
Toward a unified framework for interpreting machine-learning
models in neuroimaging

Lada Kohoutová1,2, Juyeon Heo3, Sungmin Cha3, Sungwoo Lee1,2, Taesup Moon3, Tor D.
Wager4,5,6,✉, Choong-Wan Woo1,2,✉

1Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea.

2Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea.

3Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South
Korea.

4Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.

5Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO,
USA.

6Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA.

Abstract

Machine learning is a powerful tool for creating computational models relating brain function

to behavior, and its use is becoming widespread in neuroscience. However, these models are

complex and often hard to interpret, making it difficult to evaluate their neuroscientific validity

and contribution to understanding the brain. For neuroimaging-based machine-learning models

to be interpretable, they should (i) be comprehensible to humans, (ii) provide useful information

about what mental or behavioral constructs are represented in particular brain pathways or regions,

and (iii) demonstrate that they are based on relevant neurobiological signal, not artifacts or

confounds. In this protocol, we introduce a unified framework that consists of model-, feature-

and biology-level assessments to provide complementary results that support the understanding

of how and why a model works. Although the framework can be applied to different types of

models and data, this protocol provides practical tools and examples of selected analysis methods

for a functional MRI dataset and multivariate pattern-based predictive models. A user of the

Reprints and permissions information is available at www.nature.com/reprints.
✉Correspondence and requests for materials should be addressed to T.D.W. or C-W.W. tor.d.wager@dartmouth.edu;
waniwoo@skku.edu.
Author contributions
L.K., T.D.W and C.-W.W. conceptualized and developed the protocol and implemented its part for linear models. J.H., S.C., S.L., T.M.
and C.-W.W. implemented the part for nonlinear models. T.D.W., C.-W.W. and L.K. contributed to the development of CanlabCore
tools. All authors reviewed and revised the manuscript.

Reporting Summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Code availability
Codes used in this protocol are publicly available at https://github.com/cocoanlab/interpret_ml_neuroimaging.

Competing interests
The authors declare no competing interests.

Supplementary information is available for this paper at https://doi.org/10.1038/s41596-019-0289-5.

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2022 October 05.

Published in final edited form as:
Nat Protoc. 2020 April ; 15(4): 1399–1435. doi:10.1038/s41596-019-0289-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nature.com/nature-portfolio/reprints-and-permissions
https://github.com/cocoanlab/interpret_ml_neuroimaging

protocol should be familiar with basic programming in MATLAB or Python. This protocol will

help build more interpretable neuroimaging-based machine-learning models, contributing to the

cumulative understanding of brain mechanisms and brain health. Although the analyses provided

here constitute a limited set of tests and take a few hours to days to complete, depending on

the size of data and available computational resources, we envision the process of annotating

and interpreting models as an open-ended process, involving collaborative efforts across multiple

studies and laboratories.

Introduction

Machine learning (ML) and predictive modeling1,2—which encompasses many use cases of

ML to predict individual observations—have provided the ability to develop models of the

brain systems underlying clinical, performance and other outcomes, and to quantitatively

evaluate the performance of those models to validate or falsify them as biomarkers.

Because of these characteristics, ML has rapidly increased in popularity in both basic

and translational research2–5 and forms the core of several now-common approaches,

including brain decoding6–10, multivariate pattern analysis11, information-based mapping12

and pattern-based biomarker development2,13–16. By enabling the investigation of brain

information that is simultaneously (i) finer-grained and more precise than traditional

brain mapping and (ii) distributed across multiple brain regions and voxels, the use of

ML in neuroimaging experiments has provided new answers to many enduring research

questions11,17–19.

However, this rise in popularity is accompanied by concerns about the ‘blackbox-ness’

of ML models20,21. For basic neuroscientists, it is unclear how ML models will advance

our neuroscientific knowledge if the models rely on hidden or complex patterns that are

uninterpretable to researchers. For users in applied settings, it is unclear whether, and

under what conditions, complex ML models will be trustworthy enough to contribute to the

life-altering decisions made every day in medical and legal settings20. Without knowing why

and how a model works, it is difficult to know when the model will fail, to which individuals

or subgroups it applies and how it can advance our understanding of the neurobiological

mechanisms underlying clinical and behavioral performance. In addition, some models are

neurobiologically plausible and capture important aspects of brain function, whereas others

capitalize on confounds such as head movement22. These models do not contribute equally

to our understanding of the brain. Therefore, there is a pressing need for methods to help

interpret and explain the model decisions23–26 and provide neuroscientific validation for

neuroimaging ML models2.

Methods for interpreting predictive models in neuroimaging studies must address several

key issues. First, neuroscience has a long-standing interest in understanding localized

functions of individual brain areas or connections, whereas ML often focuses on developing

integrative brain models (e.g., using patterns of whole-brain activity) that are highly

complex and difficult to understand. Second, there is a tension between the goals of

achieving high predictive accuracy versus providing mechanistic insights into underlying

neural or disease processes27–30. Ideally models would achieve both goals, but these often

Kohoutová et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

do not go hand in hand. Biologically plausible models, such as biophysical generative

models31–33 or biologically plausible neural network models34, use biological constraints

(e.g., imaging data or findings in literature) and are built upon neurobiological principles.

Predictive performance is usually less of a concern; rather, the goal is to capture

and manifest human-like behaviors35. On the other hand, models that focus solely on

predictive performance may achieve high accuracy but are often not human readable and

reveal little about the underlying neural mechanisms involved36. Although neuroscientific

explanation and predictive accuracy are distinct goals, they are not in opposition, and models

developed for prediction can provide biological insights at several levels of abstraction.

For example, deep neural networks trained for accurate image classification share common

properties with the human visual system37 and are being used to understand the types of

information represented in discrete brain regions38. Predictive models can also be inspired

by neuroscientific findings, as deep neural networks for image recognition have been39,40.

Third, ML, as well as traditional statistical methods, can be sensitive to variables that are

correlated with, but not causally related to, outcomes of interest, and thus can be sensitive

to systematic noise and confounds in data (e.g., head motion, eye movement, physiological

noise). Models that use confounding variables to predict are not only uninterpretable but also

behave unpredictably in new samples.

Therefore, for neuroimaging-based ML models to be interpretable to neuroscientists and

users in applied settings, the models should (i) be readable and understandable to humans,

(ii) provide useful information about what mental or behavioral constructs are represented

in particular brain pathways or regions, and (iii) demonstrate that they are based on

relevant neurobiological signals, not confounds. These goals require prioritizing model

simplicity and sparsity over a complete description of brain function. The most interpretable

models are not necessarily the most ‘correct’ ones—the brain and human behaviors are

intrinsically complex and high dimensional, creating an unavoidable trade-off between

biological precision and interpretability. However, as George Box famously wrote41, ‘All

models are wrong, but some are useful’. On the other hand, this trade-off must be managed

carefully. More complex models may better reflect the structure of the underlying biological

mechanisms; therefore, prioritizing interpretability may come at a cost in biological realism,

undercutting our understanding of how the brain works. As Albert Einstein said, ‘Everything

should be made as simple as possible, but no simpler’.

Whatever the chosen level of complexity of a model, tools for interpreting it can increase its

usefulness by showing that the model can provide a useful approximation to more complex

biological mechanisms. However, the nature of neuroimaging data makes interpretation of

the models challenging (Fig. 1a). Neuroimaging produces high-dimensional data with a

low signal-to-noise ratio and strong correlations between features. Moreover, the number

of observations in neuroimaging studies (the sample size n, often in the tens or hundreds)

is small in general compared to the number of features (p = ~105 in the case of whole-

brain functional magnetic resonance imaging (fMRI) activation pattern-based models).

Models built with p ≫ n data are susceptible to overfitting and often do not generalize

well. Numerous studies have been focused on decreasing dimensionality or solving the

p ≫ n problem as a way of enhancing interpretability. For example, regularizing model

parameters by imposing sparsity has often been considered as one of the key strategies for

Kohoutová et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

enhancing model interpretability, and thus many different regularization methods have been

developed42–46. However, these statistical methods do not provide a unified framework that

can be used with a heterogeneous set of methods and algorithms to evaluate and improve

interpretability of neuroimaging-based ML models. In addition, the ML algorithms do not,

in themselves, provide any constraints related to neuroscientific interpretation and validity.

Therefore, interpreting a neuroimaging ML model is a complex problem that is not solvable

at the algorithmic level; it requires a multi-level framework and a multi-study approach.

In this protocol, we first propose a unified framework for interpreting ML models in

neuroimaging based on model-level, feature-level and neurobiology-level assessments.

Then, we provide a workflow that illustrates how this framework can be employed to

predictive models, along with practical examples of analyses for each level of assessment

with a sample fMRI dataset (available for download at https://github.com/cocoanlab/

interpret_ml_neuroimaging). Although these methods can in principle be used for any type

of model and data (e.g., predicting individual differences in personality or clinical symptoms

based on structural neuroimaging data or functional connectivity patterns; predicting trial-

by-trial responses within individuals), our example code focuses on classification models

based on whole-brain, task-related fMRI activity patterns combining multiple participants’

data. Nevertheless, the analyses can be easily adapted to regression-based problems (e.g.,

predicting ratings of task stimuli) and can be extended to models built on other feature types,

such as structural data or functional connectivity data.

Overview of the framework

In this section, we first establish a broader context for our proposed framework. Based on

this framework, we provide a protocol that includes some selected analysis methods from

each assessment level. As shown in Fig. 1b, the proposed framework consists of three levels

of assessment: model-, feature- and biology-level assessments. Table 1 provides descriptions

and example methods for subcategories of each level of assessment.

Model-level assessment—Model-level assessment treats and evaluates a model as a

whole and characterizes the model based on its response patterns in different testing contexts

and conditions. This includes, for example, various measures of model performance.

Sensitivity and specificity concern whether a model shows a positive response when there

is true signal (e.g., an outcome of interest has occurred) and negative response when

there is no true signal. Generalizability concerns whether a model performs accurately

on data collected in different contexts or with different procedures—e.g., data from out-of-

sample individuals not used in model training or data from different laboratories, scanners,

populations and experimental paradigms2 (for more detailed definitions of these terms,

please see ref. 1). These types of measurement properties should be rigorously evaluated

to understand what the model really measures and how it performs in different test

contexts2,13,47,48. More broadly, these analyses can be seen as behavioral analyses of a

model—investigating patterns of model behaviors (e.g., model decisions and responses)

over multiple instances and examples49. This is similar to the study of human behavior

using psychological tests. For example, a previous study examined a model’s ‘implicit

biases’ using behavioral experiments and measures designed for ML models50. In another

Kohoutová et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cocoanlab/interpret_ml_neuroimaging
https://github.com/cocoanlab/interpret_ml_neuroimaging

study, researchers developed a new ML model that can learn other ML models’ internal

states (e.g., machine theory of mind51). For adaptive models, one can examine changes

in model behaviors and learning over time, similar to the study of human developmental

psychology52.

In addition, representational similarity analyses can be used to examine models’ internal

representations and their relationships with different models and different brain regions53–55.

Representational similarity analyses examine the similarity among a set of experimental

conditions or stimuli on two multivariate measures—for example, vector representations

across units in an artificial neural network or multi-voxel patterns of fMRI activity. As an

example, a previous study examined representational similarities and differences between

multiple computational models, including a deep neural network, and activity patterns in the

inferior temporal cortex56.

Finally, one of the most important assessments at the model level is to examine potential

contributions of noise and nuisance variables to a model and its predictions. Many different

confounding factors such as physiological and motion-related noise are pervasive in

neuroimaging data and present challenging issues that need careful attention57–60. These

confounds can creep into training data and be utilized by predictive models to enhance their

performance. The problem is that, if a model relies on information from the confounding

variables, the model cannot be robust across contexts, because it will fail in samples without

the same confounds or when methodological improvements (e.g., better noise-removal

techniques) mitigate them. More importantly, those models that rely on nuisance variables

will teach us nothing about the neurobiology of target outcomes. Therefore, researchers

should provide evidence that their models are not influenced by confounds and nuisance

variables to the degree possible. One way to do this is to test and show whether model

predictions, features or outcomes are independent from nuisance variables. For example,

one can test whether an ML model based on nuisance variables, such as in-scanner motion

parameters, can predict either (i) responses/predictions made by a model of interest or (ii)

the outcomes of interest13,18. If the nuisance model cannot predict these, model performance

is unlikely to be driven by those nuisance variables.

This protocol includes multiple model-level assessment steps, including evaluation of model

performance and generalizability (Steps 2 and 3 and Steps 8–10), potential influences of

confounds (Steps 4–6) and a representational similarity analysis on multiple predictive

models based on their performance (Steps 12–15).

Feature-level assessment—Feature-level assessment includes methods that evaluate the

significance of individual features, such as voxels, regions or connections, that are used in

prediction. The methods can be broadly categorized as (i) methods for evaluating feature

stability, (ii) methods for evaluating feature importance, and (iii) methods for visualization.

Methods for assessing stability of features measure how stable each feature’s contribution

(or predictive weight) is over multiple models trained on held-out datasets using resampling

methods or cross-validation13,61. For example, in bootstrap tests, data are randomly

resampled with replacement, and a model is trained on the resampled data62. This procedure

Kohoutová et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is repeated multiple times (e.g., 10,000 iterations), and the stability of predictive weights can

then be evaluated using the z and P values based on the mean and standard deviation of the

sampling distribution of predictive weights. After correction for multiple comparisons, the

features with predictive weights significantly different from zero based on the P values can

be selected and visualized in standard brain space.

Methods for assessing feature importance focus on the impact of a feature on a prediction.

These include methods that directly use the magnitude of predictive coefficients (e.g.,

recursive feature elimination (RFE)63), methods using feature-wise decomposition of the

prediction (e.g., layer-wise relevance propagation (LRP)64 and Shapley values65) and

methods using perturbation or ‘lesions’ (omission) of features47,66–68, among many others

(see Table 1). For example, in RFE, the importance of a feature is estimated by the absolute

value of its corresponding predictive weight, and less important features (i.e., with low

predictive weights) are eliminated recursively. The ‘virtual lesion’ analysis47 has also been

used to assess the feature importance. In the ‘virtual lesion’ analysis, a researcher first

defines meaningful groups of features (e.g., brain parcellations or functional networks),

removes each group of features from a model at each iteration and tests the predictive

performance of the reduced model. A large decrease in the model performance indicates

that the virtually lesioned features are necessary for the model to perform well. In LRP,

the prediction score of a nonlinear classifier (e.g., neural network) is decomposed and

recursively propagated back to the input feature level so that the contribution of each feature

to the final prediction can be quantitatively identified and visualized64,69. These methods

cannot fully explain complex models, because isolated features are often insufficient to

predict either outcomes or full model performance, but they can help explain what is driving

a model’s predictions.

Visualization methods provide ways to make a model human readable and thus enhance its

interpretability. In case of linear models, visualizing important features is straightforward

because significant predictive weights can be directly displayed on a feature space (e.g., a

brain map). For nonlinear models, visualizing feature-level interpretation is not simple, but

it is possible to visualize importance or stability scores calculated at the feature level on a

feature space (using, e.g., a heat map64 or saliency map70). Another visualization technique

for artificial neural networks is to examine what individual units or layers in a network

represent by adjusting input patterns to maximize the activation of a target unit or layer (e.g.,

DeepDream71). Table 2 provides more details on a few selected feature-level assessment

methods.

In this protocol, we propose four options for feature-level assessment (Step 7 of the

protocol): bootstrap tests, RFE and ‘virtual lesion’ analysis for linear models and LRP

for explaining nonlinear models. We visualize the significant features (or feature relevance

scores in the case of LRP) on a standardized brain space.

Biology-level assessment—Biology-level assessment aims to provide additional

validation for a model based on its neurobiological plausibility. Plausibility is based on

converging evidence from other types of neuroscientific data, including previous studies,

additional datasets or other techniques, particularly those that provide more direct measures

Kohoutová et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of brain function or direct manipulation of brain circuits (e.g., intracranial recordings,

optogenetics). Such validation is important for at least two reasons. First, it helps to

elucidate what types of mental and behavioral representations are being captured in a

predictive model. Second, it provides a bridge between ML models and neuroscience,

helping neuroimaging-based ML models contribute to understanding mental processes and

behaviors.

However, there are inherent challenges in identifying the neurobiological mechanisms

underlying neuroimaging-based ML models and validating them against other techniques

and datasets. Most ML algorithms have no intrinsic constraints related to neuroscientific

plausibility. In addition, ML models are usually developed to maximize the model’s

performance while being agnostic about its neurobiological meaning and validity. It may

not be possible to provide definitive answers for biology-level assessment in many cases.

