % make it symmetric

           roc_siips = roc_plot([pexp_siips(:,i); … 

pexp_siips(:,j)], [true(59,1);false(59,1)], … ‘twochoice’, 

‘noplot’);

           siips_acc(i,j) = roc_siips.accuracy;

           siips_acc(j,i) = roc_siips.accuracy; % make it symmetric

        end

    end

end

13. Compare the patterns of classification accuracy between two models (Steps 13–
15). Many different methods can be used for examining and comparing the 

model representations over multiple conditions. In this protocol, we first use 

Pearson’s correlation between two vectorized accuracy matrices. To do this, run 

the following code:

r = corr(nps_acc(tril(true(4,4),−1)), siips_acc(tril(true(4,4),

−1)));

In the example data, the correlation between the accuracy matrices was 0.71, 

indicating that the models are fairly closely related (Fig. 7c).

14. Visualize the relationship between conditions using MATLAB’s graph analysis 
tools. Turn the accuracy matrices into weights by subtracting the accuracy from 

one and divide it by the vector sum. With the weighted adjacency matrix, 

plot undirected, weighted networks. The network plots reveal some differences 

between the two predictive models—for the NPS, the heat condition is far from 

all other conditions, but for the SIIPS1, the heat and rejection conditions are 
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more closely located than for the NPS (Fig. 7c). To perform this step, use the 

following code:

% vectorize the accuracy matrices

nps_acc = nps_acc(tril(true(4,4),−1));

siips_acc = siips_acc(tril(true(4,4),−1));

% make the accuracy values into weights

w_nps = (1-nps_acc)./sum(1-nps_acc);

w_siips = (1-siips_acc)./sum(1-siips_acc);

% draw network plots

[i, j] = find(tril(true(4,4),−1));

subplot(1,2,1);

G_nps = graph(i,j,w_nps);

plot(G_nps,’Layout’,’force’, ‘WeightEffect’, ‘inverse’, … 

‘LineWidth’,w_nps*10);

subplot(1,2,2);

G_siips = graph(i,j,w_siips);

plot(G_siips,’Layout’,’force’, ‘WeightEffect’, ‘inverse’, … 

‘LineWidth’,w_siips*10);

? TROUBLESHOOTING

15. Plot a dendrogram with the single linkage method to examine how the conditions 
were hierarchically clustered (Fig. 7c). Given the small number of the conditions 

in the example dataset, the clustering analysis might not be very useful here. 

However, the clustering analysis will become much more useful if there are 

a larger number of conditions. To plot the dendrograms for the two models 

examined here, run this code:

subplot(1,2,1);

Z_nps = linkage(nps_acc(tril(true(4,4),−1))’);

h_nps = dendrogram(Z_nps);

subplot(1,2,2);

Z_siips = linkage(siips_acc(tril(true(4,4),−1))’);

h_siips = dendrogram(Z_siips);

Troubleshooting

Possible problems in running the protocol and how to troubleshoot the issues can be found 

in Table 5.
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Timing

Step 1, model building: 20 min to a few hours. A, SVMs: 20 min to a few hours; B, 

CNN: a few hours

Steps 2–3, cross-validated performance assessment: 5–20 min

Steps 4–6, analysis of confounds: 5–20 min

Step 7, identify important features: 20 min to a few days. A, bootstrap tests: 1 h to a 

few days; B, RFE: 1–6 h; C, ‘virtual lesion’ analysis: 20 min to 1 h; D, LRP: 20 min 

to 1 h

Steps 8–10, testing generalizability with independent datasets: 1–2 h

Step 11, evaluate the neurobiological validity of the model: 1–2 h

Steps 12–15, representational analysis: 1–2 h

Anticipated results

The current protocol proposes a workflow that is expected to yield complementary results 

that support validation and interpretation of neuroimaging ML models. The workflow is 

based on the unified model interpretation framework introduced here.

Along with the methods explained here in the Procedure, we included examples of graphs 

and visualizations of the expected results based on our demonstration dataset. Figure 

3a shows an example result of assessing the model’s performance using LOSO cross-

validation, which we describe in Steps 2 and 3. In Figs. 3b,c and 5, the significant features 

identified by the bootstrap test, RFE and LRP (Step 7, options A, B and D), respectively, 

are visualized on the brain underlay. Table 4 illustrates example results of the ‘virtual lesion’ 

analysis described in Step 7, option C. Example results of generalizability testing performed 

in Steps 8–10 are illustrated in Fig. 6b,d. Results of the biology-level assessment (Step 

11) are depicted in Fig. 7a,b. Finally, Fig. 7c shows visualizations of the representational 

similarity analysis described in Steps 12–15.

