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A B S T R A C T   

Objective: To develop a two-step machine learning (ML) based model to diagnose and predict involvement of 
lungs in COVID-19 and non COVID-19 pneumonia patients using CT chest radiomic features. 
Methods: Three hundred CT scans (3-classes: 100 COVID-19, 100 pneumonia, and 100 healthy subjects) were 
enrolled in this study. Diagnostic task included 3-class classification. Severity prediction score for COVID-19 and 
pneumonia was considered as mild (0-25%), moderate (26-50%), and severe (>50%). Whole lungs were 
segmented utilizing deep learning-based segmentation. Altogether, 107 features including shape, first-order 
histogram, second and high order texture features were extracted. Pearson correlation coefficient (PCC≥90%) 
followed by different features selection algorithms were employed. ML-based supervised algorithms (Naïve Bays, 
Support Vector Machine, Bagging, Random Forest, K-nearest neighbors, Decision Tree and Ensemble Meta 
voting) were utilized. The optimal model was selected based on precision, recall and area-under-curve (AUC) by 
randomizing the training/validation, followed by testing using the test set. 
Results: Nine pertinent features (2 shape, 1 first-order, and 6 second-order) were obtained after features selection 
for both phases. In diagnostic task, the performance of 3-class classification using Random Forest was 0.909 
±0.026, 0.907±0.056, 0.902±0.044, 0.939±0.031, and 0.982±0.010 for precision, recall, F1-score, accuracy, 
and AUC, respectively. The severity prediction task using Random Forest achieved 0.868±0.123 precision, 0.865 
±0.121 recall, 0.853±0.139 F1-score, 0.934±0.024 accuracy, and 0.969±0.022 AUC. 
Conclusion: The two-phase ML-based model accurately classified COVID-19 and pneumonia patients using CT 
radiomics, and adequately predicted severity of lungs involvement. This 2-steps model showed great potential in 
assessing COVID-19 CT images towards improved management of patients.   

1. Introduction 

The COVID-19 pandemic has infected nearly 500 million individuals 
across the globe, with over 6 million death cases reported in the world 
[1]. Meticulous COVID-19 screening allows for early and accurate 

diagnosis, minimizing the impact on healthcare systems while also 
saving lives and limiting the spread of the disease [2,3]. Specifically, 
chest X-ray and CT scans are the first accurate diagnostic tools for 
determining the types of COVID-19 [4]. 

Radiomics analysis has great potential for precision medicine as it 
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uses data mining to create a correlation between clinical and biological 
findings [5,6]. Explicit radiomics features such as shape, statistics and 
texture are derived from medical images, resulting in accurate and 
non-invasive COVID-19 biomarkers that potentially influence clinical 

decision making. CT radiomics framework uses sophisticated quantita
tive features in CT images (“radiomics features”) to describe types of 
lesions and tissue patterns [3,7]. These characteristics are grouped into 
two categories: semantic and agnostic characteristics. Agnostic features 

Table 1 
Examples of ML-based models for diagnosis, severity prediction and prognosis are presented in Table 1.  

Year/ 
Ref. 

Methods Results Conclusion Advantage 
(Task) 

limitations 

2022/ 
[10] 

Chest CT images of 176 patients. 63 
quantitative features of the whole 
lung and the volume of ground- 
glass opacity regions, calculated. A 
RF model was trained to assess the 
severity based on quantitative 
features. 

RF model showed 87% of 
accuracy, and 91% of AUC. 

The RF based model can achieve 
automatic severity assessment of 
COVID-19 infection. 

Severity 
prediction 

Low sample size of patients with 
mild and critical types of COVID-19. 

2021/ 
[11] 

115 COVID-19 and 435 non- 
COVID-19 pneumonia patients. 
Key radiomics features extracted 
from chest CT images to build a 
radiomics signature using LASSO 
regression. Clinical and clinico- 
radiomics models were constructed. 
The combined model was further 
validated in the viral pneumonia 
cohort, and compared with 
performance of two radiologists 
using CO-RADS. 

Combined radiomics model 
(radiomics + clinical variables) 
outperformed; an AUC of 98%. 
The combined model also 
performed better in 
distinguishing COVID-19 from 
other viral pneumonia with an 
AUC of 93%. 