Rather, the assessment should be regarded as an open-ended investigation that requires

long-term sharing and testing the properties of established models. This is a multi-study,

multi-technique and multidisciplinary process.

One way to examine neurobiological plausibility and validity of an ML model is to

evaluate results from feature- and model-level assessments in the light of neuroscience

literature across various modalities and species. For example, Woo et al.18 developed an

fMRI-based ML model for predicting pain and examined the local pattern topography of

predictive weights for some key brain regions in the model, including basal ganglia and

amygdala, and found that their local patterns of predictive weights were largely consistent

with previous findings in rodents72–74 and non-human primates75,] as well as in human

literature76–78. In addition, one can examine what an ML model may represent (‘decode’

a model) using a meta-analytic approach77,79—for example, term-based decoding with

automated meta-analysis tools (e.g., neurosynth.org80) and map-based decoding using an

open neuroimaging database (e.g., openneuro.org81 or neurovault.org82). Another possibility

is to examine the current ML model in relation to previously established large-scale resting-

state brain networks48,83–85 or existing multivariate pattern-based neuroimaging markers86.

The protocol below specifies two options for biology-level assessment: the analysis of the

model in terms of its overlap with large-scale resting-state networks defined by Yeo et al.87

and meta-analysis–based decoding using Neurosynth80 (Step 11).

Other types of biological validation are beyond the scope of the current protocol but

are important, particularly, searching for converging evidence from invasive studies that

employ molecular, physiological and intervention-based approaches in animal88,89 or human

studies90,91. Some methodologies may not be practical for widespread use as predictive

models because they are more invasive, are testable only in special populations or cannot

be tested in humans at all; however, they can provide valuable converging evidence,

increasing our understanding of what a model measures. For example, Hultman et al.88

recently developed electrical neuroimaging biomarkers of vulnerability to depression using

local field potentials in mice. They then assessed their models using multiple biological

methods, including gene overexpression (molecular) and drug injection (physiological and

intervention-based methods), and showed that their models responded to multiple ways of

inducing vulnerability to depression. For humans, researchers cannot easily use invasive

Kohoutová et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neurosynth.org
http://openneuro.org
http://neurovault.org

methods, but non-invasive interventions, such as transcranial magnetic stimulation90, and

some more invasive methods, such as electrocorticography or post-mortem evaluation91, can

also be used in some cases.

Although converging evidence from existing studies and theories can help validate a model,

even the models that are not corroborated by existing neurobiological knowledge can also

play an important role by promoting new discovery and theory building in neuroscience.

For example, neuroimaging-based ML models for pain could reveal new substrates for pain

perception in regions not previously understood as ‘pain-processing’ regions, leading to

new discoveries of potential brain targets for further research and intervention92. Thus, the

biology-level assessment does not need to be limited to currently available theories. Rather,

researchers should be open to building new hypotheses and theories inspired by ML models,

which can be subsequently tested with invasive methods or other modalities.

Development of the protocol

The proposed framework and analyses have been developed and discussed in multiple

previous publications from our research group2,13,18,19,47,48,93, in which we have developed

fMRI-based ML models for several different target outcomes. These previous studies used

different methods and approaches to validate and interpret the models. Here, we aim to

unify these various approaches into one framework and implement a workflow that can

guide model validation and interpretation (Fig. 2). To practically demonstrate the use of the

workflow, we apply its methods to a published fMRI dataset93. In the fMRI experiment,

participants (N = 59) completed a somatic pain task and a social rejection task. In the

somatic pain task, participants experienced painful heat or non-painful warmth, whereas in

the social rejection task, participants viewed photographs of their ex-partners or friends. We

used these data to build and interpret classification models. Although this protocol provides

examples of only a few selected analyses and covers only non-invasive methods, other

validation methods and steps should be employed as available. In addition, although the

previous studies from our research group have generally used linear models, this framework

can be applied to any type of ML model, including deep learning models.

Comparison with other methods

Many previous approaches to improving interpretability have focused on model sparsity

or constraining models to include a small number of variables. Various regularization

techniques have been used for this purpose. Least-absolute-shrinkage-and-selection-operator

(LASSO)42 and ElasticNet43 regression, for example, impose non-structured sparsity,

without constraints on how variables are grouped when considering their inclusion.

GraphNet44 and hierarchical region-network sparsity45 are examples of methods that impose

structured sparsity, incorporating prior knowledge of brain anatomical specialization into the

model-selection process. These structured methods result in grouped voxels in few clusters

and promise easier interpretation than non-structured sparse models. However, imposing

sparsity may not always be relevant to establishing neurobiologically valid brain models:

sparse solutions may not provide the whole picture of complex interactions among many

different players involved in a complex biological system.

Kohoutová et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Other studies have considered additional objective functions beyond predictive accuracy.

Model stability, or reproducibility of model parameters across samples, is important for

interpretability: models with unstable parameters have no consistent biological features

to interpret. For example, Rasmussen et al.94 showed that there is a trade-off between

prediction accuracy and the spatial reproducibility of a model, and concluded that

regularization parameters should be selected considering both model reproducibility and

interpretability. Baldassarre et al.95 also investigated the effects of several regularization

methods on model stability and suggested that model stability can be enhanced by adding

reproducibility as a model selection criterion.

Another important approach for enhancing model interpretability is dimensionality

reduction. Principal component analysis or independent component analysis has often been

used, and they can be combined with methods imposing sparsity96,97. However, at present,

principal component analysis and independent component analysis are also used to extract

characteristic features from single-modality or multimodal neuroimaging data98–100.

Most of these studies, however, focused only on one or a small number of aspects of

model interpretation that can partially improve the interpretability. We aim to provide a

unified framework for assessing model interpretability in multiple ways, along with concrete

example analyses.

Limitations

This protocol aims to provide concrete analysis examples of the minimum set of components

for the different levels of model interpretation. However, interpreting ML models in

neuroimaging is intrinsically an open-ended process, and therefore the protocol provided

here cannot cover all possible methods. In addition to the presented methods, users of the

protocol may want to, for example, support the biological interpretation of their models by

thorough literature review or conducting additional experiments focusing on the underlying

neurobiological mechanisms of the models using invasive animal and human studies.

In this protocol, we sometimes make choices on algorithms and parameters based on

previous research, though some of the decisions could have a direct impact on the model

performance and interpretation. We recommend that researchers do not blindly use our

choices as defaults. The algorithms we use (e.g., support vector machines (SVMs)) are

not the only or even the best for many applications. The validation and process we

implement could be used with many choices of algorithms (including both regression and

classification algorithms), many outcomes (e.g., decoding stimulus conditions, predicting

within-person behavior or predicting between-person clinical characteristics) and multiple

types of data (e.g., structural images, functional task-related images, functional connectivity

or arterial spin labeling/positron emission tomography/magnetic resonance spectroscopy

images). However, for all of these choices, additional data- and outcome-type specific

validation procedures are likely to be useful. Therefore, this protocol is a useful starting

point but should not be taken as a complete description of the validation steps for all

algorithms, data types and outcome types. Researchers should make deliberate choices on

algorithms and parameters to answer their research questions. In addition, although our

model interpretation framework can be applied to many types of models and data (e.g., fMRI

Kohoutová et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

connectivity, structural MRI and other imaging modalities), we do not provide example code

for all possible applications.

This protocol provides analysis examples for feature-level assessment for a nonlinear model

as well as a linear model. For a nonlinear model, we used LRP64, but only one previous

neuroimaging study has used this method69. Although the method for the nonlinear model

yielded similar results to the methods for the linear model in our analyses, the method for

the nonlinear model presented here should be considered as an example and investigated

further in future studies. In addition, other components of the model-level assessment (e.g.,

noise analysis and representational analysis) have not been tested with nonlinear models.

Finally, this protocol includes only two simple methods for biology-level assessment.

However, in practice, biology-level validation should involve experiments using multiple

modalities and approaches and collaborative efforts among multiple laboratories to search

for converging evidence. We emphasized the importance of these approaches above, but

such methods cannot be fully summarized in one protocol.

Overall, this protocol should serve as a sample practical implementation of the framework.

There can be multiple equally valid analysis options that can achieve the same level of

model interpretation. We encourage investigators to use the analysis methods and workflow

proposed here but also to use different methods and a workflow that suits their research

goals and experimental contexts.

Overview of the procedure

In this protocol, we provide a workflow that can guide a practical implementation of the

framework (Fig. 2). To achieve most of the components of the workflow, we use the CANlab

interactive fMRI analysis tools (Box 1), which are publicly available MATLAB-based

analysis tools (see Materials for details on availability). The list of functions from the

CANlab tools used in the protocol can be found in Table 3.

Step 1 of the workflow is model building. It is a prerequisite step, which is not included in

the model interpretation framework, but successful and correct implementation of this step

defines the success of the following methods of model interpretation. A crucial point in Step

1 is to divide data into a training set and a test set for cross-validation performed in Steps

2 and 3 (for more detailed information, see Step 1A). Steps 2–15 can then be divided into

three parts: model development (Steps 2–6), feature-level assessment (Step 7) and model-

and biology-level assessment (Steps 8–15).

In the model development stage, Steps 2 and 3 and Steps 4–6 evaluate the intrinsic

quality of the new model in terms of its predictive power and a potential contribution of

confounds. More specifically, Steps 2 and 3 evaluate the model’s accuracy, sensitivity and

specificity. In these steps, it is critical to obtain unbiased estimates of model performance

using cross-validation (though cross-validation is prone to bias in some cases101) and,

ideally, held-out test data tested on only a single, final model. In this protocol, we provide

examples of leave-one-subject-out (LOSO) and 8-fold cross-validation. If the model shows

good performance, one can go to the next step. Steps 4–6 aim to ensure that a model is

Kohoutová et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

independent of potential confounds. However, obtaining a definitive answer to this question

is challenging (e.g., potential confounds may be unmeasured), and therefore this should be

an open-ended investigation. Although the order of these analysis steps is flexible, Steps 2–6

should logically precede other analyses as they validate the quality of the model.

Step 7 includes methods for the feature-level assessment of the model. We propose several

options to identify important features, and these options can be selected depending on

the types of models (e.g., linear or nonlinear) or desired properties (e.g., stability or

importance). In this protocol, we describe (i) bootstrap tests as an example of feature

stability evaluation in linear models, which were used in previous studies13,93; (ii) RFE

as an example of evaluation of feature importance in linear models commonly used in

neuroimaging63; and (iii) a ‘virtual lesion’ analysis in which features are groups of voxels

defining regions or networks of interest47. We also describe (iv) LRP64 as an example

of feature importance evaluation in nonlinear models. There are numerous other ways to

identify significant features in models, and thus we encourage investigators to use other

methods that suit their goals. For a list of possible options, see Table 1. When visualizing

important features, researchers need to examine whether the identified important features

make sense based on a priori domain knowledge. For example, important features should

not be located outside of the brain, and if a condition involves a visual process, some of the

important features should be located in the visual cortex.

Following the feature-level assessment of the model, investigators should examine whether

the new model can generalize across individuals and populations, different scanners and

test contexts (Steps 8–10) and whether the model is biologically plausible (Step 11). The

order of these two analyses is not important, but both analyses are critical in evaluating

how robust and useful the model is for both an applied use and neuroscience. These steps

should also be an open-ended process; for Steps 8–10, the generalizability tests can start

with testing the model on a few independent datasets locally collected, but the tests should

be scaled up to new data from broader contexts, such as data from different laboratories,

populations, scanners and task conditions, with increasing levels of evidence. For Step

11, investigators need to keep seeking converging evidence from related literature and

invasive studies with different experimental modalities and multiple species to understand

the model’s neurobiological meaning. In the current protocol, for Steps 8–10, we provide an

example of testing generalizability of two previously developed predictive models for pain,

the Neurologic Pain Signature (NPS)13 and Stimulus Intensity Independent Pain Signature-1

(SIIPS1)18, on example fMRI data from a previous publication93 (for more details of the

models and dataset, see Materials). For Step 11, we provide two basic analyses: first, term-

based decoding based on a large-scale meta-analysis database, Neurosynth80, and second,

comparisons of the model to large-scale networks identified by Yeo et al.87.

Representational and behavioral analyses can further our understanding of the model

(Steps 12–15). For example, one can better understand the model’s decision making by

examining the patterns of model behaviors (e.g., decisions and responses) over multiple

instances and examples. Investigators can also analyze model representations by directly

comparing weight vectors or measuring representational distances among different models.

In this protocol, we provide an example of the representational analysis using two a

Kohoutová et al. Page 11

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

priori predictive models applied to the sample dataset (see Materials for details about the

predictive models and sample dataset).

Level of expertise needed to implement the protocol

Creating one’s own codes to perform the analyses described below is a demanding task in

terms of programming abilities and knowledge of statistics and ML. However, we provide

CanlabCore tools (https://github.com/canlab/CanlabCore), a MATLAB-based interactive

analysis tool for fMRI data. With the CanlabCore tools, one can readily run most of the

analyses described. To successfully use the CanlabCore tools, users should be familiar with

the MATLAB programming environment, and they should be able to implement simple

codes using predefined functions and different variable types (e.g., objects, structures and

cell arrays). To implement the nonlinear model and LRP analysis, users should be familiar

with Python and some deep learning libraries in Python, such as Tensorflow and Keras.

Materials

Equipment

Software

• A computer with MATLAB and a web browser to access Neurosynth at http://

neurosynth.org (or one can also use the Neurosynth Python toolbox available at

https://github.com/neurosynth)

• For linear models: The CanlabCore toolbox is available at https://github.com/

canlab/CanlabCore ▲CRITICAL For full functionality, it is necessary to install

the following dependencies: (i) MATLAB Statistics and Machine Learning

toolbox, (ii) MATLAB Signal Processing toolbox, (iii) Statistical Parametric

Mapping (SPM) toolbox available at https://www.fil.ion.ucl.ac.uk/spm/, and (iv)

some external toolboxes (in the directory named ‘/External’), including the

Spider toolbox (for SVMs), contained in the CanlabCore ▲CRITICAL Ensure

that all the toolboxes are added with subfolders to the MATLAB path.

Note that our protocol could be readily adapted to other software platforms,

particularly open-source alternative programming languages such as Python.

Although we do not provide sample code in this protocol, the COSAN Lab

(led by Luke Chang) has developed a Python package based on the CANlab

tools, called NLTools, available at https://github.com/cosanlab/nltools. This

package relies on Nilearn (http://nilearn.github.io) and scikit-learn (https://scikit-

learn.org), providing an alternative, open-source format for implementing this

protocol

• For deep learning models: Python 3.6.5 or higher available at https://

www.python.org/downloads/; NumPy 1.14.5 (Python library for scientific

computing) available at https://github.com/numpy/numpy; Keras 2.2.4 (Python

library for Deep Learning) available at https://keras.io/ and TensorFlow

1.8.0 available at http://www.tensorflow.org/install/; Matplotlib 3.0.2 (Python

library for plotting) available at https://matplotlib.org/users/installing.html;

Kohoutová et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/canlab/CanlabCore
https://neurosynth.org
https://neurosynth.org
https://github.com/neurosynth
https://github.com/canlab/CanlabCore
https://github.com/canlab/CanlabCore
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/cosanlab/nltools
https://nilearn.github.io/stable/index.html
https://scikit-learn.org
https://scikit-learn.org
https://www.python.org/downloads/
https://www.python.org/downloads/
https://github.com/numpy/numpy
https://keras.io/
https://www.tensorflow.org/install/
https://matplotlib.org/stable/users/installing/index.html

scikit-learn 0.20.3 (Python library for ML) available at https://scikit-learn.org/

stable/install.html; pandas 0.25.1 (Python library for data analysis) available

at https://pandas.pydata.org/pandas-docs/stable/install.html; Scipy 1.3.0 (Python

library for mathematics, science and engineering); Nilearn 0.5.2 (Python

library for ML on neuroimaging data) available at http://nilearn.github.io/

introduction.html#installation; Nipype 1.2.0 (Python library for an interface to

neuroimaging analysis pipelines) available at https://pypi.org/project/nipype/;

iNNvestigate102 1.0.8.3 (Keras explanation toolbox) available at https://

github.com/albermax/innvestigate; other dependencies: Compute Unified Device

Architecture (CUDA) and CUDA Deep Neural Network (CuDNN) library with

an appropriate graphical processing unit (GPU)

Input data

• Statistical parametric maps (used in all steps): The level of input data can be

varied. For example, one can use first-level contrast or beta maps for event

regressors, single-trial beta series, or repetition time (TR)-level images. The

amount of data needed for model training depends on whether a researcher

aims to build a model to predict between-person individual differences

or within-person behaviors or stimulus conditions. In the case of between-

individual prediction, N > 100 participants is usually required, but N > 300

is recommended1. For the prediction of within-person effects using group-level

data, data from >20 participants are usually used, but >50 participants and

1–2 h of scanning for each person are recommended103. The recommended

amount of data can also be varied depending on the types of data or algorithms

(e.g., refs. 104,105). Note that these recommendations are heuristic only, as a

full discussion of power and model reproducibility is beyond the scope of

this review. In addition, it is extremely beneficial to have an independent

hold-out dataset for prospective model validation and generalizability testing

▲CRITICAL The CanlabCore tools can read images in NIfTI format (.nii)

or Analyze format (.img and .hdr). For deep learning models, we used data

with 4D matrices (x, y, z, t) for each subject, created by the Nibabel library.