Although interpreting neuroimaging-based ML models is an open-ended process, the 

current protocol will serve as an important step toward developing interpretable and 

neuroscientifically plausible neuroimaging ML models and biomarkers and eventually 

a cumulative science of neuroimaging. The use of the proposed model interpretation 

framework and the carefully designed tests for different levels of assessment will produce 

a number of pieces of converging evidence, which could then constitute an overall 

interpretation and understanding of neuroimaging ML models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 |

CANlab interactive fMRI analysis tools

Neuroimaging analyses are widely performed in well-established pipelines with 

optimized procedures. However, to discover new and better ways of neuroimaging data 

analysis, and to avoid spurious results, there is also a need for flexibility to allow users 

to be creative and explore the data and analysis methods. The CANlab neuroimaging 

analysis tools were designed with this goal in mind. The tools provide a high-level 

language for interacting with fMRI data. Users can apply simple commands to perform 

various analyses and to explore the distribution of data and consequences of different 

analysis choices. As a result, analysis scripts can be short, transparent and easy to read, 

write and interpret.

The CANlab imaging analysis tools enable interactive neuroimaging data analysis using 

objects with simple methods operating in MATLAB. There are eight main object classes 

suitable for different types of analyses. To perform analyses in this protocol, we use 

fmri_data and statistic_image objects, which both represent subclasses of the 

image_vector data class. A representative object of the image_vector data class 

contains basic information about loaded images, such as the data values in the .dat 

field, indicators of removed data in .removed_voxels and .removed_images fields, 

details about the volume information of the image in the .volInfo field or a record 

of past manipulations with the object in the .history field. Its subclasses, such as 

fmri_data and statistic_image, then inherit these basic properties. There are also 

various methods that can be performed on image_vector objects or other objects from 

its all subclasses. For example, one can save memory using the remove_empty method, 

which removes all empty voxels and images from the object but keeps track of the 

removal in .removed_voxels and .removed_images fields of the object. There is 

also a reverse method, replace_empty, which replaces the missing data values with 

zeros. One can also resample the image to match the space of another image using the 

resample_space method or mask the data with a mask image using the apply_mask 

method.

The fmri_data subclass is one of the main objects for the fMRI data analysis. It stores 

neuroimaging data in 2D space, enabling simple manipulations with the data. Properties 

of the fmri_data object include the properties inherited from the image_vector 

data class and additional information about the data, such as outcomes in the .Y field 

and covariates in the .covariates field. There are various useful methods that can 

be operated on the fmri_data objects, some of which are used in this protocol. 

For example, one can easily visualize raw data and examine data quality using the 

plot method, run one-sample t-test using ttest, conduct a regression analysis using 

regress, threshold the images using threshold, write image data as NIfTI or Analyze 

files using the write method and build a predictive model using the predict method. 

To see the full list of available methods, one can type methods(fmri_data) in the 

MATLAB Command Window.
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The statistic_image subclass is another important object for the fMRI data analysis. 

It stores statistical test outputs, such as beta or t-values, P values, standard error, degree 

of freedom, sample size and significance. In the current protocol, the statistic_image 

object stores the output of the bootstrap tests performed with the predict function. 

It can be easily thresholded with desired thresholding methods, such as FDR, using 

the threshold method, and significant voxels can be visualized using the orthviews 

method. More detailed tutorials for the CANlab fMRI analysis tools are available at 

https://canlab.github.io/.
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Box 2 |

The predict function in the CanlabCore toolbox

The predict function is a versatile tool for running many different ML algorithms with 

cross-validation. It operates on the fmri_data object, which stores the data matrix used 

for prediction in .dat (features×observations) and the corresponding outcome vector 

in .Y (observations×1). Users can specify the prediction algorithm, including multiple 

regression, LASSO regression, PCR, LASSO-PCR, SVMs and support vector regression.

In addition, the function includes an option to perform cross-validation. Users can define 

the number of cross-validation folds (i.e., k-fold cross-validation; the predict function 

stratifies cross-validation folds based on the outcome) or custom cross-validation fold, 

such as leave-one-out cross-validation. The function also evaluates performance with 

either misclassification rate or mean square error. There is also an option to automatically 

perform the bootstrap tests. Users can enter a desired number of bootstrap samples to use, 

and they can also save the bootstrapped weights if needed.