Preliminary study demonstrated 
the use of chest CT-based combined 
radiomics clinical model and CO- 
RADS in diagnosing COVID-19 
pneumonia. 

Diagnostic (1) Data collected from two centers. 
(2) Enrolling the non-COVID 
pneumonia patients with blood 
laboratory pathogen-confirmation 
and pneumonia improvement after 
treatment by follow-up CT scans 
caused limited bacterial infection 
cases 
(3) Children with mycoplasma 
infections were included. 

2020/ 
[12] 

46 patients with COVID-19 and 29 
other types of pneumonias. 
77 radiomic features were extracted 
from the lesions. 
Four key features were screened 
and used as the inputs of SVM to 
build the radiomic signature. 
Multiple cross-validation was 
utilized to choose the primary 
characteristics following SVM as 
classifier to validate the AI-based 
model. 

The model yielded AUCs of 
86% for training and 82% in 
test set. 

The model based on radiomics 
features could well discrimi-nate 
COVID-19 pneumonia from other 
pneumonias 

Diagnostic The preliminary study was based on 
data from a single hospital. 

2021/ 
[7] 

152 CT images of COVID-19 
patients. radiological data, clinical 
data, and CT radiomics features 
combined to develop a novel 
prognostic models for prediction 
(alive, death). 

Based on a multi-variate 
analysis, model obtained 0.95 
AUC, 0.89 accuracy, 0.88 
sensitivity and 0.89 specificity. 

The combination of radiomic 
features, clinical and radiological 
data could effectively predict 
survival in COVID-19 patients. 

Severity 
prediction 

(1) Small sample size. 
(2) Therapeutic strategies for 
patients were excluded. 
(3) Only one feature selection and 
classifier algorithms were tested. 

2020/ 
[13] 

99 CT image sets of COVID-19 
patients. The severity of disease was 
classified into three levels: 
moderate, severe, and critical. To 
identify the severity of the illness, 
they constructed RF and regression 
model. 

The RF model obtained AUCs of 
93% in the classification of 
both moderate vs. (severe +
critical) and severe vs. critical. 

CT quantification and machine- 
learning models show great 
potentials for assisting decision- 
making in the management of 
COVID-19 patients by assessing 
disease severity and predicting 
clinical outcomes. 

Prognostic (1) Small number of cases. 
(2) Using single-center data. 

2022/ 
[14] 

1110 CT image of COVID-19 
patients. Four class severity scoring 
of severe-, moderate-, mild-, and 
non-pneumonic were studied. 
Radiomics Feature extraction 
performed in whole lung images. 

They reported AUC of 0.846 (CI 
95%: 0.805–0.887) using 
bagging random forest as 
feature selector and 
multinomial logistic regression 
as classifiers 

Radiomics features of whole lung 
CT images were able to classify 
patients to the different severity 
class of COVID-19 

Severity 
scoring, large 
data set, 
multiclass 
scoring 

Only one radiologist scored images 
Single center datasets 

2021/ 
[15] 

14,339 CT scans of COVID-19 
patients. Whole lung segmentations 
were performed using a DL-based 
model to extract 107 intensity and 
texture radiomics features. 
Several feature selection algorithms 
and classifiers were employed. 
Evaluation of models were 
examined using different splitting 
and cross-validation strategies 
using non-harmonized and ComBat- 
harmonized datasets. 

ANOVA feature selector +
RF classifier obtained AUC 
83%. 
In ComBat harmonized dataset, 
Relief feature selector + RF 
classifier resulted in the highest 
performance of AUC, reaching 
83% 

Lung CT radiomics features could 
be used as biomarkers for 
prognostic modeling in COVID-19. 