The CanlabCore toolbox provides an easy way to create 4D matrices (see

reconstruct_image.m) ▲CRITICAL If you are using single-trial level

data, some trial estimates could be strongly affected by acquisition artifacts or

sudden motion. For this reason, we recommend excluding images from trials

with high variance inflation factors (VIFs). In previous studies, we usually

removed trials with VIFs that exceeded 2.518,106. VIFs can be calculated with

getvif.m in the CanlabCore toolbox ▲CRITICAL If you are using TR-level

data, ensure that the data are properly filtered (e.g., high-pass filtering) and

denoised (e.g., confound regression or signal decomposition methods)60. For

in-depth quality checks for image data, please refer to ref. 60 or use the

MRI Quality Control (MRIQC) tool107 to perform an automated data quality

check. In the case of individual- or group-level preprocessed data (e.g., contrast

maps), one can use the qc_metrics_second_level.m function from the

CanlabCore toolbox. The function assesses, for example, signals from white

Kohoutová et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://scikit-learn.org/stable/install.html
https://scikit-learn.org/stable/install.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html
http://nilearn.github.io/introduction.html#installation
http://nilearn.github.io/introduction.html#installation
https://pypi.org/project/nipype/
https://github.com/albermax/innvestigate
https://github.com/albermax/innvestigate

matter and ventricles and their effect sizes or scale inhomogeneities across

subjects in gray matter and ventricles. To use this tool, data should be spatially

normalized to the Montreal Neurological Institute (MNI) template ! CAUTION
A study collecting neuroimaging and behavioral data must be approved by an

appropriate institutional ethical review committee, and all subjects must provide

informed consent to the acquisition and use of the data in the case of a local

study. In the case of certain public datasets, a data-sharing agreement must be

approved. In the example dataset used in this protocol, all participants provided

written informed consent in accordance with a protocol approved by Columbia

University’s Institutional Review Board.

• Nuisance data (used in Steps 4–6): Here, we used time series data for six

head-motion parameters (x, y, z, roll, pitch and yaw)

• A priori pattern-based predictive models (used in Steps 8–10 and 12–15): To

run the example analyses provided here, one also needs two a priori pattern-

based predictive models, the NPS and the SIIPS1. The NPS is available upon

request with a data use agreement. The SIIPS1 can be downloaded from

the CANlab Neuroimaging_Pattern_Masks repository (https://github.com/canlab/

Neuroimaging_Pattern_Masks)

• Functional Atlas data (used in Steps 7 and 11): We used seven functional

networks from Yeo et al.87 (available at https://github.com/ThomasYeoLab/

CBIG/tree/master/stable_projects/brain_parcellation)

Example dataset

• We used an fMRI dataset (N = 59) from a previous publication93 as an example

dataset for demonstration

• In an fMRI experiment, all participants completed two tasks: a somatic pain

task, in which participants experienced painful heat or non-painful warmth, and a

social rejection task, in which participants viewed pictures of their ex-partners or

friends

• In this protocol, trial-level data are used for Steps 1–7 and Step 11, and

participant-level contrast images are used for Steps 8–10 and 12–15. For the

trial-level data, we use data from the painful heat trials (heat condition, eight

trials per participant) and the ex-partner trials (rejection condition, eight trials per

participant). For the contrast images, we use data from all four conditions (59

images per condition)

• The example data and codes can be downloaded from https://github.com/

cocoanlab/interpret_ml_neuroimaging. Its directory structure can be found

below, and our example codes use this data structure

/data

 /derivatives

Kohoutová et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/canlab/Neuroimaging_Pattern_Masks
https://github.com/canlab/Neuroimaging_Pattern_Masks
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation
https://github.com/cocoanlab/interpret_ml_neuroimaging
https://github.com/cocoanlab/interpret_ml_neuroimaging

 /trial_images/

 /sub_01

 heat_trial01.nii

 heat_trial02.nii

 …

 rejection_trial08.nii

 /sub_02

 …

 /sub_59

 /contrast_images

 heat_sub_01.nii

 heat_sub_02.nii

 …

 friend_sub_59.nii

/masks

/scripts

Procedure

Build a model ● Timing 20 min to a few hours

1. This step builds fMRI-based ML models that are predictive of a target

outcome. This is a prerequisite step to the workflow of the model interpretation

framework. Although details of this step are not the main focus of the current

protocol, we briefly describe the procedure for the model building to provide

information about the two types of models used in this protocol. Option A

describes the training of a widely used linear algorithm, SVMs. We chose SVMs

because it is one of the most popular ML algorithms in current neuroimaging

literature—for example, from the survey we conducted in ref. 2, 46.4% of the

481 ML models in neuroimaging studies used SVMs, which were followed by

discriminant analysis and logistic regression with 12.7% and 7.5% prevalence,

respectively. The steps in option A describe how to build an SVM model using

the CanlabCore tools (Box 1). Option B is a procedure to build a nonlinear

model. As an example of nonlinear models, we chose a Convolutional Neural

Network (CNN), a successful deep learning model for a variety of applications

on prediction. The steps in option B describe how to build a CNN model using

Keras108.

Option Module

1A Linear model (SVMs)

1B Nonlinear model (CNN)

A. Training SVMS

Kohoutová et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

i. Prepare a data matrix. You can use the following lines to

import the fMRI data from image data with a gray matter

mask.

basedir = ‘/The/base/directory’; % base directory

gray_matter_mask = which(‘gray_matter_mask.img’);

heat_imgs = filenames(fullfile(basedir, ‘data’,

‘derivatives’, … ‘trial_images’, ‘sub*’,

‘heat_*.nii’));

 % read image file names for the heat condition

rejection_imgs = filenames(fullfile(basedir,

‘data’, … ‘derivatives’, ‘trial_images’, ‘sub*’,

‘rejection_*.nii’));

 % file names for the rejection condition

data = fmri_data([heat_imgs; rejection_imgs],

gray_matter_mask);

The variable data.dat contains the activation data in a flat

(2-D) and space-efficient # voxels × # observations matrix.

? TROUBLESHOOTING

ii. (Optional) Apply a mask. One can apply a mask to include

only selected brain features before training a model. For

example, the following lines of code apply the mask that was

used in Woo et al.93:

mask = fullfile(basedir, ‘masks’,

‘neurosynth_mask_Woo2014.nii’);

data = apply_mask(data, mask);

iii. Prepare an outcome variable and add it into dat.Y. For

classification tasks, the outcome vector is defined using

a categorical variable (e.g., binary values for different

conditions), and for regression, the outcome vector is a

continuous variable (e.g., trial-by-trial ratings). The following

code defines the outcome vector for the SVM binary classifier

in our example analysis. Coding observations with [1, −1]

values is compatible with the Spider package and should be

used:

data.Y = [ones(numel(heat_imgs),1); …

−ones(numel(rejection_imgs),1)]; % heat:1,

rejection:−1

Kohoutová et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

iv. Define training and test sets for cross-validation. To obtain

an unbiased estimate of model performance, one should

internally validate the model using cross-validation. A crucial

step in cross-validation is to choose a suitable strategy of

splitting the data into training and test sets. One can define

a certain percentage of data as the test set (k-fold cross-

validation) (e.g., 10% for 10-fold cross-validation) or use

one subject’s data as test data in each fold (LOSO cross-

validation). Because with increasing k, bias of the predictive

accuracy decreases and variance increases, one needs to find a

suitable solution for the trade-off, taking into account the size

of the available dataset. LOSO cross-validation can be used

in small datasets, whereas in large datasets, 5-fold or 10-fold

cross-validation can be more efficient1. Care should be taken

that no dependencies between training and test data have been

introduced (see below).

The optional input argument, ‘nfolds’, of the predict

function can specify which types of cross-validation will

be used. With a scalar value input k, it will run k-fold

cross-validation. The optional input can also be a vector for

using customized cross-validation folds (e.g., LOSO, leave-

two-trials-out). If the optional input equals one, the function

will not run cross-validation. If no optional input is given,

it will run fivefold cross-validation stratified on the outcome

variable as a default. For example, we can use LOSO cross-

validation in our example dataset. That is, we reserve one

subject’s data as test data and use the remaining 58 subjects’

data as the training set. The input argument ‘nfolds’ can then

be defined as follows.

n_folds = [repmat(1:59, 8,1) repmat(1:59, 8,1)]; %

Each subject % has 8 trial image data for each

condition

n_folds = n_folds(:); % flatten the matrix

▲CRITICAL STEP It is crucial to keep the training and

test sets truly independent. Performing some analyses, such

as denoising, feature selection or scaling, across training

and test sets can create dependence between the training

and test datasets, resulting in a bias in the estimate of the

prediction performance1,2. Dependence between the training

and test datasets can also occur if participants are related, as

is typical in twin studies and occurs in some other studies,

such as the Human Connectome Project109, ABCD110 and

Kohoutová et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

UK Biobank111 studies. In addition, other common situations

can introduce some dependence, such as nesting participants

within a scanning day, variation in scan timing relative to

academic deadlines and other seasonal variables, or subsets

tested by the same experimenter in a multi-experimenter study.

These issues do not categorically invalidate cross-validation,

but they make it more important to test generalizability

in independent test cohorts—and ultimately in cohorts that

are explicitly dissimilar in population and procedures to the

training sample.

▲CRITICAL STEP If k-fold cross-validation is used with

the regression approach, we recommend using stratified

cross-validation—stratifying holdout test sets for each fold

based on the level of the outcome. To see how the

CanlabCore tools implement stratified cross-validation, see

stratified_holdout_set.m.

v. Fit an SVM model to the training data. We use the predict

function, which is a method of the fmri_data object in the

CanlabCore tools (see Box 2). This function allows us to

easily run many different ML algorithms on fMRI data with

cross-validation. The following lines of code will fit an SVM

classifier to the data and test the cross-validated error rate of

the classifier. We explain the details of cross-validation in Step

2.

[cverr, stats_loso] = predict(data,

‘algorithm_name’, …’cv_svm’, ‘nfolds’, n_folds,

‘error_type’, ‘mcr’);

The output variable stats provides many kinds of

information, including model weights, predicted y values (y)
based on cross-validation, and performance values (for more

details, see Box 2).

Note that one can use nested cross-validation to find the

optimal hyper-parameters of the model. In nested cross-

validation, an additional, nested cross-validation loop is

performed on the training set to tune the hyper-parameters,

while the outer cross-validation loop is used to estimate the

model performance1,101. In our example, for simplicity, we

use the default setting of the function for the SVM algorithm,

where C = 1.

Kohoutová et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

If multiple models with a number of different parameters

are tested on a single training set, a correction for multiple

comparisons (e.g. False Discovery Rate (FDR) correction)

must be conducted. Note that the corrections for multiple

comparisons are designed to protect against false-positive

feature identification but not against the inflated accuracy

that comes from testing multiple models outside of cross-

validation loops. Therefore, a more important step is to test

the final model on additional validation or independent test

datasets.

In the following steps, we apply the analysis methods to

the linear SVM model, a classifier model. Nonetheless, the

predict function can also build regression-based models for

predicting continuous outcomes. For example, the code below

runs principal component regression (PCR):

[cverr, stats_loso] = predict(data,

‘algorithm_name’, …’cv_pcr’, ‘nfolds’, n_folds,

‘error_type’, ‘mse’);

? TROUBLESHOOTING

B. Training a CNN

i. Prepare the data matrix. We used the pandas DataFrame (to

create a data template) and Nilearn (to load data from NIfTI

files). These are implemented in ‘Part 1: Initializing Data

Matrix’ and ‘Part 2: Loading Data Function’ of our example

Jupyter Notebook file, cnn_lrp.ipynb, which is available

at https://github.com/cocoanlab/interpret_ml_neuroimaging/

blob/master/scripts/cnn_lrp.ipynb.

ii. Define a CNN model. With Keras, one can define a

CNN model using the following code, which defines four

convolution layers and two fully connected layers, followed by

a softmax output layer. One can also define the loss function

with the Adam optimizer112 for the model training (‘Part 3:

CNN Model’ of cnn_lrp.ipynb).

def make_custom_model_cnn_2D():

 model = Sequential()

 model.add(Conv2D(8, (3,3),

kernel_initializer=‘he_normal’, padding=‘same’,

input_shape=fmri_shape))

Kohoutová et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cocoanlab/interpret_ml_neuroimaging/blob/master/scripts/cnn_lrp.ipynb
https://github.com/cocoanlab/interpret_ml_neuroimaging/blob/master/scripts/cnn_lrp.ipynb

 model.add(Activation(‘relu’))

 model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Conv2D(16, (3,3),

kernel_initializer=‘he_normal’, padding=‘same’))

 model.add(Activation(‘relu’))

 model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Conv2D(32, (3,3),

kernel_initializer=‘he_normal’, padding=‘same’))

 model.add(Activation(‘relu’))

model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Conv2D(64, (3,3),

kernel_initializer=‘he_normal’, padding=‘same’))

 model.add(Activation(‘relu’))

model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Flatten())

 model.add(Dense(128,

kernel_initializer=‘he_normal’))

 model.add(Activation(‘relu’))

 model.add(Dense(2,

kernel_initializer=‘he_normal’))

 model.add(Activation(‘linear’))

 model.add(Activation(‘softmax’))

 adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999,

epsilon=1e-08, decay=0.0)

 model.compile(loss=‘categorical_crossentropy’,

optimizer=adam, metrics=[‘accuracy’])

 return model

iii. Split the data into training and test sets. As described above in

the case of the linear SVM model, define the amount of data

used as training and testing data for cross-validation. We used

scikit-learn to create the cross-validation testing framework,

which is implemented in ‘Part 4: Model Training example’

and ‘Part 5: Leave-One-Subject-Out Cross-validation’ of

cnn_lrp.ipynb.

iv. Fit a CNN model on the training data. A CNN model can

be trained with a variant of a mini-batch stochastic gradient

descent method, such as Adam112, which is realized by the

fit function in the Keras package. In the example code, we

trained the model with 32 mini-batch size for every iteration.

When running the train_model function we defined here,

we evaluate the training loss (error) every epoch with the

evaluate function in Keras. The following code also defines

the number of epochs for training the CNN model (the second

section of ‘Part 3. CNN Model’ of cnn_lrp.ipynb).

Kohoutová et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

import tensorflow as tf

config = tf.ConfigProto()

config.gpu_options.allow_growth = True

session = tf.Session(config=config)

def train_model(train_X, train_y, test_X, test_y):

 # Optional: when you do not have enough GPUs,

add the following line:

 # with tf.device(‘/cpu:0’):

 tr_data = {}

 tr_data[‘X_data’] = train_X

 tr_data[‘y_data’] = train_y

 te_data = {}

 te_data[‘X_data’] = test_X

 te_data[‘y_data’] = test_y

tr_data[‘y_data’] =

keras.utils.to_categorical(tr_data[‘y_data’], 2)

te_data[‘y_data’] =

keras.utils.to_categorical(te_data[‘y_data’], 2)

Initialize and compile the model

model = make_custom_model_cnn_2D()

model.compile(loss=“categorical_crossentropy”,

optimizer=Adam(), metrics=[“accuracy”])

history = model.fit(tr_data[‘X_data’],

tr_data[‘y_data’], batch_size=mini_batch_size,

epochs=20, verbose=1)

score = model.evaluate(te_data[‘X_data’],

te_data[‘y_data’], verbose=0)

return model,score

v. Test the model on test data. Once the training of CNN is done,

we can test the model on a separate test dataset as in the

following code, which returns the prediction accuracy on the

test set.

score = model.evaluate(te_data[‘X_data’],

te_data[‘y_data’], verbose=0)

Assess the cross-validated performance ● Timing 5–20 min

▲CRITICAL This step evaluates the new model’s predictive performance in terms of

accuracy, sensitivity and specificity. It is critical to obtain unbiased estimates of model

performance using cross-validation or held-out test data. Below, we provide an analysis

example of LOSO and eightfold cross-validation. Note that we made an arbitrary choice of k
= 8 cross-validation folds for convenience, as cross-validation is typically largely insensitive

Kohoutová et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to the choice of k, but researchers should consider other choices and/or cross-validation

strategies. For further discussion on this topic, please see Step 1A(iv) and refs. 1,101.