The output of the function provides many kinds of information, including predictive 

model weights, predicted outcomes (y) based on cross-validation and performance values, 

such as prediction error or correlation between actual and predicted outcomes. For 

example, the .weight_object field in the output contains an fmri_data object (or 

a statistic_image object if the bootstrap tests are performed) that contains the 

weights of the trained model in the .dat field. Another important field of the output 

is the .other_output_cv field. It stores the weights of all models trained during the 

cross-validation in the first column, the corresponding predicted values in the second 

column, the intercept in the third column and additional information about the algorithm 

in the fourth column. If the bootstrap tests are performed, the results of the analysis are 

stored in the .WTS field, which contains the mean, P and z values and standard errors, as 

well as the bootstrapped weights if the ‘savebootweights’ option was used. You can 

find more information and some use cases in the help document of the predict function 

by typing help fmri_data.predict in the command window.
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Fig. 1 |. Model complexity in neuroimaging and the model interpretation framework.
a, Neuroimaging-based ML models are usually built upon a large number of features 

(e.g., ~105 in the case of whole-brain fMRI), which, along with considering potential 

confounds and correlations between features, makes even linear models complex. In the 

case of nonlinear models, the situation is more complicated, as it is not clear what 

a model uses as features. To trust models and find them useful in basic neuroscience 

and clinical settings, researchers need to know why and how a model works. b, The 

model interpretation framework consists of three levels of assessment. In the model-level 

assessment, the model is evaluated as a whole, and the characteristics of the model are 

derived mainly from observations of the input–output relationship. The assessment includes 

tests of specificity, sensitivity and generalizability, analyses of model’s representations 

and decisions and analyses of noise contribution. The feature-level assessment aims to 

identify features significant for a prediction within a model. The feature significance can 

be evaluated based on the feature’s impact on predictions or the feature’s stability across 

multiple samples of the training data. The explanation obtained by this level of assessment 

should enhance human readability of the model. The biology-level assessment aims to prove 

the neuroscientific plausibility of the model with evidence from previous literature and other 

studies using different methodology (e.g., invasive studies). In case a model suggests a novel 

finding that cannot be verified by the current state of the art, the model can serve as a basis 

for theory development, which should subsequently be corroborated by studies employing 

other (e.g., invasive) experimental methods.
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Fig. 2 |. A proposed workflow for the procedure.
In this protocol, we present an example workflow that implements the unified model 

interpretation framework. The first step is the model building (Step 1). This is a prerequisite 

step that stands outside the interpretation framework. However, we include a brief 

description of this step to emphasize its importance. This protocol includes examples of 

building linear support vector machines (option A) and a convolutional neural network 

model (option B) using an example dataset from our previous publication93. Next, we 

evaluate the basic properties of a model, such as its predictive power (Steps 2 and 3) and 

contributions of confounds (Steps 4–6). In case either of the two steps shows insufficient 

quality of the model, one should return to Step 1 to review the data quality and to revise 

the model. Note that obtaining a definitive answer to the question of Steps 4–6 (i.e., 

whether the model is confound free) is challenging, and therefore Steps 4–6 should be 

an open-ended investigation. If the results from Steps 2 and 3 and Steps 4–6 are good 

enough to move forward, the next step (Step 7) is the feature-level assessment. This 

protocol provides analysis examples of four options of identifying significant features: 

bootstrap tests, RFE, ‘virtual lesion’ analysis and LRP. If the identified significant features 

provide sensible results, one can continue to Steps 8–10 and Step 11. Otherwise (e.g., 

all the significant features are located within the ventricles), one should revisit the model 

building. Generalizability testing (Steps 8–10) and biology-level assessment (Step 11) can 

be performed in an arbitrary order. In Steps 8–10, a model is tested for its generalizability 

to unseen data from new individuals, different laboratories, scanners and contexts. Testing 

generalizability requires new test data, which can take a long time to collect. Therefore, one 

can first examine the model’s biological validity (Step 11) and then test its generalizability, 

or vice versa. Both generalizability testing and biology-level assessment require open-ended 

test processes and should support each other; more generalizable models are likely to be 
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more biologically plausible. For Step 11, we provide examples of two options: examining 

the relationship of the model with the large-scale resting-state functional networks (option 