Prognostic, 
Large dataset 

(1) Overlapping pneumonia regions 
in some CT images due to motion 
artifacts deficiency. 
(2) CT scans of typical 
manifestation of COVID-19 were 
used. 
(3) Clinical or laboratory data was 
excluded for developing the model 
(4) A prognostic model was 
developed based on all lung 
radiomics features only not all 
imaging manifestations in other 
organs. (5) Model developed 
without considering therapeutic 
regimens 
(6) To develop prognostic model, 
just binary classification was 
studied.  
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(e.g., textural features) apply creative mathematical processes in a 
high-throughput fashion that may not be possible to be detected by the 
human eye. Moreover, semantic features, such as shape, size, location, 
etc, are used to define morphologic properties of lesions. Artificial in
telligence (AI) based methods, including Machine Learning (ML), have 
been used in several COVID-19 research studies [8,9]. In fact, ML-based 
models using CT-based radiomics, increasingly utilized for diagnosis, 
severity prediction, and prognosis of COVID-19 are straightforward and 
time efficient (Table 1). 

In a large cohort multicenter study by CT radiomics features 
extracted from Lung regions and machine learning from 26,307 patients, 
prognostic [14] model was developed. Elsewhere [15], COVID-19 
severity scoring was performed using CT radiomics features and multi
nomial multiclass machine learning models. More than thousand 
COVID-19 patient’s data from four different class of severity were 
enrolled. 

The latest studies have focused on either employing explicit radio
mics to diagnose and differentiate COVID-19 pneumonia from other 
viral pneumonias or using ML techniques to stratify disease severity. 
However, to our knowledge, no research has been published on the 
validity of CT radiomics towards ultimate decision-making in the man
agement of COVID-19 and pneumonia patients simultaneously in terms 
of diagnosis and severity prediction of clinical outcomes. 

We there aimed to develop and deploy a two-phase ML radiomics 
signature approach. The model was developed based on radiomics fea
tures extracted exclusively from the whole lungs of CT images for dif
ferential diagnosis of COVID-19 and pneumonia to adequately evaluate 
their severity. Early diagnosis of COVID-19 and pneumonia etiology, 
particularly in patients with a highly suspected, may help clinicians in 
implementing appropriate patient management plans and reducing 
triage time during hospital admissions. In addition, severity prediction 
of COVID-19 and pneumonia, may help radiologists in making rapid 
diagnosis, that is particularly important when the healthcare system is 
overloaded. In what follows, we elaborate on our methods, followed by 
results, discussion, and conclusion. 

2. Materials and methods 

2.1. Data collection and segmentation 

Imaging data from 300 CT scans (100 COVID-19 cases, 100 Pneu
monia cases, and 100 Healthy ones) were collected from the Sultan 
Qaboos University Hospital (SQUH) and Royal Hospital (ROYH), 
Muscat, Oman. The SQUH and ROYH medical research ethical com
mittees both approved this retrospective study (MREC#1254-REF. NO. 
SQU-EC/121/20). COVID-19 cases met the following criteria: (a) RT- 

PCR positive, (b) non-contrast CT on chest CT. Aside the COVID-19 
group, ground truth of pneumonia cases was reviewed based on the 
radiologists’ reports on CT images. CT Chest scans were performed on 
the Siemens Somatom definition flash 128 slices. Tube voltage, rotation 
time, and pitch were 120 kVp, 0.6 s, and 1.55, respectively. The 
reconstructed series matrix size was 512 × 512 pixels with 1 mm slice 
thickness. The scans were performed at maximum inspiration. 

For segmenting whole lungs, DICOM CT images were segmented 
utilizing automated deep learning (DL) based segmentation for lungs 
and COVID-19 pneumonia infectious lesions (COLI-Net) which we have 
previously developed and extensively evaluated [16]. In this study we 
only employed the whole lung segmentation. Fig. 1 illustrates CT images 
and segmentations of Healthy, COVID-19 and pneumonia cases. All 
segmentations were evaluated by human observer to be sure about its 
accuracy and in case of mis-segmentation, segmentation was manually 
edited. 

2.2. Severity scoring 

The standardized score CO-RADS was utilized to assess the severity 
of infection of the whole lungs, enabling to analyze COVID-19 cases 
based on CT image findings [17]. Thus, for severity prediction, two 
experienced radiologists scored in consensus pulmonary involvement of 
COVID-19 RT-PCR positive and Pneumonia scans by percentage of 
involvement within all 5 lobes. 