2. Iteratively fit models using a training set, test the models on each fold’s holdout
set and aggregate predicted outcome values across folds. In Step 1, we divided

the data into the training and test sets. As an example, we split the data to

perform LOSO cross-validation. Therefore, we reserve one participant’s data

as a test set and fit a model (an SVM in our example) to the remaining 58

participants’ data. Subsequently, we use the model to classify the left-out data

and save the distance from the hyperplane for each data point. We repeat this

process 59 times. This process is automated in the predict function.

In addition, the following code shows how to run eightfold stratified cross-

validation.

[~, stats_8fold] = predict(data, ‘algorithm_name’, ‘cv_svm’, …

‘nfolds’, 8, ‘error_type’, ‘mcr’);

▲CRITICAL STEP Hyper-parameters of the models should be kept the

same for all iterations of cross-validation, but a nested cross-validation, a

common method to choose an optimal hyper-parameter, can use different hyper-

parameters for each fold.

3. Calculate the predictive accuracy, sensitivity and specificity by comparing the
model prediction and the actual outcome. In the context of classification, the

accuracy can be defined as 1 minus the misclassification rate, which is the ratio

of the number of incorrectly classified data points and total number of data

points. Classification decision can be made with a single threshold value θ (in

SVMs, typically θ = 0 if the bias term is included in the model). One can

also use a two-alternative forced-choice (2AFC) test if each data point has its

counterpart (e.g., which of two conditions was the heat condition?). Sensitivity is

defined as the ratio of correctly classified positives to the number of positive data

points, and specificity as the ratio of correctly classified negatives to the number

of negative data points. Figure 3a illustrates results of the accuracy estimation of

the cross-validated classification. The roc_plot function from the CanlabCore

tools provides all these performance metrics:

% LOSO cross-validation

ROC_loso = roc_plot(stats_loso.dist_from_hyperplane_xval, … data.Y

== 1, ‘threshold’, 0);

% 8-fold cross-validation

ROC_8fold = roc_plot(stats_8fold.dist_from_hyperplane_xval, …

data.Y == 1, ‘threshold’, 0);

Example output:

Kohoutová et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LOSO cross-validation

ROC_PLOT Output: Single-interval, A priori threshold

Threshold: 0.00 Sens: 94% CI(92%–
96%)

Spec: 91%
CI(88%–93%)

PPV: 91%
CI(88%-93%)

Nonparametric AUC:
0.97

Parametric d_a:
2.53

Accuracy: 92% +−
0.9% (SE),

P = 0.000000

Eightfold cross-validation

ROC_PLOT Output: Single-interval, A priori threshold

Threshold: 0.00 Sens: 96% CI(94%–
97%)

Spec: 95%
CI(93%–97%)

PPV: 95% CI(93%–
97%)

Nonparametric AUC:
0.98

Parametric d_a:
2.83

Accuracy: 96% +−
0.7% (SE),

P = 0.000000

! CAUTION Examining the reliability of the outcome measures and model

responses can be helpful to make sure that the model performance is not

biased113,114. In general, the model performance cannot exceed the reliability of

the outcome measures. However, this is not strictly true, as reliability measures

are themselves estimated with error, and the estimated reliability can be affected

by variables other than the brain-outcome relationship114. Nonetheless, the

reliability of the outcome generally provides an upper bound for any predictive

model and therefore can be considered as a sanity check.

Analyze the model for the presence of confounds and artifacts ● Timing 5–20 min

▲CRITICAL To ensure that the model responses cannot be explained by confounds

or artifacts, investigators can use the relevant confounding and nuisance variables (e.g.,

in-scanner head motion) to predict the responses of the model. If the confounds and nuisance

variables can predict the model response, the model is likely to be influenced by them.

Similarly, one can also examine whether the outcomes of interest are related to potential

confounds and other nuisance variables (see refs. 1,60 for more detailed discussion about

other considerations related to confounds and nuisance variables).

The following steps describe an example of how to perform this type of analysis.

4. Create a set of nuisance variables (e.g., trial-level mean framewise displacement
for six movement parameters (roll, pitch, yaw, x, y and z)). One can also

use different types of confounding variables (e.g., physiology confounds, noise

components from independent component analysis) or TR- or subject-level data.

In this example analysis, we used trial-level movement parameters.

5. Prepare an fmri_data object variable. The nuisance variable should be assigned

to the obj.dat field, and the model response (in the example analysis, we used

distance from hyperplane) into the obj.Y (outcome) field.

Kohoutová et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6. Predict the model response using the nuisance data. For an example analysis,

we used multiple regression because there are only a few features in this

example. We did not use cross-validation in this example, but one can also

use cross-validation (e.g., 5- or 10-fold cross-validation; see Step 1A(iv)). The

model’s predictive performance can be examined with the correlation between

the predicted (y) and actual values (y).

% Load nuisance data that are previously saved

nuisance_file = fullfile(basedir, ‘data’, ‘derivatives’,

‘nuisance.mat’);

 % Example nuisance data: Mean framewise displacement (z-scored;

 % roll, pitch, yaw, x, y, z; 6 columns)

load(nuisance_file);

% prepare fmri_data object variable

dat_nuistest = fmri_data;

dat_nuistest.dat = R’;

dat_nuistest.Y = stats_loso.dist_from_hyperplane_xval;

% train a regression model (without cross-validation)

[~, stats_nuistest] = predict(dat_nuistest, ‘algorithm_name’, …

‘cv_multregress’,’nfolds’, 1, ‘error_type’, ‘mse’);

? TROUBLESHOOTING

Identify significant features ● Timing 20 min to a few days

7. Identify significant features. Here, we propose four methods of evaluation of

feature significance: bootstrap tests as an example of a method evaluating feature

stability in linear models, RFE and ‘virtual lesion’ analysis as examples of

methods evaluating feature importance in linear models and LRP as an example

of a method evaluating feature importance in nonlinear models.

Bootstrap tests identify features that make reproducible (stable) contributions to

prediction across units (e.g., participants in this example). Bootstrap tests have

been successfully used in previous publications13,19,47,93. The steps in option A

describe the bootstrap test in more detail.

Unlike bootstrap tests, RFE is primarily a wrapper feature selection method.

The model is repeatedly trained while a certain number of features, defined by

an elimination step, are removed in each iteration until a stopping criterion is

satisfied (e.g., when it reaches a specified number of features). The investigator

can also select the final model according to the highest cross-validated predictive

accuracy. The steps in option B describe how to perform RFE generally in linear

models.

In a ‘virtual lesion’ analysis47, the importance of features can be evaluated

by examining (i) how much predictive performance decreases when a set of

features (regions or networks) is removed from a model or (ii) how well a model

Kohoutová et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

performs if only a set of features is used. The analysis is illustrated in Fig. 4,

and its example results are shown in Table 4. The analysis can be performed

according to the steps in option C.

The goal of the LRP (described in option D) is to decompose the final prediction

score and highlight the contribution of each input feature of the model to the

prediction. LRP is particularly useful for hierarchical nonlinear models like CNN

(see Step 1B), since it can efficiently propagate the decomposed contributions

from the upper layers of the model down to the input feature level. A unique

property of LRP that differentiates it from other assessment methods is that it can

separately obtain the importance assessment of each feature for each prediction

class of the model. Moreover, the assessments computed by LRP can have either

positive or negative values, which concretely show whether each feature is for

or against increasing the prediction score of the prediction class for which the

assessments are computed, respectively. Although this method originally serves

to explain predictions for individual instances, in the current protocol, we focus

on the group-level explanations and present the final explanation as an average

over the individual explanations (Fig. 5).

Option Module

7A Bootstrap tests

7B RFE

7C ‘Virtual lesion’ analysis

7D LRP

A. Bootstrap tests

i. Resample the data. The essential step in the bootstrap tests

is to create a sufficient number of new data samples (i.e.,

bootstrap samples). Create m bootstrap samples by sampling

n data points with replacement from the dataset of size n. For

example, our dataset contains 944 trials (i.e., n = 944), and we

randomly draw 10,000 bootstrap samples (m = 10,000), each

consisting of 944 data points.

ii. Train a model with each bootstrap sample. Each bootstrap

sample serves as training data for a new model. The hyper-

parameters of the model should be the same as the original

model. This step is computationally expensive as it requires

a large number of iterations depending on the number of

bootstrap samples. With 1,000 samples, the minimum P value

is 1/1,000 or 0.001. Thus, ≥10,000 samples is desirable when

one wishes to have reasonable numerical precision in the tails

of the distribution, which is often the case in neuroimaging.

Kohoutová et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

iii. Calculate P values for the predictive weights. Calculate two-

tailed uncorrected P values as the proportion of weights above

and below zero across the models. An alternative option is to

calculate z and P values with the mean and standard deviation

of the sampling distribution.

iv. Perform a correction for multiple comparisons. For example,

a popular choice of correction for multiple comparisons is

the FDR correction, which we used to achieve the results

visualized in Fig. 3b. The corrected threshold determines

which features consistently contribute to the prediction over

bootstrap samples.

All these analysis steps can be performed using the

‘bootweights’ optional input argument of the predict

function. The optional input, ‘bootsamples’ can be used

to set the number of bootstrap samples. The default is

100, but 5,000 or 10,000 was used in our previous

publications13,19,47,93.

[~, stats_boot] = predict(data, ‘algorithm_name’,

‘cv_svm’, … ‘nfolds’, 1, ‘error_type’, ‘mcr’,

‘bootweights’, … ‘bootsamples’, 10000);

The results of bootstrap tests are stored in stats_boot.WTS.

In addition, stats_boot.weight_obj also contains the

bootstrap test results in a statistic_image object,

including model weights and P values. The threshold method

of the statistic_image object can be used to perform

a correction for multiple comparisons (e.g., q < 0.05, FDR

corrected).

data_threshold = threshold(stats_boot.weight_obj,

.05, ‘fdr’);

▲CRITICAL STEP If the size of data is large, the

bootstrap tests can take several days. To shorten the duration,

investigators can use the ‘useparallel’ option for parallel

processing, or if multiple computers or nodes are available,

one can use the optional input, ‘savebootweights’, to save

the bootstrapped weights from multiple bootstrap samples, and

combine the results afterward.

B. RFE

Kohoutová et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

i. Set the parameters of RFE. The basic parameters of RFE

include a stopping criterion and elimination step. The stopping

criterion determines when the process of repeated elimination

and training should terminate. It depends on the desired

characteristics of the final model. The elimination step is the

number of features eliminated at each iteration. The size of

the elimination step, often defined as a percentage of the

remaining features, has varied in previous studies63,115. To

achieve our results shown in Fig. 3c, we used a fixed size

(5,000 features) of the elimination step.

ii. Iteratively train a model on the gradually reduced number of
features using predefined model parameters. In every iteration,

fit a new model to the surviving feature set and evaluate its

performance with cross-validation. The cross-validated results

should be saved for later assessment. Sort the weights of

the model by their absolute values and eliminate a certain

number of features corresponding to the weights with the

smallest absolute values. The number of eliminated features

is defined by the elimination step. In the next iteration, fit a

new model to the dataset with the reduced feature set. Repeat

this procedure until the stopping criterion is satisfied.

All these analysis steps can be performed with the svm_rfe

function, which performs the RFE with SVMs. In the example

below, the input data is an fmri_data object containing the

training data, the ‘n_removal’ option specifies the number of

features eliminated in each iteration and the ‘n_finalfeat’

option defines the stopping criterion. The remaining options

are the same as for the predict function.

out = svm_rfe(data, ‘n_removal’, 5000,

‘n_finalfeat’, 20000, … ‘algorithm_name’, ‘cv_svm’,

‘nfolds’, n_folds, … ‘error_type’, ‘mcr’);

C. ‘Virtual lesion’ analysis

i. Prepare a parcellation mask. Choose the parcellation of

interest (e.g., large-scale networks or contiguous supra-

threshold regions) and prepare a mask for the parcellation. For

the protocol, we prepared a mask for the large-scale networks

defined by refs. 87,116,117.

%% Load mask: BucknerLab_wholebrain

img = fullfile(basedir, ‘masks’, …

Kohoutová et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

‘Bucknerlab_7clusters_all_combined.nii’);

mask = fmri_data(img, gray_matter_mask);

network_names = {‘Visual’, ‘Somatomotor’,

‘dAttention’, … ‘vAttention’, ‘Limbic’,

‘Frontoparietal’, ‘Default’};

ii. Iteratively remove a set of features and test the reduced
models. In each iteration, a network or a region is removed

from the full model, and the predictive performance is

recorded while the reduced model is tested.

%% One network removed for prediction in each

iteration

for network_i = 1:7

 for subj_i = 1:59

 masked_weights = …

stats_loso.other_output_cv{subj_i,1}.* …

double(mask.dat ~= network_i);

 dat_subj = data.dat(:, n_folds==subj_i);

 pexp(:,subj_i) = masked_weights’ * dat_subj;

 end

 pexp_sorted = [reshape(pexp(1:8,:), …

numel(heat_imgs), 1); reshape(pexp(9:16,:), …

numel(rejection_imgs), 1)];

 roc = roc_plot(pexp_sorted, data.Y==1);

 out.num_vox(network_i,1) = sum(mask.dat ~=

network_i);

 out.acc(network_i,1) = roc.accuracy;

 out.se(network_i,1) = roc.accuracy_se;

 out.p(network_i,1) = roc.accuracy_p;

end

▲CRITICAL STEP If the training dataset is used for the

‘virtual lesion’ analysis, the analysis should also be conducted

with cross-validation. In each iteration, one should apply the

mask to the full model from the cross-validation folds and test

the reduced model on the left-out data. One can calculate the

predictive performance of the reduced models after collecting

all the cross-validated predictions.

▲CRITICAL STEP To obtain the predictions of the reduced

model, we calculated pattern expression values using the

dot product, but other similarity metrics (e.g., Pearson’s

correlation, Spearman correlation, cosine similarity) can also

be used:

Kohoutová et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Patternexpression = w ⋅ x = ∑i = 1
n wixi

where n is the number of voxels of the model, w is the voxel-

level predictive weights and x is the test data. A predictive

model is composed of predictive weights (w) across voxels,

specifying locations and patterns of activation. The weights

tell us how to integrate fMRI data into a single prediction,

which then can be used for classification tests or regression

analyses.

▲CRITICAL STEP As the model is not optimized for a zero

threshold after removing a part of the model, one can use the

balanced accuracy threshold option of the roc_plot function,

which finds and uses an optimal threshold that maximizes the

balanced classification accuracy (the average accuracy across

classes). Enter the input keyword ‘Optimal balanced error

rate’ to threshold based on balanced accuracy.

iii. Iteratively keep a set of features for prediction, and test
the reduced models. The second option for the ‘virtual

lesion’ analysis is removing all features except for a target

set of features (e.g., those belonging to a particular resting-

state network) and testing the predictive performance of the

retained set of features jointly.