A) and term-based meta-analytic decoding using Neurosynth80 (option B). In practice, this 

step should also include exhaustive literature reviews and support of invasive studies. The 

step can also be performed multiple times in case the model suggests novel theories that 

should be evaluated. The final step of this workflow is the representational analysis (Steps 

12–15), which can provide a better understanding of the model’s decision principles by 

examining the patterns of model behaviors over multiple instances and examples. This step 

often requires other models with which to be compared, and for this reason, we include this 

as the last step of the workflow. However, if other models are already available, this step can 

be done earlier. The results from Steps 12–15 could provide converging evidence for Step 

11. Since interpreting an ML neuroimaging model is, in fact, an open-ended process, this 

workflow should be regarded as the bare minimum, and more analyses other than the ones 

proposed here can help the model interpretation.
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Fig. 3 |. Predictive performance of the SVM model (Steps 2 and 3) and the results of feature-level 
assessment of the linear models (Step 7, options A and B).
a, The plots illustrate the classification performance of the SVM model tested by LOSO 

cross-validation with the threshold for misclassification set to 0 (Steps 2 and 3 of the 

procedure). The top panel shows the cross-validated distance from hyperplane and the 

decision threshold, and the bottom panel shows the receiver operating characteristic 

(ROC) plot. The yellow dots indicate correct classification, and the gray dots indicate 

misclassification. The accuracy of the SVM model reached 92% ± 0.9%. b, The weight map 

shows significant feature weights of the SVM model identified by the bootstrap tests and 

thresholded at an FDR of q < 0.05 (Step 7 of the procedure, option A). c, The weight map 

shows the final predictive SVM features after the RFE procedure, with the final number of 

features = 20,000 and the number of removed features at each step = 5,000 (Step 7 of the 

procedure, option B).
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Fig. 4 |. A schematic of the ‘virtual lesion’ analysis (Step 7, option C).
The ‘virtual lesion’ analysis investigates how individual regions or networks contribute to 

final predictions of a model by removing or using one region or network at a time from the 

model. Based on a selected parcellation, regions in the original model are masked (either one 

region is removed, or only one region is used for prediction), and the performance of the 

masked model is evaluated.
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Fig. 5 |. Layer-wise relevance propagation results (Step 7, option D).
a and b, We ran the LRP to explain predictions of each trial in each subject and condition 

(Step 7 of the procedure, option D). We then calculated the average relevance scores across 

subjects for both conditions. In a, we show the average relevance score map for the heat 

condition, thresholded at uncorrected P < 0.001, which is equivalent to an FDR at q < 

0.029. Similarly, in b, we show the average relevance score map for the rejection condition, 

thresholded at uncorrected P < 0.001 (equivalent to an FDR at q < 0.019).
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Fig. 6 |. Generalizability tests (Steps 8–10).
a, The predictive weight map of the NPS13 that exceeds an FDR threshold of q < 0.05. 

b, To assess the generalizability of the NPS (Steps 8–10 of the procedure), we calculated 

the pattern expression values using the dot product between the signature pattern weights 

and activation maps for different conditions. Then, we performed the 2AFC test for heat 

versus warmth and rejection versus friend conditions. The box plot shows the NPS response 

to the four conditions. The lines between the boxes depict the correct (pink lines) and 

incorrect (blue lines) classifications. The ROC plot shows the sensitivity and specificity 

for discriminating between heat and warmth conditions (yellow) and between rejection 

and friend conditions (blue). c, The predictive weight map of the SIIPS118 that exceed 

an FDR threshold of q < 0.05. d, The box plot shows the SIIPS1 response to the four 

conditions. The lines between the boxes depict the correct (pink lines) and incorrect (blue 

lines) classifications. The ROC plot shows the sensitivity and specificity for discriminating 

between heat and warmth conditions (yellow) and between rejection and friend conditions 

(blue).
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Fig. 7 |. Examples of biology-level assessment (Step 11) and the representational analysis (Steps 
12–15).
a, The radar chart depicts the posterior probability of observing overlaps between the 

thresholded SVM model and the resting-state functional networks87 (Step 11, option A). The 

pink chart represents the overlaps with the positive predictive weights of the model, and 

the blue chart represents the overlaps with the negative predictive weights of the model. b, 

The bar plot shows the functional terms obtained from the Neurosynth decoder applied to 

the unthresholded SVM model (Step 11, option B). The pink bars represent the decoding 

results for positive weights, and the blue bars represent the decoding results for negative 

weights. c, In the representational analysis (Steps 12–15), we compared the NPS13 and 