Most of CT demonstrations were described using standard nomen
clature described by the Fleischner Society glossary and referring to the 
terms in literature on viral pneumonia and COVID-19 including ground 
glass opacity, crazy-paving pattern, and consolidation [18–20]. Based 
on involvement of the area of each lobe (right upper, right middle, right 
lower, left upper, and left lower), a semi-quantitative scoring method 
was employed to quantify the pulmonary involvement of all these ab
normalities. Subsequently, they scored the type of pulmonary opacities 
such as ground-glass, mixed ground-glass and consolidation, consoli
dation, crazy paving appearance, etc. Scores were recorded as (a) 0: 0% 
involvement; (b) score 1: <5% involvement; (c) score 2: 5%–25% 
involvement; (d) score 3: 26%–50% involvement; (e) score 4: 51%–75% 
involvement; and (f) score 5: >75% lobar involvement). Total lungs 
involvement (labeled as subjective severity score) was concluded by 
adding the scores from all lobes (minimum score 0; maximum score 25) 
[21,22]. For developing the prediction model, the total lung infection 
involvement was classified into mild (0 <total score ≤10), moderate 
(11≤ total score ≤15), and severe (16 ≤ total score ≤25) as illustrated in 
Fig. 2. 

Fig. 1. Segmentation of Healthy (left); COVID-19 (middle); Pneumonia (right) utilizing our DL-based lungs segmentation method (COLI-Net).  
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2.3. Feature extraction and dimensionality reduction 

The 107 features namely shape, first-order histogram, second and 
high order texture features, were generated using the Pyradiomics li
brary [23]. All images were resized to isotropic voxel size 2 × 2 × 2 mm3 

and image intensity discretized by 64-Gy level binning, followed by 
feature extraction. 

These features were divided into three categories: (i) intensity, (ii) 
shape, and (iii) texture. Lung intensity-based features, defined using first 
order statistics of the intensity histogram, quantified the tissue density of 
the right and left lungs on chest CT images. Shape features describe the 
3D geometric properties of the lungs, whereas textural features quanti
fied the infected region heterogeneity. Textural features were computed 
by analyzing the spatial distribution of voxel intensities in thirteen di
rections. Explicit features were computed from gray level co-occurrence 
(GLCM), run length matrices (GLRLM), Gray Level Dependence Matrix 
(GLDM), Gray Level Size Zone Matrix (GLSZM), and Neighborhood 

Gray-Tone Difference Matrix (NGTDM). It worth noting that the Pyr
adiomics image analysis software (PIAS) is part of the Image Biomarker 
Standardization Initiative (IBSI) [24]. 

To minimize overfitting and build a robust radiomics signature, 
dimensionally reduction (correlation-based feature selection method) 
reduced the number of features from 107 to 37. Further reduction to 9 
features was achieved using the algorithm-based feature. The 9 most 
pertinent features include: shape features (2), first-order features (1), 
and second-order features (6), respectively. Spearman correlation, nar
rowed down the number of features to 37 features by removing redun
dant features [25]. To distinguish between informative features from 
redundant/noisy and irrelevant features 5 different supervised features 
selection algorithms using WEKA (version 3.8.2) were employed [26]. 
Then the results were compared utilizing voting method. In this step, 28 
more features were eliminated. Hence, a set of 9 non-redundant and 
relevant features. Unlike other studies [27,28], the most pertinent fea
tures were finally selected using voting method by evaluating the 

Fig. 2. A flowchart of severity scoring method. (*OPACITIES: Ground-glass, Mixed ground-glass and Consolidation, Consolidation, Reverse halo sign with ground- 
glass opacity surrounded by consolidation, Nodular, or Ground-glass with Crazy paving appearance. RL: Right Lung, LL: Left Lung). 

Fig. 3. An AI workflow in this study. Segmentation was performed using DL method while other steps were based on ML methods.  
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performances of algorithms. We have chosen features that were frequent 
among more than 4 algorithms in this performance assessment stage. 

2.4. Model derivation and validation 

2.4.1. Diagnostic phase 
Datasets were randomly divided into 90% training sets and 10% test 

sets. The training set was used to select the best models (consistent with 
best practice guidelines) [29], and the test sets were used to report on 
the performance of the selected classifiers. The training sets was again 
split into 70% training and 30% validation sets; where the training set in 
this step of AI pipeline was used for learning and the validation set was 
used for giving an estimate of the model performance. Test sets were 
untouched during validation. 