%% Only one network used for prediction in each

iteration

for network_i = 1:7

 for subj_i = 1:59

 masked_weights = …

stats_loso.other_output_cv{subj_i,1} .* …

double(mask.dat == network_i);

 dat_subj = data.dat(:, n_folds==subj_i);

 pexp(:,subj_i) = masked_weights’ * dat_subj;

 end

 pexp_sorted = [reshape(pexp(1:8,:), …

numel(heat_imgs), 1); reshape(pexp(9:16,:), …

numel(rejection_imgs), 1)];

 roc = roc_plot(pexp_sorted, data.Y==1);

 out.num_vox(network_i,1) = sum(mask.dat ==

network_i);

 out.acc(network_i,1) = roc.accuracy;

 out.se(network_i,1) = roc.accuracy_se;

Kohoutová et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 out.p(network_i,1) = roc.accuracy_p;

end

D. LRP

i. For a given set of data, run the classifier (e.g., CNN) to obtain
the prediction score for each output class. Choose a prediction

class c for which the importance assessment of each feature

will be computed. The chosen prediction score is set as the

initial relevance score and denoted as Rc
(L) where L denotes

the final output layer.

ii. Propagate the relevance score to the lower layer. By assuming

there are total d nodes in the layer right before the final

prediction layer, we compute

Ri
(L − 1) =

zic
zc

Rc(L)

for each i = 1, …, d, in which zic is the contribution of the

activation value for node i to the classification score for class

c, and zc = ∑i = 1
d zic.

iii. Recursively propagate the relevance score to the input layer.
For any intermediate layer l + 1 of the neural network, given

that the relevance scores of all j nodes of the layer, Rj
(l + 1),

are given, compute the decomposition of the scores to the i-th

node of the lower layer as follows:

Ri j
(l, l + 1) =

zij
zj

Rj
(l + 1),

in which zij is again the contribution of the activation of the

i-th node of layer l to the activation of the j-th node of layer l
+ 1, and zj = ∑izij. Then, the relevance score for the i-th node

of layer l is obtained by

Ri
(l) = ∑

j
Ri j

(l, l + 1)

Moreover, when the widely used Rectified Linear Unit

(ReLU) is used as an activation function for the i-th node,

the relevance score becomes

Kohoutová et al. Page 30

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ri
(l) = Ri

(l), ai
(l) > 0

0, otℎerwise

in which ai
(l) is the activation value of the i-th node.

This process is continued all the way down to the input layer,

and the relevance scores for each input feature are computed.

By iterating the process above for all available input data,

one can obtain a group-level explanation for the feature-

level relevance by averaging the individual explanations. In

addition, a one-sample t-test can be used to examine which

features consistently have relevance scores above or below

zero. After obtaining P values from the t-test, one needs to

perform a correction for multiple comparisons using FDR or

family-wise error rate.

To realize LRP, one can use the iNNvestigate package

that is compatible with Keras (‘Part 7. Layer-wise Relevance

Propagation’ of cnn_lrp.ipynb).

import innvestigate

import innvestigate.utils as iutils

import innvestigate.utils.visualizations as ivis

Create model without softmax

model_wo_softmax =

iutils.keras.graph.model_wo_softmax(model)

Create analyser

method = (“lrp.epsilon”, {“epsilon”:1,

“neuron_selection_mode”: “max_activation”},

ivis.heatmap, “LRP-Epsilon”)

analyzer = innvestigate.create_analyzer(method[0],

model_wo_softmax, **method[1])

R = []

for i in range(len(test_X)):

 a = analyzer.analyze(test_X[i])

 R.append(a)

Once the important features are identified, investigators need

to visualize them to see if they make sense. There are

numerous ways and tools for model visualization, and one

can choose any visualization tools that are suitable for their

purposes. Generally, for the linear model, the significant

features can be visualized on a standardized brain space, such

Kohoutová et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as the MNI space. In our examples, we visualize significant

weights identified by the bootstrap tests (Fig. 3b) and by the

RFE method (Fig. 3c) using the following MATLAB code:

% visualizing bootstrap test results

orthviews(data_threshold);

montage(data_threshold);

% writing thresholded bootstrap test results as a

Nifti file

data_threshold.fullpath = fullfile(basedir,

‘results’, … ‘svm_bootstrap_results_fdr05.nii’);

write(data_threshold, ‘thresh’);

% visualizing RFE results

orthviews(out.smallestnfeat_stats.weight_obj);

montage(out.smallestnfeat_stats.weight_obj);

% writing RFE analysis results as a Nifti file

out.smallestnfeat_stats.weight_obj.fullpath = …

fullfile(basedir, ‘results’, ‘svm_RFE_results.nii’);

write(out.smallestnfeat_stats.weight_obj, ‘thresh’);

With the orthviews function, you can display images on

the canonical MNI brain image. In addition, using the write

function with an optional input, ‘thresh’, you can save the

result images as NIfTI image files, which then can be used

with other visualization tools. For the LRP results with a CNN

model, we show the thresholded mean relevance scores in Fig.

5a, which visualizes relevance scores that explain prediction

of the heat condition when the input was an image acquired

during the heat condition. Figure 5b shows the visualization of

the relevance scores that explain the prediction of the rejection

condition when the input was an image acquired during the

rejection condition.

For the purpose of creating publication-quality brain

figures, the CanlabCore toolbox provides the fmridisplay

object. For example, canlab_results_fmridisplay.m

with the fmridisplay object is very useful. In

addition, the CanlabCore toolbox also provides for

creating surface images, cluster_surf.m and surface()

methods for the fmri_data and region object

classes. In Python, one can use many different

visualization options, including plotting.plot_stat_map,

plotting.plot_glass_brain and

plotting.plot_surf_stat_map. We included some

Kohoutová et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

examples in our Jupyter notebook, cnn_lrp.ipynb, available

at https://github.com/cocoanlab/interpret_ml_neuroimaging.

Test generalizability with independent datasets ● Timing 1 – 2 h

▲CRITICAL This stage tests the new model’s ability to generalize over new individuals,

multiple datasets from different laboratories and scanners and variants in experimental and

testing conditions. The test for generalizability is an open-ended process of evaluating a

model’s robustness across variations, and thus this stage should be repeatedly performed

with many different datasets from different contexts and test conditions. For demonstration,

here we provide example analyses of testing the generalizability of two a priori predictive

models developed to predict pain intensity in previous studies: the NPS13 and the SIIPS118

(Fig. 6a,c). The example dataset93 is used as an independent test dataset.

8. Prepare the predictive models to be tested and test data. Make sure that the masks

are included in the MATLAB path. We read the contrast image data using the

fmri_data object.

% Prepare a priori models: NPS and SIIPS1

nps = which(‘weights_NSF_grouppred_cvpcr.img’);

siips = which(‘nonnoc_v11_4_137subjmap_weighted_mean.nii’);

% load contrast image data

cont_imgs{1} = filenames(fullfile(basedir, ‘data’, ‘derivatives’,

… ‘contrast_images’, ‘heat*nii’), ‘char’);

cont_imgs{2} = filenames(fullfile(basedir, ‘data’, ‘derivatives’,

… ‘contrast_images’, ‘warmth*nii’), ‘char’);

cont_imgs{3} = filenames(fullfile(basedir, ‘data’, ‘derivatives’,

… ‘contrast_images’, ‘rejection*nii’), ‘char’);

cont_imgs{4} = filenames(fullfile(basedir, ‘data’, ‘derivatives’,

… ‘contrast_images’, ‘friend*nii’), ‘char’);

data_test = fmri_data(cont_imgs, gray_matter_mask);

? TROUBLESHOOTING

9. Calculate the pattern expression values. We used the apply_mask function

with the ‘pattern_expression’ option to calculate a dot product between the

model weights and brain data. We obtained one pattern expression value per

participant and condition, resulting in 59 values per condition.

% calculate pattern expression values

pexp_nps = apply_mask(data_test, nps, ‘pattern_expression’, …

‘ignore_missing’);

pexp_siips = apply_mask(data_test, siips, ‘pattern_expression’, …

‘ignore_missing’);

% reshape pexp values to have different conditions in different

Kohoutová et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cocoanlab/interpret_ml_neuroimaging

columns pexp_nps = reshape(pexp_nps, 59, 4);

pexp_siips = reshape(pexp_siips, 59, 4);

10. Evaluate the models’ predictive performance, including specificity and
sensitivity. In this example analysis, we tried to discriminate between the heat

and warmth conditions and between the rejection and friend conditions using

the NPS and SIIPS1. Given that we have one value per person, we used the

2AFC test, which compares the pattern expression values for the two contrasting

conditions within the same participant without using a threshold. The higher

value within a participant is classified as a positive condition. The 2AFC test

can be performed using the roc_plot function with the ‘twochoice’ option.

The inputs to the function are a vector of pattern expression and a corresponding

binary outcome. The results are illustrated in Fig. 6b,d.

% NPS for pain vs. warmth

roc_nps_pain_warmth = roc_plot([pexp_nps(:,1);pexp_nps(:,2)], …

[true(59,1);false(59,1)], ‘twochoice’);

% NPS for rejection vs. friend

roc_nps_rejection_friend = roc_plot([pexp_nps(:,3); …

pexp_nps(:,4)], [true(59,1);false(59,1)], ‘twochoice’);

% SIIPS1 for pain vs. warmth

roc_siips_pain_warmth = roc_plot([pexp_siips(:,1); …

pexp_siips(:,2)], [true(59,1);false(59,1)], ‘twochoice’);

% SIIPS1 for rejection vs. friend

roc_siips_rejection_friend = roc_plot([pexp_siips(:,3); …

pexp_siips(:,4)], [true(59,1);false(59,1)], ‘twochoice’);

Evaluate the neurobiological validity of the model ● Timing 1–2 h

11. Evaluate the neurobiological validity of the model. This step aims to evaluate the

neurobiological plausibility and validity of a model by examining converging

evidence from previous literature and more invasive studies. As discussed

above, it may not be possible to provide definitive answers to this biology-level

assessment, but rather it should be regarded as an open-ended investigation that

requires long-term and collaborative efforts from diverse disciplines and multi-

modal and multi-level approaches. One way to examine the neurobiological

plausibility of the model is to evaluate results from feature- and model-level

assessments in the light of neuroscience literature. Therefore, in the current

protocol, we provide two examples of biology-level assessment: evaluating

overlaps of the model with large-scale resting-state functional networks

and term-based decoding based on a large-scale meta-analysis database,

Neurosynth80.

The analysis in Option A examines which resting-state functional networks play

important roles in a predictive model by calculating the overlaps (or pattern

similarity) between a thresholded or unthresholded map (predictive weights

Kohoutová et al. Page 34

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

or feature importance) and the functional networks. For the analysis results

shown in Fig. 7a, we used the thresholded predictive weight map from Step

7A (bootstrap tests) and examined its overlaps with seven large-scale functional

brain networks87,116,117.

Follow the steps in option B to perform decoding analysis based on a meta-

analytic database.

Option Module

11A Overlap with resting-state functional networks

11B Decoding analysis based on a meta-analytic database

A. Overlap with large-scale resting-state functional networks

i. Prepare a parcellation of interest. Here we loaded the mask

image file that had unique values for seven resting-state

functional networks using the fmri_data object. For the

next step of the analysis, we created an indicator matrix, of

which the dimension is the number of voxels × the number of

networks.

img = fullfile(basedir, ‘masks’, …

‘Bucknerlab_7clusters_all_combined.nii’);

mask = fmri_data(img, gray_matter_mask);

dat = [mask.dat==1 mask.dat==2 mask.dat==3

mask.dat==4 … mask.dat==5 mask.dat==6 mask.dat==7];

ii. Prepare a thresholded image vector based on the feature
significance. For this example, we prepared the thresholded

map based on bootstrap test results from Step 7A.

pattern_thresh = stats_boot.weight_obj.dat .* …

double(stats_boot.weight_obj.sig);

iii. Calculate the proportions of overlap between the thresholded
pattern map and each of the networks. For this analysis,

one can use the canlab_pattern_similarity.m function

with the ‘posterior_overlap’ option, which provides the

posterior probability of observing the thresholded map given

each network. We calculated the overlap-based similarity

separately for positive and negative predictive weights.

% calculate posterior probability of observing

Kohoutová et al. Page 35

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

thresholded

% regions given each network

overlap_pos = canlab_pattern_similarity(dat,

… pattern_thresh>0, ‘posterior_overlap’,

‘ignore_missing’);

overlap_neg = canlab_pattern_similarity(dat,

… pattern_thresh<0, ‘posterior_overlap’,

‘ignore_missing’);

B. Decoding analysis based on a meta-analytic database

i. Using a large-scale meta-analytic decoding framework

provided by Neurosynth80, one can identify the psychological

terms associated with a thresholded or unthresholded map

of predictive weights or feature importance values. The

Neurosynth decoder uses meta-analytic maps generated for

various psychological terms and assesses their similarity

to the input brain maps. It returns a list of the terms

with correlation coefficients between the input and the meta-

analytic maps. Investigators can use either the decoder in the

Neurosynth Python package (https://github.com/neurosynth/

neurosynth/blob/master/neurosynth/analysis/decode.py) or the

Neurosynth decoder web application (http://neurosynth.org/

decode/). Here, we provide a Python code for the decoding

analysis, and Fig. 7b shows an example result of the decoding

analysis for the unthresholded SVM model.

import neurosynth as ns

ns.dataset.download(path=‘.’, unpack=True)

from neurosynth import decode

from neurosynth.base.dataset import Dataset

dataset = Dataset(‘data/database.txt’)

dataset.add_features(‘data/features.txt’)

decoder = decode.Decoder(dataset)

data =

decoder.decode([‘svm_heat_rejection_pattern.nii’],

save=‘decoding_ svm_heat_rejection_pattern.txt’)

Perform representational similarity analysis ● Timing 1–2 h

▲CRITICAL This step aims to clarify the model’s representations and decision principles

by examining and comparing model decisions over multiple instances and conditions. There

can be many different ways to achieve this step, but here we provide an example of

representational similarity analysis on two a priori predictive models for pain, the NPS13 and

the SIIPS118. We tested these predictive models on the example dataset93, which has data

from four conditions: pain, warmth, rejection and friend. Then, we conducted forced-choice

Kohoutová et al. Page 36

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/neurosynth/neurosynth/blob/master/neurosynth/analysis/decode.py
https://github.com/neurosynth/neurosynth/blob/master/neurosynth/analysis/decode.py
https://neurosynth.org/decode/
https://neurosynth.org/decode/

tests for each pair of conditions to obtain the classification accuracy matrix, which was then

used as a distance metric (i.e., a higher classification accuracy for [A vs. B] means that A

and B conditions are far from each other for the predictive model). The example analysis

results are shown in Fig. 7c.

12. Obtain classification accuracy matrices for different models. Using the pattern

expression values obtained from Step 9, run the forced-choice classification tests

for different pairs of conditions.

nps_acc = zeros(4,4);

siips_acc = zeros(4,4);

for i = 1:4

 for j = 1:4

 if i < j

 roc_nps = roc_plot([pexp_nps(:,i); pexp_nps(:,j)], …

[true(59,1); false(59,1)], ‘twochoice’, ‘noplot’);

 nps_acc(i,j) = roc_nps.accuracy;

 nps_acc(j,i) = roc_nps.accuracy; % make it symmetric

 roc_siips = roc_plot([pexp_siips(:,i); …

pexp_siips(:,j)], [true(59,1);false(59,1)], … ‘twochoice’,

‘noplot’);

 siips_acc(i,j) = roc_siips.accuracy;

 siips_acc(j,i) = roc_siips.accuracy; % make it symmetric

 end

 end

end

13. Compare the patterns of classification accuracy between two models (Steps 13–
15). Many different methods can be used for examining and comparing the

model representations over multiple conditions. In this protocol, we first use

Pearson’s correlation between two vectorized accuracy matrices. To do this, run

the following code:

r = corr(nps_acc(tril(true(4,4),−1)), siips_acc(tril(true(4,4),

−1)));

In the example data, the correlation between the accuracy matrices was 0.71,

indicating that the models are fairly closely related (Fig. 7c).

14. Visualize the relationship between conditions using MATLAB’s graph analysis
tools. Turn the accuracy matrices into weights by subtracting the accuracy from

one and divide it by the vector sum. With the weighted adjacency matrix,

plot undirected, weighted networks. The network plots reveal some differences

between the two predictive models—for the NPS, the heat condition is far from

all other conditions, but for the SIIPS1, the heat and rejection conditions are

Kohoutová et al. Page 37

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

more closely located than for the NPS (Fig. 7c). To perform this step, use the

following code:

% vectorize the accuracy matrices

nps_acc = nps_acc(tril(true(4,4),−1));

siips_acc = siips_acc(tril(true(4,4),−1));

% make the accuracy values into weights

w_nps = (1-nps_acc)./sum(1-nps_acc);

w_siips = (1-siips_acc)./sum(1-siips_acc);

% draw network plots

[i, j] = find(tril(true(4,4),−1));

subplot(1,2,1);

G_nps = graph(i,j,w_nps);

plot(G_nps,’Layout’,’force’, ‘WeightEffect’, ‘inverse’, …

‘LineWidth’,w_nps*10);

subplot(1,2,2);

G_siips = graph(i,j,w_siips);

plot(G_siips,’Layout’,’force’, ‘WeightEffect’, ‘inverse’, …

‘LineWidth’,w_siips*10);

? TROUBLESHOOTING

15. Plot a dendrogram with the single linkage method to examine how the conditions
were hierarchically clustered (Fig. 7c). Given the small number of the conditions

in the example dataset, the clustering analysis might not be very useful here.