SIIPS118 responses to four stimulus conditions. We first compared two accuracy matrices 

using correlation coefficients and then visualized the relationship between conditions using 

network and hierarchical clustering methods.
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Table 1 |

Descriptions and example methods for different levels of assessments

Category Description Example methods

Model-level 
assessment

Models are characterized by…

Sensitivity and 
specificity

Examining the response patterns of predictive models 
to different inputs and experimental conditions

Positive and negative controls13,47,118; testing models 
across a range of different conditions18; construct 
validity84; tuning curves of brain patterns86

Generalizability Testing models on multiple datasets from different 
samples, contexts and populations

Research consortia and multisite collaborations119

Behavioral analysis Analyzing the patterns of model decisions and 
behaviors over many instances and examples (or over 
time for adaptive models)

Methods analogous to psychological tests50; analyses at 
given time points52; error analysis120

Representational 
analysis

Analyzing model representations using examples or 
representational distance

Deep dream71; deep k-nearest neighbors121; 
representational similarity analysis56

Analysis of confounds Examining whether any confounding factors 
contribute to the model (e.g., head movement, 
physiological confounds or other nuisance variables)

Comparison of the model of the signal of interest with a 
model of the nuisance variables122

Feature-level 
assessment

Significant features are identified by…

Stability Measuring the stability of the selected features and 
predictive weights over multiple tests (e.g., cross-
validation or resampling)

Stability analysis61,123; bootstrap test13,124; surviving count 
on random subspaces125; pattern reproducibility126

Importance Measuring the impact of features on a prediction rFe63,127,128; variable importance in projection61; 
sensitivity analysis66; feature importance ranking 
measure129; measure of feature importance130; leave-
one-covariate-out131; LRP64,69; local model-agnostic 
explanations (LIME)67; deep learning feature 
importance132; Shapley additive explanations (SHAP)133; 
regularization42–44; virtual lesion analysis47; in silico node 
deletion134; weight-activation product135

Visualization Visualizing feature-level properties Class model visualization136; saliency map70; weight 
visualization18

Biology-level 
assessment

Neurobiological basis is established by…

Literature Relating predictive models to previous findings from 
literature across different tasks, modalities and species 
(e.g., meta-analysis)

Meta-analysis18,77; large-scale resting-state brain 
networks83,84

Invasive studies Using more invasive methods, such as molecular, 
physiological and intervention-based approaches

Gene overexpression and drug injection88; transcranial 
magnetic stimulation90; postmortem assay91; optogenetic 
fMRI89
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Table 2 |

Selected methods of feature-level assessment

Method Applicability Purpose of the method Description References

Stability 
analysis

Linear models Feature selection based 
on feature stability

A model is repeatedly trained on resampled data using a 
sparse method. In each iteration, only a subset of features 
is selected by the algorithm. Features selected with a 
frequency above a threshold are considered stable.

Refs. 61, 
123,125

Bootstrap 
tests

Linear models Identification of 
significant features 
within the training 
dataset based on feature 
stability

Training data are repeatedly resampled with replacement. 
Each sample serves as training data for a new model. 
Features with stable weights across the models are identified 
as stable and significant.

Refs. 13,124

RFE Linear models Feature selection based 
on feature importance

A model is iteratively trained, and features corresponding to 
its lowest weights are eliminated from the training dataset. 
The process is repeated until the desired number of features 
is reached.

Ref. 128

Sensitivity 
analysis

Model agnostic Identification of 
significant features 
within a given data 
point based on feature 
importance

The input features are disrupted (e.g., by additive noise). 
The resulting error in the output is measured. Features that 
caused the largest error after being disrupted are considered 
important for the prediction.

Ref. 66

LRP Neural networks Same as above A prediction score is decomposed backward through the 
layers of the model until it reaches the input when a 
relevance score is assigned to each input feature.

Ref. 64

LIME Model agnostic Same as above A prediction is explained by an interpretable model fitted to 
sampled instances around the instance being explained.

Ref. 67

SHAP Model agnostic Unified measure of 
feature importance

SHAP is a framework that provides the incremental impact 
of each feature on model decisions using Shapley values. 
This framework unifies some other model explanation 
methods (e.g., LIME and LRP).

