Table 3.
Train | Test | ||||||
---|---|---|---|---|---|---|---|
Group | Model | AUC | AUC | Accuracy | Precision | Recall | |
T1 | Lasso+SVM | 0.936 | 0.933 | 0.832 | 0.851 | 0.830 | |
Lasso+LR | 0.940 | 0.935 | 0.817 | 0.840 | 0.824 | ||
LR1+SVM | 0.952 | 0.951 | 0.855 | 0.869 | 0.858 | ||
LR1 | 0.951 | 0.947 | 0.848 | 0.861 | 0.857 | ||
T1C | Lasso+SVM | 0.955 | 0.953 | 0.870 | 0.901 | 0.848 | |
Lasso+LR | 0.950 | 0.947 | 0.838 | 0.886 | 0.818 | ||
LR1+SVM | 0.961 | 0.959 | 0.864 | 0.922 | 0.818 | ||
LR1 | 0.958 | 0.954 | 0.858 | 0.919 | 0.799 | ||
T2 | Lasso+SVM | 0.954 | 0.953 | 0.856 | 0.873 | 0.854 | |
Lasso+LR | 0.947 | 0.942 | 0.803 | 0.828 | 0.854 | ||
LR1+SVM | 0.973 | 0.969 | 0.876 | 0.828 | 0.858 | ||
LR1 | 0.968 | 0.967 | 0.860 | 0.892 | 0.843 | ||
Multi-task | Lasso1,1+SVM | 0.984 | 0.981 | 0.900 | 0.918 | 0.893 | |
Lasso1,1+LR | 0.893 | 0.981 | 0.870 | 0.903 | 0.853 | ||
Lasso2,1+SVM | 0.981 | 0.980 | 0.886 | 0.941 | 0.840 | ||
Lasso2,1+LR | 0.975 | 0.973 | 0.868 | 0.913 | 0.847 | ||
Ours+SVM | 0.993 | 0.992 | 0.920 | 0.969 | 0.847 | ||
Ours | 0.987 | 0.984 | 0.895 | 0.954 | 0.838 |
Bold values indicate the largest metrics indifferent models in the same sequence task.