However, the clustering analysis will become much more useful if there are

a larger number of conditions. To plot the dendrograms for the two models

examined here, run this code:

subplot(1,2,1);

Z_nps = linkage(nps_acc(tril(true(4,4),−1))’);

h_nps = dendrogram(Z_nps);

subplot(1,2,2);

Z_siips = linkage(siips_acc(tril(true(4,4),−1))’);

h_siips = dendrogram(Z_siips);

Troubleshooting

Possible problems in running the protocol and how to troubleshoot the issues can be found

in Table 5.

Kohoutová et al. Page 38

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Timing

Step 1, model building: 20 min to a few hours. A, SVMs: 20 min to a few hours; B,

CNN: a few hours

Steps 2–3, cross-validated performance assessment: 5–20 min

Steps 4–6, analysis of confounds: 5–20 min

Step 7, identify important features: 20 min to a few days. A, bootstrap tests: 1 h to a

few days; B, RFE: 1–6 h; C, ‘virtual lesion’ analysis: 20 min to 1 h; D, LRP: 20 min

to 1 h

Steps 8–10, testing generalizability with independent datasets: 1–2 h

Step 11, evaluate the neurobiological validity of the model: 1–2 h

Steps 12–15, representational analysis: 1–2 h

Anticipated results

The current protocol proposes a workflow that is expected to yield complementary results

that support validation and interpretation of neuroimaging ML models. The workflow is

based on the unified model interpretation framework introduced here.

Along with the methods explained here in the Procedure, we included examples of graphs

and visualizations of the expected results based on our demonstration dataset. Figure

3a shows an example result of assessing the model’s performance using LOSO cross-

validation, which we describe in Steps 2 and 3. In Figs. 3b,c and 5, the significant features

identified by the bootstrap test, RFE and LRP (Step 7, options A, B and D), respectively,

are visualized on the brain underlay. Table 4 illustrates example results of the ‘virtual lesion’

analysis described in Step 7, option C. Example results of generalizability testing performed

in Steps 8–10 are illustrated in Fig. 6b,d. Results of the biology-level assessment (Step

11) are depicted in Fig. 7a,b. Finally, Fig. 7c shows visualizations of the representational

similarity analysis described in Steps 12–15.

Although interpreting neuroimaging-based ML models is an open-ended process, the

current protocol will serve as an important step toward developing interpretable and

neuroscientifically plausible neuroimaging ML models and biomarkers and eventually

a cumulative science of neuroimaging. The use of the proposed model interpretation

framework and the carefully designed tests for different levels of assessment will produce

a number of pieces of converging evidence, which could then constitute an overall

interpretation and understanding of neuroimaging ML models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Kohoutová et al. Page 39

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Acknowledgements

We would like to thank CANlab members who have contributed to the CANlab tool development, including Yoni
Ashar, Luke Chang, Stephan Geuter, Phil Kragel, Bogdan Petre and Dan Weflen (who made >10 GitHub commits)
among others. This work was supported by IBS-R015-D1 (Institute for Basic Science, Korea), 2019R1C1C1004512
(National Research Foundation of Korea) and 18-BR-03, 2019-0-01367-BabyMind (Ministry of Science and
ICT, Korea) (to C.-W.W.); AI Graduate School Support Program [2019-0-00421] and ITRC Support Program
[2019-2018-0-01798] of MSIT/IITP of the Korean government (to J.H., S.C. and T.M.); and NIH R01DA035484
and R01MH076136 (to T.D.W.). The authors have no conflicts of interest to declare.

Data availability

Sample data used in this protocol are publicly available at https://github.com/cocoanlab/

interpret_ml_neuroimaging.

Related links

Key reference(s) using this protocol

Wager, T. D. et al. N. Engl. J. Med. 368, 1388–1397 (2013): https://doi.org/10.1056/

NEJMoa1204471

Woo, C.-W. et al. Nat. Commun. 5, 5380 (2014): https://doi.org/10.1038/ncomms6380

Woo, C.-W. et al. Nat. Commun. 8, 14211 (2017): https://doi.org/10.1038/ncomms14211

References

1. Scheinost D et al. Ten simple rules for predictive modeling of individual differences in
neuroimaging. Neuroimage 193, 35–45 (2019). [PubMed: 30831310]

2. Woo C-W, Chang LJ, Lindquist MA & Wager TD Building better biomarkers: brain models in
translational neuroimaging. Nat. Neurosci 20, 365–377 (2017). [PubMed: 28230847]

3. Haxby JV Multivariate pattern analysis of fMRI: the early beginnings. Neuroimage 62, 852–855
(2012). [PubMed: 22425670]

4. Haynes JD A primer on pattern-based approaches to fMRI: principles, pitfalls, and perspectives.
Neuron 87, 257–270 (2015). [PubMed: 26182413]

5. Norman KA, Polyn SM, Detre GJ & Haxby JV Beyond mind-reading: multi-voxel pattern analysis
of fMRI data. Trends Cogn. Sci 10, 424–430 (2006). [PubMed: 16899397]

6. Horikawa T, Tamaki M, Miyawaki Y & Kamitani Y Neural decoding of visual imagery during
sleep. Science 340, 639–642 (2013). [PubMed: 23558170]

7. Kragel PA, Knodt AR, Hariri AR & LaBar KS Decoding spontaneous emotional states in the human
brain. PLoS Biol. 14, e2000106, 10.1371/journal.pbio.2000106 (2016). [PubMed: 27627738]

8. Mitchell TM et al. Predicting human brain activity associated with the meanings of nouns. Science
320, 1191–1195 (2008). [PubMed: 18511683]

9. Brodersen KH et al. Decoding the perception of pain from fMRI using multivariate pattern analysis.
Neuroimage 63, 1162–1170 (2012). [PubMed: 22922369]

10. Schulz E, Zherdin A, Tiemann L, Plant C & Ploner M Decoding an individual’s sensitivity to
pain from the multivariate analysis of EEG data. Cereb. Cortex 22, 1118–1123 (2012). [PubMed:
21765182]

11. Haxby JV et al. Distributed and overlapping representations of faces and objects in ventral
temporal cortex. Science 293, 2425–2430 (2001). [PubMed: 11577229]

12. Kriegeskorte N, Goebel R & Bandettini P Information-based functional brain mapping. Proc. Natl
Acad. Sci. USA 103, 3863–3868 (2006). [PubMed: 16537458]

Kohoutová et al. Page 40

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/cocoanlab/interpret_ml_neuroimaging
https://github.com/cocoanlab/interpret_ml_neuroimaging

13. Wager TD et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med 368,
1388–1397 (2013). [PubMed: 23574118]

14. Rosenberg MD et al. A neuromarker of sustained attention from whole-brain functional
connectivity. Nat. Neurosci 19, 165–171 (2016). [PubMed: 26595653]

15. Mano H et al. Classification and characterisation of brain network changes in chronic back pain: a
multicenter study. Wellcome Open Res. 3, 19 (2018). [PubMed: 29774244]

16. Shen X et al. Using connectome-based predictive modeling to predict individual behavior from
brain connectivity. Nat. Protoc 12, 506–518 (2017). [PubMed: 28182017]

17. Peelen MV, Wiggett AJ & Downing PE Patterns of fMRI activity dissociate overlapping functional
brain areas that respond to biological motion. Neuron 49, 815–822 (2006). [PubMed: 16543130]

18. Woo C-W et al. Quantifying cerebral contributions to pain beyond nociception. Nat. Commun 8,
14211 (2017). [PubMed: 28195170]

19. Krishnan A et al. Somatic and vicarious pain are represented by dissociable multivariate brain
patterns. Elife 5, e15166, 10.7554/eLife.15166 (2016). [PubMed: 27296895]

20. Castelvecchi D Can we open the black box of AI? Nat. N 538, 20 (2016).

21. Rudin C Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nat. Mach. Intell 1, 206–215 (2019). [PubMed: 35603010]

22. Eloyan A et al. Automated diagnoses of attention deficit hyperactive disorder using magnetic
resonance imaging. Front. Syst. Neurosci 6, 61 (2012). [PubMed: 22969709]

23. Vellido A, Martín-Guerrero JD & Lisboa PJ Making machine learning models interpretable. In
Proceedings of European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning 163–172 (ESANN, 2012).

24. Lipton ZC The mythos of model interpretability. Preprint at https://arxiv.org/abs/1606.03490
(2016).

25. Cabitza F, Rasoini R & Gensini GF Unintended consequences of machine learning in medicine.
JAMA 318, 517–518 (2017). [PubMed: 28727867]

26. Doshi-Velez F & Kim B Towards a rigorous science of interpretable machine learning. Preprint at
https://arxiv.org/abs/1702.08608 (2017).

27. Paulus MP Pragmatism instead of mechanism: a call for impactful biological psychiatry. JAMA
Psychiatry 72, 631–632 (2015). [PubMed: 25992540]

28. Pine DS & Leibenluft E Biomarkers with a mechanistic focus. JAMA Psychiatry 72, 633–634
(2015). [PubMed: 25992716]

29. Bzdok D & Ioannidis JPA Exploration, inference, and prediction in neuroscience and biomedicine.
Trends Neurosci. 42, 251–262 (2019). [PubMed: 30808574]

30. Bennett D, Silverstein SM & Niv Y The two cultures of computational psychiatry. JAMA
Psychiatry 76, 563–564 (2019). [PubMed: 31017638]

31. Breakspear M Dynamic models of large-scale brain activity. Nat. Neurosci 20, 340–352 (2017).
[PubMed: 28230845]

32. Ritter P, Schirner M, McIntosh AR & Jirsa VK The virtual brain integrates computational
modeling and multimodal neuroimaging. Brain Connect. 3, 121–145 (2013). [PubMed: 23442172]

33. Deco G, Jirsa VK, Robinson PA, Breakspear M & Friston K The dynamic brain: from spiking
neurons to neural masses and cortical fields. PLoS Comput. Biol 4, e1000092 (2008). [PubMed:
18769680]

34. O’Reilly RC Biologically based computational models of high-level cognition. Science 314, 91–94
(2006). [PubMed: 17023651]

35. Frank MJ, Seeberger LC & O’Reilly RC By carrot or by stick: cognitive reinforcement learning in
parkinsonism. Science 306, 1940–1943 (2004). [PubMed: 15528409]

36. Cole JH et al. Predicting brain age with deep learning from raw imaging data results in a reliable
and heritable biomarker. NeuroImage 163, 115–124 (2017). [PubMed: 28765056]

37. Horikawa T & Kamitani Y Generic decoding of seen and imagined objects using hierarchical
visual features. Nat. Commun 8, 15037, 10.1038/ncomms15037 (2017). [PubMed: 28530228]

38. Kragel PA, Reddan MC, LaBar KS & Wager TD Emotion schemas are embedded in the human
visual system. Sci. Adv 5, eaaw4358 (2019). [PubMed: 31355334]

Kohoutová et al. Page 41

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1606.03490
https://arxiv.org/abs/1702.08608

39. Hassabis D, Kumaran D, Summerfield C & Botvinick M Neuroscience-inspired artificial
intelligence. Neuron 95, 245–258 (2017). [PubMed: 28728020]

40. Banino A et al. Vector-based navigation using grid-like representations in artificial agents. Nature
557, 429–433 (2018). [PubMed: 29743670]

41. Box GEP Science and statistics. J. Am. Stat. Assoc 71, 791–799 (1976).

42. Tibshirani R Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol 58, 267–288 (1996).

43. Zou H & Hastie T Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B
Stat. Methodol 67, 301–320 (2005).

44. Grosenick L, Klingenberg B, Katovich K, Knutson B & Taylor JE Interpretable whole-brain
prediction analysis with GraphNet. Neuroimage 72, 304–321 (2013). [PubMed: 23298747]

45. Bzdok D, Eickenberg M, Varoquaux G & Thirion B Hierarchical region-network sparsity for high-
dimensional inference in brain imaging. In International Conference on Information Processing
in Medical Imaging. (eds. Niethammer M, Styner M, Aylward S, Zhu H, Oguz I et al.) 323–335
(Springer, 2017).

46. Yamashita O, Sato M, Yoshioka T, Tong F & Kamitani Y Sparse estimation automatically selects
voxels relevant for the decoding of fMRI activity patterns. Neuroimage 42, 1414–1429 (2008).
[PubMed: 18598768]

47. Chang LJ, Gianaros PJ, Manuck SB, Krishnan A & Wager TD A sensitive and specific
neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 10.1371/
journal.pbio.1002180 (2015). [PubMed: 26098873]

48. Kragel PA, Koban L, Barrett LF & Wager TD Representation, pattern information, and brain
signatures: from neurons to neuroimaging. Neuron 99, 257–273 (2018). [PubMed: 30048614]

49. Rahwan I et al. Machine behaviour. Nature 568, 477–486 (2019). [PubMed: 31019318]

50. Caliskan A, Bryson JJ & Narayanan A Semantics derived automatically from language corpora
contain human-like biases. Science 356, 183–186 (2017). [PubMed: 28408601]

51. Rabinowitz NC et al. Machine theory of mind. Preprint at https://arxiv.org/abs/1802.07740 (2018).

52. Silver D et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).
[PubMed: 29052630]

53. Haxby JV, Connolly AC & Guntupalli JS Decoding neural representational spaces using
multivariate pattern analysis. Ann. Rev. Neurosci 37, 435–456 (2014). [PubMed: 25002277]

54. Kriegeskorte N & Kievit RA Representational geometry: integrating cognition, computation, and
the brain. Trends Cogn. Sci 17, 401–412 (2013). [PubMed: 23876494]

55. Yamins DL & DiCarlo JJ Using goal-driven deep learning models to understand sensory cortex.
Nat. Neurosci 19, 356–365 (2016). [PubMed: 26906502]

56. Khaligh-Razavi SM & Kriegeskorte N Deep supervised, but not unsupervised, models may explain
IT cortical representation. PLoS Comput. Biol 10, e1003915 10.1371/journal.pcbi.1003915
(2014). [PubMed: 25375136]

57. Raj D, Anderson AW & Gore JC Respiratory effects in human functional magnetic resonance
imaging due to bulk susceptibility changes. Phys. Med. Biol 46, 3331 (2001). [PubMed:
11768509]

58. Caballero-Gaudes C & Reynolds RC Methods for cleaning the BOLD fMRI signal. NeuroImage
154, 128–149 (2017). [PubMed: 27956209]

59. Power JD, Schlaggar BL & Petersen SE Recent progress and outstanding issues in motion
correction in resting state fMRI. NeuroImage 105, 536–551 (2015). [PubMed: 25462692]

60. Ciric R et al. Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc 13,
2801–2826 (2018). [PubMed: 30446748]

61. Labus JS et al. Multivariate morphological brain signatures predict patients with chronic abdominal
pain from healthy control subjects. Pain 156, 1545–1554 (2015). [PubMed: 25906347]

62. Efron B Bootstrap methods: another look at the jackknife. Ann. Stat 7, 1–26 (1979).

63. Craddock RC, Holtzheimer PE, Hu XPP & Mayberg HS Disease state prediction from resting state
functional connectivity. Magn. Reson. Med 62, 1619–1628 (2009). [PubMed: 19859933]

Kohoutová et al. Page 42

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1802.07740

64. Bach S et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS One 10, e0130140 10.1371/journal.pone.0130140 (2015). [PubMed: 26161953]

65. Lundberg SM et al. Explainable machine-learning predictions for the prevention of hypoxaemia
during surgery. Nat. Biomed. Eng 2, 749–760 (2018). [PubMed: 31001455]

66. Hanson SJ, Matsuka T & Haxby JV Combinatorial codes in ventral temporal lobe for object
recognition: Haxby (2001) revisited: is there a “face” area? NeuroImage 23, 156–166 (2004).
[PubMed: 15325362]

67. Ribeiro MT, Singh S & Guestrin C “Why should I trust you?”: explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 1135–1144 (ACM, 2016).

68. Kermany DS et al. Identifying medical diagnoses and treatable diseases by image-based deep
learning. Cell 172, 1122–1131 (2018). [PubMed: 29474911]

69. Gotsopoulos A et al. Reproducibility of importance extraction methods in neural network based
fMRI classification. NeuroImage 181, 44–54 (2018). [PubMed: 29964190]

70. Simonyan K, Vedaldi A & Zisserman A Deep inside convolutional networks: visualising image
classification models and saliency maps. Preprint at https://arxiv.org/abs/1312.6034 (2013).

