Skip to main content
. 2022 Sep 21;12:1000471. doi: 10.3389/fonc.2022.1000471

Table 3.

The values of various metrics for each method on the training and test sets.

Train Test
Group Model AUC AUC Accuracy Precision Recall
T1 Lasso+SVM 0.936 0.933 0.832 0.851 0.830
Lasso+LR 0.940 0.935 0.817 0.840 0.824
LR1+SVM 0.952 0.951 0.855 0.869 0.858
LR1 0.951 0.947 0.848 0.861 0.857
T1C Lasso+SVM 0.955 0.953 0.870 0.901 0.848
Lasso+LR 0.950 0.947 0.838 0.886 0.818
LR1+SVM 0.961 0.959 0.864 0.922 0.818
LR1 0.958 0.954 0.858 0.919 0.799
T2 Lasso+SVM 0.954 0.953 0.856 0.873 0.854
Lasso+LR 0.947 0.942 0.803 0.828 0.854
LR1+SVM 0.973 0.969 0.876 0.828 0.858
LR1 0.968 0.967 0.860 0.892 0.843
Multi-task Lasso1,1+SVM 0.984 0.981 0.900 0.918 0.893
Lasso1,1+LR 0.893 0.981 0.870 0.903 0.853
Lasso2,1+SVM 0.981 0.980 0.886 0.941 0.840
Lasso2,1+LR 0.975 0.973 0.868 0.913 0.847
Ours+SVM 0.993 0.992 0.920 0.969 0.847
Ours 0.987 0.984 0.895 0.954 0.838

Bold values indicate the largest metrics indifferent models in the same sequence task.