Ref. 133
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Table 3 |

Key functions in the CanlabCore MATLAB toolbox used in the protocol

Function Description Used in…

filenames Lists file names that match a specific pattern in a directory Step 1A; Step 8

fmri_data Loads images into the object or creates an empty fmri_data 
object

Step 1A; Step 5; Step 
7C; Step 8; Step 11A

apply_mask Masks an image with a defined mask or calculates pattern expression 
values

Step 1A; Step 9

predict Trains and evaluates predictive models and performs cross-validation 
and bootstrap tests

Step 1A; Step 2; Step 
6; Step 7A

roc_plot Calculates accuracy, sensitivity and specificity and visualizes the 
ROC curve

Step 3; Step 7C; Step 
10; Step 12

threshold Applies a statistically valid threshold to the images with statistical 
test results

Step 7A

orthviews Displays the image data stored in CANlab tools Step 7A; Step 7B

write Writes data stored in the fmri_data or 
statistic_image objects into a NIfTI (.nii) or Analyze 
(.img) file

Step 7A; Step 7B

svm_rfe Performs recursive feature elimination with support vector machines Step 7B

canlab_pattern_similarity Calculates similarity between each column in a data matrix and a 
vector of pattern weights

Step 11A
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Table 4 |

Example results of the ‘virtual lesion’ analysis

Networks

One network removed for prediction One network used for prediction

No. of voxels used Performance (%) No. of voxels used Performance (%)

Visual 185,060 84 ± 1.2 21,740 82 ± 1.2

Somatomotor 184,300 93 ± 0.8 22,503 68 ± 1.5

dAttention 190,610 93 ± 0.8 16,192 65 ± 1.6

vAttention 188,610 93 ± 0.8 18,194 75 ± 1.4

Limbic 191,840 93 ± 0.8 14,959 56 ± 1.6

Frontoparietal 180,900 92 ± 0.9 25,902 77 ± 1.4

Default 169,970 92 ± 0.9 36,828 70 ± 1.5
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Table 5 |

Troubleshooting table

Step Problem Possible reason Solution

1A Errors when calling gray_matter_mask.img or when 
using filenames.m

The CanlabCore is not 
in the MATLAB path

In MATLAB, go to the CanlabCore 
directory and run the following: 
addpath (genpath(pwd))

Error message when calling fmri_data says 
“Undefined function ‘spm_vol’ for input 
arguments of type ‘char’“

SPM12 is not in the 
MATLAB path

In MATLAB, go to the SPM12 
directory and run the following: addpath 
(genpath(pwd))

Cannot find the help text of the predict.m function by help 
predict

If there are functions 
with the same name in 
other toolboxes in the 
path, MATLAB can 
show the help text of 
other functions

Use the following: help 
fmri_data.predict

6 An error message says ‘obj.dat must be 
[predictors × observations] and obj.Y 
must be [observations × 1]’

The nuisance matrix 
is [observations × 
predictors]

Transpose the nuisance matrix when 
adding it into the .dat field

8 An error message says 
‘weights_NSF_grouppred_cvpcr.img’ not 
found

The NPS model is not 
in your path

If you do not have the NPS model, 
please email the corresponding authors 
(T.D.W. or C.-W.W). The NPS will be 
shared upon request with a data use 
agreement. If you already have the NPS 
model, make sure the NPS file is in your 
path

14 An error message says ‘Edge properties must be 
a table’

Malfunctioning 
istable.m 
function (which is 
used in graph.m) 
is being used

Remove spm12/
external/fieldtrip/
compat/matlablt2013b 
from your MATLAB path

Nat Protoc. Author manuscript; available in PMC 2022 October 05.


	Abstract
	Introduction
	Overview of the framework
	Model-level assessment
	Feature-level assessment
	Biology-level assessment

	Development of the protocol
	Comparison with other methods
	Limitations
	Overview of the procedure
	Level of expertise needed to implement the protocol

	Materials
	Equipment
	Software
	Input data
	Example dataset


	Procedure
	Build a model ● Timing 20 min to a few hours

	Table T1
	Assess the cross-validated performance ● Timing 5–20 min

	Table T2
	Analyze the model for the presence of confounds and artifacts ● Timing 5–20 min
	Identify significant features ● Timing 20 min to a few days

	Table T3
	Test generalizability with independent datasets ● Timing 1 – 2 h
	Evaluate the neurobiological validity of the model ● Timing 1–2 h

	Table T4
	Perform representational similarity analysis ● Timing 1–2 h

	Troubleshooting
	Timing
	Anticipated results
	Related links
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Fig. 7 |
	Table 1 |
	Table 2 |
	Table 3 |
	Table 4 |
	Table 5 |