71. Mordvintsev A, Olah C & Tyka M Inceptionism: Going Deeper into Neural Networks. https://
ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html (2015).

72. Lee M et al. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J. Neurosci 35,
5247–5259 (2015). [PubMed: 25834050]

73. Ren W et al. The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat.
Neurosci 19, 220–222 (2016). [PubMed: 26691834]

74. Carrasquillo Y & Gereau RW IV Hemispheric lateralization of a molecular signal for pain
modulation in the amygdala. Mol. Pain 4, 24 (2008). [PubMed: 18573207]

75. Kim HF & Hikosaka O Distinct basal ganglia circuits controlling behaviors guided by flexible and
stable values. Neuron 79, 1001–1010 (2013). [PubMed: 23954031]

76. Baliki MN et al. Parceling human accumbens into putative core and shell dissociates encoding of
values for reward and pain. J. Neurosci 33, 16383–16393 (2013). [PubMed: 24107968]

77. Pauli WM, O’Reilly RC, Yarkoni T & Wager TD Regional specialization within the human
striatum for diverse psychological functions. Proc. Natl Acad. Sci. USA 113, 1907–1912 (2016).
[PubMed: 26831091]

78. Simons LE et al. The human amygdala and pain: evidence from neuroimaging. Hum. Brain Mapp
35, 527–538 (2014). [PubMed: 23097300]

79. Ashar YK, Andrews-Hanna JR, Dimidjian S & Wager TD Empathic care and distress: predictive
brain markers and dissociable brain systems. Neuron 94, 1263–1273.e4 (2017). [PubMed:
28602689]

80. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC & Wager TD Large-scale automated synthesis
of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011). [PubMed: 21706013]

81. Gorgolewski K, Esteban O, Schaefer G, Wandell B & Poldrack R OpenNeuro—a free online
platform for sharing and analysis of neuroimaging data. 1677 (Organization for Human Brain
Mapping, Vancouver, Canada, 2017).

82. Gorgolewski KJ et al. NeuroVault.org: a web-based repository for collecting and sharing
unthresholded statistical maps of the human brain. Front. Neuroinform 9, 8 (2015). [PubMed:
25914639]

83. Wager TD et al. A Bayesian model of category-specific emotional brain responses. PLoS Comput.
Biol 11, e1004066, 10.1371/journal.pcbi.1004066 (2015). [PubMed: 25853490]

84. Kragel PA et al. Generalizable representations of pain, cognitive control, and negative emotion in
medial frontal cortex. Nat. Neurosci 21, 283–289 (2018). [PubMed: 29292378]

85. Eisenbarth H, Chang LJ & Wager TD Multivariate brain prediction of heart rate and skin
conductance responses to social threat. J. Neurosci 36, 11987–11998 (2016). [PubMed: 27881783]

86. Zaki J, Wager TD, Singer T, Keysers C & Gazzola V The anatomy of suffering: understanding
the relationship between nociceptive and empathic pain. Trends Cogn. Sci 20, 249–259 (2016).
[PubMed: 26944221]

Kohoutová et al. Page 43

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1312.6034
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://NeuroVault.org

87. Yeo BTT et al. The organization of the human cerebral cortex estimated by intrinsic functional
connectivity. J. Neurophysiol 106, 1125–1165 (2011). [PubMed: 21653723]

88. Hultman R et al. Brain-wide electrical spatiotemporal dynamics encode depression vulnerability.
Cell 173, 166–180.e14 (2018). [PubMed: 29502969]

89. Grosenick L et al. Functional and optogenetic approaches to discovering stable subtype-specific
circuit mechanisms in depression. Biol. Psychiatry: Cogn. Neurosci. Neuroimaging 4, 554–566
(2019). [PubMed: 31176387]

90. Drysdale AT et al. Resting-state connectivity biomarkers define neurophysiological subtypes
of depression. Nat. Med 23, 28–38 (2017). Erratum in: Nat. Med. 23, 264 (2017). [PubMed:
27918562]

91. Vemuri P et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate
with postmortem Braak neurofibrillary tangle stage. NeuroImage 42, 559–567 (2008). [PubMed:
18572417]

92. Apkarian AV A brain signature for acute pain. Trends Cogn. Sci 17, 309–310 (2013). [PubMed:
23747083]

93. Woo C-W et al. Separate neural representations for physical pain and social rejection. Nat.
Commun 5, 5380, 10.1038/ncomms6380 (2014). [PubMed: 25400102]

94. Rasmussen PM, Hansen LK, Madsen KH, Churchill NW & Strother SC Model sparsity and brain
pattern interpretation of classification models in neuroimaging. Pattern Recognit. 45, 2085–2100
(2012).

95. Baldassarre L, Pontil M & Mourao-Miranda J Sparsity is better with stability: combining
accuracy and stability for model selection in brain decoding. Front. Neurosci 11, 62, 10.3389/
fnins.2017.00062 (2017). [PubMed: 28261042]

96. de Pierrefeu A et al. Structured sparse principal components analysis with the TV-elastic net
penalty. IEEE Trans. Med. Imaging 37, 396–407 (2018). [PubMed: 28880163]

97. Zou H, Hastie T & Tibshirani R Sparse principal component analysis. Hui. J. Comput. Graph. Stat
15, 265–286 (2006).

98. Leonardi N et al. Principal components of functional connectivity: a new approach to study
dynamic brain connectivity during rest. NeuroImage 83, 937–950 (2013). [PubMed: 23872496]

99. Calhoun VD, Maciejewski PK, Pearlson GD & Kiehl KA Temporal lobe and “default”
hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum. Brain
Mapp 29, 1265–1275 (2008). [PubMed: 17894392]

100. Baker BT et al. Decentralized temporal independent component analysis: leveraging fMRI data in
collaborative settings. NeuroImage 186, 557–569 (2019). [PubMed: 30408598]

101. Varoquaux G et al. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines.
NeuroImage 145, 166–179 (2017). [PubMed: 27989847]

102. Alber M et al. iNNvestigate neural networks. J. Mach. Learn. Res 20, 1–8 (2019).

103. Lindquist MA et al. Group-regularized individual prediction: theory and application to pain.
NeuroImage 145, 274–287 (2017). [PubMed: 26592808]

104. Riley RD et al. Minimum sample size for developing a multivariable prediction model: PART
II—binary and time-to-event outcomes. Stat. Med 38, 1276–1296 (2019). [PubMed: 30357870]

105. Riley RD et al. Minimum sample size for developing a multivariable prediction model: Part
I—continuous outcomes. Stat. Med 38, 1262–1275 (2019). [PubMed: 30347470]

106. Woo CW, Roy M, Buhle JT & Wager TD Distinct brain systems mediate the effects of nociceptive
input and self-regulation on pain. PLoS Biol. 13, e1002036, 10.1371/journal.pbio.1002036
(2015). [PubMed: 25562688]

107. Esteban O et al. MRIQC: advancing the automatic prediction of image quality in MRI from
unseen sites. PLoS One 12, e0184661 (2017). [PubMed: 28945803]

108. Chollet F Keras. Deep learning for humans. Github repository. https://github.com/keras-team/
keras (2015).

109. Van Essen DC et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80,
62–79 (2013). [PubMed: 23684880]

Kohoutová et al. Page 44

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/keras-team/keras
https://github.com/keras-team/keras

110. Casey BJ et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition
across 21 sites. Dev. Cogn. Neurosci 32, 43–54 (2018). [PubMed: 29567376]

111. Sudlow C et al. UK biobank: an open access resource for identifying the causes of a wide range of
complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). [PubMed: 25826379]

112. Kingma DP & Ba J Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/
1412.6980 (2014).

113. Vul E, Harris C, Winkielman P & Pashler H Puzzlingly high correlations in fMRI studies of
emotion, personality, and social cognition. Perspect. Psychol. Sci 4, 274–290 (2009). [PubMed:
26158964]

114. Woo C-W & Wager TD What reliability can and cannot tell us about pain report and pain
neuroimaging. Pain 157, 511–513 (2016). [PubMed: 26645548]

115. De Martino F et al. Combining multivariate voxel selection and support vector machines for
mapping and classification of fMRI spatial patterns. NeuroImage 43, 44–58 (2008). [PubMed:
18672070]

116. Buckner RL, Krienen FM, Castellanos A, Diaz JC & Yeo BT The organization of the human
cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol 106, 2322–2345
(2011). [PubMed: 21795627]

117. Choi EY, Yeo BT & Buckner RL The organization of the human striatum estimated by intrinsic
functional connectivity. J. Neurophysiol 108, 2242–2263 (2012). [PubMed: 22832566]

118. Yahata N et al. A small number of abnormal brain connections predicts adult autism spectrum
disorder. Nat. Commun 7, 11254 (2016). [PubMed: 27075704]

119. Poldrack RA & Gorgolewski KJ Making big data open: data sharing in neuroimaging. Nat.
Neurosci 17, 1510–1517 (2014). [PubMed: 25349916]

120. Karpathy A, Johnson J & Fei-Fei L Visualizing and understanding recurrent networks. Preprint at
https://arxiv.org/abs/1506.02078 (2015).

121. Papernot N & McDaniel P Deep k-nearest neighbors: towards confident, interpretable and robust
deep learning. Preprint at https://arxiv.org/abs/1803.04765 (2018).

122. Wisniewski D, Reverberi C, Tusche A & Haynes JD The neural representation of voluntary
task-set selection in dynamic environments. Cereb. Cortex 25, 4715–4726 (2015). [PubMed:
25037922]

123. Ye JP et al. Sparse learning and stability selection for predicting MCI to AD conversion
using baseline ADNI data. BMC Neurol. 12, 46, 10.1186/1471-2377-12-46 (2012). [PubMed:
22731740]

124. Erlikhman G & Caplovitz GP Decoding information about dynamically occluded objects in visual
cortex. NeuroImage 146, 778–788 (2017). [PubMed: 27663987]

125. Rondina JM, Shawe-Taylor J & Mourão-Miranda J Stability-based multivariate mapping using
ScoRS. In PRNI ‘13: Proceedings of the 2013 International Workshop on Pattern Recognition in
Neuroimaging 198–202 (IEEE Computer Society, 2013).

126. Strother SC et al. Activation pattern reproducibility: measuring the effects of group size and data
analysis models. Hum. Brain Mapp 5, 312–316 (1997). [PubMed: 20408234]

127. Habes I et al. Pattern classification of valence in depression. Neuroimage Clin. 2, 675–683
(2013). [PubMed: 24179819]

128. Zhang FQ, Wang JP, Kim J, Parrish T & Wong PCM Decoding multiple sound categories
in the human temporal cortex using high resolution fMRI. PLoS One 10, e0117303, 10.1371/
journal.pone.0117303 (2015). [PubMed: 25692885]

129. Zien A, Krämer N, Sonnenburg S & Rätsch G The feature importance ranking measure. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases 694–709
(Springer, 2009).

130. Vidovic MM-C, Görnitz N, Müller K-R & Kloft M Feature importance measure for non-linear
learning algorithms. Preprint at https://arxiv.org/abs/1611.07567 (2016).

131. Lei J, G’Sell M, Rinaldo A, Tibshirani RJ & Wasserman L Distribution-free predictive inference
for regression. J. Am. Stat. Assoc 113, 1094–1111 (2017).

Kohoutová et al. Page 45

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1506.02078
https://arxiv.org/abs/1803.04765
https://arxiv.org/abs/1611.07567

132. Shrikumar A, Greenside P & Kundaje A Learning important features through propagating
activation differences. Preprint at https://arxiv.org/abs/1704.02685 (2017).

133. Lundberg S & Lee S-I A unified approach to interpreting model predictions. Preprint at https://
arxiv.org/abs/1705.07874 (2017).

134. Vetere G et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron
94, 363–374.e364 (2017). [PubMed: 28426969]

135. Polyn SM, Natu VS, Cohen JD & Norman KA Category-specific cortical activity precedes
retrieval during memory search. Science 310, 1963–1966 (2005). [PubMed: 16373577]

136. Erhan D, Bengio Y, Courville A & Vincent P Visualizing Higher-Layer Features of a
Deep Network http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/247
(2009).

Kohoutová et al. Page 46

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1705.07874
http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/247

Box 1 |

CANlab interactive fMRI analysis tools

Neuroimaging analyses are widely performed in well-established pipelines with

optimized procedures. However, to discover new and better ways of neuroimaging data

analysis, and to avoid spurious results, there is also a need for flexibility to allow users

to be creative and explore the data and analysis methods. The CANlab neuroimaging

analysis tools were designed with this goal in mind. The tools provide a high-level

language for interacting with fMRI data. Users can apply simple commands to perform

various analyses and to explore the distribution of data and consequences of different

analysis choices. As a result, analysis scripts can be short, transparent and easy to read,

write and interpret.

The CANlab imaging analysis tools enable interactive neuroimaging data analysis using

objects with simple methods operating in MATLAB. There are eight main object classes

suitable for different types of analyses. To perform analyses in this protocol, we use

fmri_data and statistic_image objects, which both represent subclasses of the

image_vector data class. A representative object of the image_vector data class

contains basic information about loaded images, such as the data values in the .dat

field, indicators of removed data in .removed_voxels and .removed_images fields,

details about the volume information of the image in the .volInfo field or a record

of past manipulations with the object in the .history field. Its subclasses, such as

fmri_data and statistic_image, then inherit these basic properties. There are also

various methods that can be performed on image_vector objects or other objects from

its all subclasses. For example, one can save memory using the remove_empty method,

which removes all empty voxels and images from the object but keeps track of the

removal in .removed_voxels and .removed_images fields of the object. There is

also a reverse method, replace_empty, which replaces the missing data values with

zeros. One can also resample the image to match the space of another image using the

resample_space method or mask the data with a mask image using the apply_mask

method.

The fmri_data subclass is one of the main objects for the fMRI data analysis. It stores

neuroimaging data in 2D space, enabling simple manipulations with the data. Properties

of the fmri_data object include the properties inherited from the image_vector

data class and additional information about the data, such as outcomes in the .Y field

and covariates in the .covariates field. There are various useful methods that can

be operated on the fmri_data objects, some of which are used in this protocol.

For example, one can easily visualize raw data and examine data quality using the

plot method, run one-sample t-test using ttest, conduct a regression analysis using

regress, threshold the images using threshold, write image data as NIfTI or Analyze

files using the write method and build a predictive model using the predict method.

To see the full list of available methods, one can type methods(fmri_data) in the

MATLAB Command Window.

Kohoutová et al. Page 47

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The statistic_image subclass is another important object for the fMRI data analysis.

It stores statistical test outputs, such as beta or t-values, P values, standard error, degree

of freedom, sample size and significance. In the current protocol, the statistic_image

object stores the output of the bootstrap tests performed with the predict function.

It can be easily thresholded with desired thresholding methods, such as FDR, using

the threshold method, and significant voxels can be visualized using the orthviews

method. More detailed tutorials for the CANlab fMRI analysis tools are available at

https://canlab.github.io/.

Kohoutová et al. Page 48

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://canlab.github.io/

Box 2 |

The predict function in the CanlabCore toolbox

The predict function is a versatile tool for running many different ML algorithms with

cross-validation. It operates on the fmri_data object, which stores the data matrix used

for prediction in .dat (features×observations) and the corresponding outcome vector

in .Y (observations×1). Users can specify the prediction algorithm, including multiple

regression, LASSO regression, PCR, LASSO-PCR, SVMs and support vector regression.

In addition, the function includes an option to perform cross-validation. Users can define

the number of cross-validation folds (i.e., k-fold cross-validation; the predict function

stratifies cross-validation folds based on the outcome) or custom cross-validation fold,

such as leave-one-out cross-validation. The function also evaluates performance with

either misclassification rate or mean square error. There is also an option to automatically

perform the bootstrap tests. Users can enter a desired number of bootstrap samples to use,

and they can also save the bootstrapped weights if needed.

The output of the function provides many kinds of information, including predictive

model weights, predicted outcomes (y) based on cross-validation and performance values,

such as prediction error or correlation between actual and predicted outcomes. For

example, the .weight_object field in the output contains an fmri_data object (or

a statistic_image object if the bootstrap tests are performed) that contains the

weights of the trained model in the .dat field. Another important field of the output

is the .other_output_cv field. It stores the weights of all models trained during the

cross-validation in the first column, the corresponding predicted values in the second

column, the intercept in the third column and additional information about the algorithm

in the fourth column. If the bootstrap tests are performed, the results of the analysis are

stored in the .WTS field, which contains the mean, P and z values and standard errors, as

well as the bootstrapped weights if the ‘savebootweights’ option was used. You can

find more information and some use cases in the help document of the predict function

by typing help fmri_data.predict in the command window.

Kohoutová et al. Page 49

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1 |. Model complexity in neuroimaging and the model interpretation framework.
a, Neuroimaging-based ML models are usually built upon a large number of features

(e.g., ~105 in the case of whole-brain fMRI), which, along with considering potential

confounds and correlations between features, makes even linear models complex. In the

case of nonlinear models, the situation is more complicated, as it is not clear what

a model uses as features. To trust models and find them useful in basic neuroscience

and clinical settings, researchers need to know why and how a model works. b, The

model interpretation framework consists of three levels of assessment. In the model-level

assessment, the model is evaluated as a whole, and the characteristics of the model are

derived mainly from observations of the input–output relationship. The assessment includes

tests of specificity, sensitivity and generalizability, analyses of model’s representations

and decisions and analyses of noise contribution. The feature-level assessment aims to

identify features significant for a prediction within a model. The feature significance can

be evaluated based on the feature’s impact on predictions or the feature’s stability across

multiple samples of the training data. The explanation obtained by this level of assessment

should enhance human readability of the model. The biology-level assessment aims to prove

the neuroscientific plausibility of the model with evidence from previous literature and other

studies using different methodology (e.g., invasive studies). In case a model suggests a novel

finding that cannot be verified by the current state of the art, the model can serve as a basis

for theory development, which should subsequently be corroborated by studies employing

other (e.g., invasive) experimental methods.

Kohoutová et al. Page 50

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2 |. A proposed workflow for the procedure.
In this protocol, we present an example workflow that implements the unified model

interpretation framework. The first step is the model building (Step 1). This is a prerequisite

step that stands outside the interpretation framework. However, we include a brief

description of this step to emphasize its importance. This protocol includes examples of

building linear support vector machines (option A) and a convolutional neural network

model (option B) using an example dataset from our previous publication93. Next, we

evaluate the basic properties of a model, such as its predictive power (Steps 2 and 3) and

contributions of confounds (Steps 4–6). In case either of the two steps shows insufficient

quality of the model, one should return to Step 1 to review the data quality and to revise

the model. Note that obtaining a definitive answer to the question of Steps 4–6 (i.e.,

whether the model is confound free) is challenging, and therefore Steps 4–6 should be

an open-ended investigation. If the results from Steps 2 and 3 and Steps 4–6 are good

enough to move forward, the next step (Step 7) is the feature-level assessment. This

protocol provides analysis examples of four options of identifying significant features:

bootstrap tests, RFE, ‘virtual lesion’ analysis and LRP. If the identified significant features

provide sensible results, one can continue to Steps 8–10 and Step 11. Otherwise (e.g.,

all the significant features are located within the ventricles), one should revisit the model

building. Generalizability testing (Steps 8–10) and biology-level assessment (Step 11) can

be performed in an arbitrary order. In Steps 8–10, a model is tested for its generalizability

to unseen data from new individuals, different laboratories, scanners and contexts. Testing

generalizability requires new test data, which can take a long time to collect. Therefore, one

can first examine the model’s biological validity (Step 11) and then test its generalizability,

or vice versa. Both generalizability testing and biology-level assessment require open-ended

test processes and should support each other; more generalizable models are likely to be

Kohoutová et al. Page 51

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

more biologically plausible. For Step 11, we provide examples of two options: examining

the relationship of the model with the large-scale resting-state functional networks (option

A) and term-based meta-analytic decoding using Neurosynth80 (option B). In practice, this

step should also include exhaustive literature reviews and support of invasive studies. The

step can also be performed multiple times in case the model suggests novel theories that

should be evaluated. The final step of this workflow is the representational analysis (Steps

12–15), which can provide a better understanding of the model’s decision principles by

examining the patterns of model behaviors over multiple instances and examples. This step

often requires other models with which to be compared, and for this reason, we include this

as the last step of the workflow. However, if other models are already available, this step can

be done earlier. The results from Steps 12–15 could provide converging evidence for Step

11. Since interpreting an ML neuroimaging model is, in fact, an open-ended process, this

workflow should be regarded as the bare minimum, and more analyses other than the ones

proposed here can help the model interpretation.

Kohoutová et al. Page 52

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3 |. Predictive performance of the SVM model (Steps 2 and 3) and the results of feature-level
assessment of the linear models (Step 7, options A and B).
a, The plots illustrate the classification performance of the SVM model tested by LOSO

cross-validation with the threshold for misclassification set to 0 (Steps 2 and 3 of the

procedure). The top panel shows the cross-validated distance from hyperplane and the

decision threshold, and the bottom panel shows the receiver operating characteristic

(ROC) plot. The yellow dots indicate correct classification, and the gray dots indicate

misclassification. The accuracy of the SVM model reached 92% ± 0.9%. b, The weight map

shows significant feature weights of the SVM model identified by the bootstrap tests and

thresholded at an FDR of q < 0.05 (Step 7 of the procedure, option A). c, The weight map

shows the final predictive SVM features after the RFE procedure, with the final number of

features = 20,000 and the number of removed features at each step = 5,000 (Step 7 of the

procedure, option B).

Kohoutová et al. Page 53

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4 |. A schematic of the ‘virtual lesion’ analysis (Step 7, option C).
The ‘virtual lesion’ analysis investigates how individual regions or networks contribute to

final predictions of a model by removing or using one region or network at a time from the

model. Based on a selected parcellation, regions in the original model are masked (either one

region is removed, or only one region is used for prediction), and the performance of the

masked model is evaluated.

Kohoutová et al. Page 54

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5 |. Layer-wise relevance propagation results (Step 7, option D).
a and b, We ran the LRP to explain predictions of each trial in each subject and condition

(Step 7 of the procedure, option D). We then calculated the average relevance scores across

subjects for both conditions. In a, we show the average relevance score map for the heat

condition, thresholded at uncorrected P < 0.001, which is equivalent to an FDR at q <

0.029. Similarly, in b, we show the average relevance score map for the rejection condition,

thresholded at uncorrected P < 0.001 (equivalent to an FDR at q < 0.019).

Kohoutová et al. Page 55

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6 |. Generalizability tests (Steps 8–10).
a, The predictive weight map of the NPS13 that exceeds an FDR threshold of q < 0.05.

b, To assess the generalizability of the NPS (Steps 8–10 of the procedure), we calculated

the pattern expression values using the dot product between the signature pattern weights

and activation maps for different conditions. Then, we performed the 2AFC test for heat

versus warmth and rejection versus friend conditions. The box plot shows the NPS response

to the four conditions. The lines between the boxes depict the correct (pink lines) and

incorrect (blue lines) classifications. The ROC plot shows the sensitivity and specificity

for discriminating between heat and warmth conditions (yellow) and between rejection

and friend conditions (blue). c, The predictive weight map of the SIIPS118 that exceed

an FDR threshold of q < 0.05. d, The box plot shows the SIIPS1 response to the four

conditions. The lines between the boxes depict the correct (pink lines) and incorrect (blue

lines) classifications. The ROC plot shows the sensitivity and specificity for discriminating

between heat and warmth conditions (yellow) and between rejection and friend conditions

(blue).

Kohoutová et al. Page 56

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7 |. Examples of biology-level assessment (Step 11) and the representational analysis (Steps
12–15).
a, The radar chart depicts the posterior probability of observing overlaps between the

thresholded SVM model and the resting-state functional networks87 (Step 11, option A). The

pink chart represents the overlaps with the positive predictive weights of the model, and

the blue chart represents the overlaps with the negative predictive weights of the model. b,

The bar plot shows the functional terms obtained from the Neurosynth decoder applied to

the unthresholded SVM model (Step 11, option B). The pink bars represent the decoding

results for positive weights, and the blue bars represent the decoding results for negative

weights. c, In the representational analysis (Steps 12–15), we compared the NPS13 and

SIIPS118 responses to four stimulus conditions. We first compared two accuracy matrices

using correlation coefficients and then visualized the relationship between conditions using

network and hierarchical clustering methods.

Kohoutová et al. Page 57

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kohoutová et al. Page 58

Table 1 |

Descriptions and example methods for different levels of assessments

Category Description Example methods

Model-level
assessment

Models are characterized by…

Sensitivity and
specificity

Examining the response patterns of predictive models
to different inputs and experimental conditions

Positive and negative controls13,47,118; testing models
across a range of different conditions18; construct
validity84; tuning curves of brain patterns86

Generalizability Testing models on multiple datasets from different
samples, contexts and populations

Research consortia and multisite collaborations119

Behavioral analysis Analyzing the patterns of model decisions and
behaviors over many instances and examples (or over
time for adaptive models)

Methods analogous to psychological tests50; analyses at
given time points52; error analysis120

Representational
analysis

Analyzing model representations using examples or
representational distance

Deep dream71; deep k-nearest neighbors121;
representational similarity analysis56

Analysis of confounds Examining whether any confounding factors
contribute to the model (e.g., head movement,
physiological confounds or other nuisance variables)

Comparison of the model of the signal of interest with a
model of the nuisance variables122

Feature-level
assessment

Significant features are identified by…

Stability Measuring the stability of the selected features and
predictive weights over multiple tests (e.g., cross-
validation or resampling)

Stability analysis61,123; bootstrap test13,124; surviving count
on random subspaces125; pattern reproducibility126

Importance Measuring the impact of features on a prediction rFe63,127,128; variable importance in projection61;
sensitivity analysis66; feature importance ranking
measure129; measure of feature importance130; leave-
one-covariate-out131; LRP64,69; local model-agnostic
explanations (LIME)67; deep learning feature
importance132; Shapley additive explanations (SHAP)133;
regularization42–44; virtual lesion analysis47; in silico node
deletion134; weight-activation product135

Visualization Visualizing feature-level properties Class model visualization136; saliency map70; weight
visualization18

Biology-level
assessment

Neurobiological basis is established by…

Literature Relating predictive models to previous findings from
literature across different tasks, modalities and species
(e.g., meta-analysis)

Meta-analysis18,77; large-scale resting-state brain
networks83,84

Invasive studies Using more invasive methods, such as molecular,
physiological and intervention-based approaches

Gene overexpression and drug injection88; transcranial
magnetic stimulation90; postmortem assay91; optogenetic
fMRI89

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kohoutová et al. Page 59

Table 2 |

Selected methods of feature-level assessment

Method Applicability Purpose of the method Description References

Stability
analysis

Linear models Feature selection based
on feature stability

A model is repeatedly trained on resampled data using a
sparse method. In each iteration, only a subset of features
is selected by the algorithm. Features selected with a
frequency above a threshold are considered stable.

Refs. 61,
123,125

Bootstrap
tests

Linear models Identification of
significant features
within the training
dataset based on feature
stability

Training data are repeatedly resampled with replacement.
Each sample serves as training data for a new model.
Features with stable weights across the models are identified
as stable and significant.

Refs. 13,124

RFE Linear models Feature selection based
on feature importance

A model is iteratively trained, and features corresponding to
its lowest weights are eliminated from the training dataset.
The process is repeated until the desired number of features
is reached.

Ref. 128

Sensitivity
analysis

Model agnostic Identification of
significant features
within a given data
point based on feature
importance

The input features are disrupted (e.g., by additive noise).
The resulting error in the output is measured. Features that
caused the largest error after being disrupted are considered
important for the prediction.

Ref. 66

LRP Neural networks Same as above A prediction score is decomposed backward through the
layers of the model until it reaches the input when a
relevance score is assigned to each input feature.

Ref. 64

LIME Model agnostic Same as above A prediction is explained by an interpretable model fitted to
sampled instances around the instance being explained.

Ref. 67

SHAP Model agnostic Unified measure of
feature importance

SHAP is a framework that provides the incremental impact
of each feature on model decisions using Shapley values.
This framework unifies some other model explanation
methods (e.g., LIME and LRP).

Ref. 133

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kohoutová et al. Page 60

Table 3 |

Key functions in the CanlabCore MATLAB toolbox used in the protocol

Function Description Used in…

filenames Lists file names that match a specific pattern in a directory Step 1A; Step 8

fmri_data Loads images into the object or creates an empty fmri_data
object

Step 1A; Step 5; Step
7C; Step 8; Step 11A

apply_mask Masks an image with a defined mask or calculates pattern expression
values

Step 1A; Step 9

predict Trains and evaluates predictive models and performs cross-validation
and bootstrap tests

Step 1A; Step 2; Step
6; Step 7A

roc_plot Calculates accuracy, sensitivity and specificity and visualizes the
ROC curve

Step 3; Step 7C; Step
10; Step 12

threshold Applies a statistically valid threshold to the images with statistical
test results

Step 7A

orthviews Displays the image data stored in CANlab tools Step 7A; Step 7B

write Writes data stored in the fmri_data or
statistic_image objects into a NIfTI (.nii) or Analyze
(.img) file

Step 7A; Step 7B

svm_rfe Performs recursive feature elimination with support vector machines Step 7B

canlab_pattern_similarity Calculates similarity between each column in a data matrix and a
vector of pattern weights

Step 11A

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kohoutová et al. Page 61

Table 4 |

Example results of the ‘virtual lesion’ analysis

Networks

One network removed for prediction One network used for prediction

No. of voxels used Performance (%) No. of voxels used Performance (%)

Visual 185,060 84 ± 1.2 21,740 82 ± 1.2

Somatomotor 184,300 93 ± 0.8 22,503 68 ± 1.5

dAttention 190,610 93 ± 0.8 16,192 65 ± 1.6

vAttention 188,610 93 ± 0.8 18,194 75 ± 1.4

Limbic 191,840 93 ± 0.8 14,959 56 ± 1.6

Frontoparietal 180,900 92 ± 0.9 25,902 77 ± 1.4

Default 169,970 92 ± 0.9 36,828 70 ± 1.5

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kohoutová et al. Page 62

Table 5 |

Troubleshooting table

Step Problem Possible reason Solution

1A Errors when calling gray_matter_mask.img or when
using filenames.m

The CanlabCore is not
in the MATLAB path

In MATLAB, go to the CanlabCore
directory and run the following:
addpath (genpath(pwd))

Error message when calling fmri_data says
“Undefined function ‘spm_vol’ for input
arguments of type ‘char’“

SPM12 is not in the
MATLAB path

In MATLAB, go to the SPM12
directory and run the following: addpath
(genpath(pwd))

Cannot find the help text of the predict.m function by help
predict

If there are functions
with the same name in
other toolboxes in the
path, MATLAB can
show the help text of
other functions

Use the following: help
fmri_data.predict

6 An error message says ‘obj.dat must be
[predictors × observations] and obj.Y
must be [observations × 1]’

The nuisance matrix
is [observations ×
predictors]

Transpose the nuisance matrix when
adding it into the .dat field

8 An error message says
‘weights_NSF_grouppred_cvpcr.img’ not
found

The NPS model is not
in your path

If you do not have the NPS model,
please email the corresponding authors
(T.D.W. or C.-W.W). The NPS will be
shared upon request with a data use
agreement. If you already have the NPS
model, make sure the NPS file is in your
path

14 An error message says ‘Edge properties must be
a table’

Malfunctioning
istable.m
function (which is
used in graph.m)
is being used

Remove spm12/
external/fieldtrip/
compat/matlablt2013b
from your MATLAB path

Nat Protoc. Author manuscript; available in PMC 2022 October 05.

	Abstract
	Introduction
	Overview of the framework
	Model-level assessment
	Feature-level assessment
	Biology-level assessment

	Development of the protocol
	Comparison with other methods
	Limitations
	Overview of the procedure
	Level of expertise needed to implement the protocol

	Materials
	Equipment
	Software
	Input data
	Example dataset

	Procedure
	Build a model ● Timing 20 min to a few hours

	Table T1
	Assess the cross-validated performance ● Timing 5–20 min

	Table T2
	Analyze the model for the presence of confounds and artifacts ● Timing 5–20 min
	Identify significant features ● Timing 20 min to a few days

	Table T3
	Test generalizability with independent datasets ● Timing 1 – 2 h
	Evaluate the neurobiological validity of the model ● Timing 1–2 h

	Table T4
	Perform representational similarity analysis ● Timing 1–2 h

	Troubleshooting
	Timing
	Anticipated results
	Related links
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Fig. 7 |
	Table 1 |
	Table 2 |
	Table 3 |
	Table 4 |
	Table 5 |