We considered several ML-based supervised algorithms namely 
Naïve Bays, Support Vector Machine, Bagging, Random Forest, K-near
est Neighbors, Decision Tree and Ensemble Meta Voting, as utilized 
through the WEKA toolkit. To select the optimal model based on pre
cision, recall and AUC, we randomized training/validation sets 20 times. 
Splitting into training and validation set was performed 20 times to 
reduce variability in estimation of the model performance. The optimal 
model and Ensemble Meta Voting were then tested using the test set. We 
computed precision, recall, F1-score, accuracy, and AUC. To ensure the 
repeatability of the results, assessment using the test set, the entire 
operation was repeated 50 times. 

The framework in Fig. 3 was first developed from scratch, step by 
step for the diagnosis task (classification as: COVID-19, Pneumonia or 
Healthy) and then using the same selected features (same 8 features 

mentioned above) we considered the 3 classes (mild, moderate, and 
severe) for the prediction step. 

2.4.2. Prediction of severity phase 
For severity prediction, two experienced radiologists scored 

involvement of lungs in COVID-19 and Pneumonia scans based on per
centage of involvement in all 5 lobes. In severity prediction phase, 
previous datasets were classified into mild (0–25%), moderate 
(26–50%), and severe (>50%). In this second prediction phase the 300 
datasets were randomly divided into 90% training set and 10% test sets. 
The training set was again split into 70% training and 30% validation 
sets, and test sets were untouched during validation. Prior to training, 
the synthetic minority oversampling technique (SMOTE) was used to 
balance the three classes (mild, moderate, severe). Note that for the 
diagnosis phase, the entire dataset was classified into 3 equal classes 
(healthy, COVID-19 and pneumonia), and therefore, SMOTE algorithm 
was only applied for the predication phase. Training and validation were 
performed as described in the diagnostic phase. Briefly, by using pre- 
selected radiomics, we considered several ML-based algorithms (as 
outlined in previous section). To select the optimal model based on 
precision, recall and AUC, we randomized training/validation sets 20 
times. Splitting into training and validation set was performed 20 times 
to reduce variability in estimation of the model performance. The 
optimal model and ensemble meta voting tested using the test set. The 
model performance parameters (precision, recall, F1-score, accuracy, 
and AUC) were reposted. To ensure the repeatability of the results, 
assessment using the test set, the entire operation was repeated 50 times. 

Overall, on chest CT scans, we extracted radiomic features associated 

Fig. 4. Correlation matrix between the extracted features.  
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with healthy, COVID-19, and pneumonia, which provides a noninvasive 
ML-based method to identify radiomic patterns of COVID-19 and 
pneumonia, differentiate COVID-19 from pneumonia and healthy 
(namely; “diagnostic phase” or phase 1), and predict COVID-19 and 
pneumonia severity (namely; “prediction of severity phase” or phase 2). 

3. Results 

To select non-redundant and relevant features, we carried out 
Spearman correlation coefficient (PCC ≥90%) and 5 different feature 
selection algorithms. Fig. 4 shows a set of 9 features (shape flatness; 
shape least length; first order kurtosis; GLCM cluster prominence; GLCM 
cluster shade; GLCM ImC1; GLDM small dependence high gray level 
emphasis; GLRLM run length nonuniformity; and GLSZM small area 

emphasis) were employed in constructing the two-phase ML-based 
model. 

Table 2 and Fig. 5 summarize the results of optimum model selection 
with 20 times cross validation for each class (healthy, COVID-19, 
pneumonia). Random forest in comparison to the other classifiers ach
ieved to best classification with precision = 0.922 (0.017), recall =
0.922 (0.057) and AUC = 0.0979 (0.014). 

For the diagnostic task, the performance of the 3-class classification 
(healthy, COVID-19, pneumonia) using Random Forest and Meta Voting 
algorithm was assessed by computing precision, recall, F1-score, accu
racy, and AUC. Table 3 shows the performance of the Random Forest 
and Meta Voting methods on test sets. The macro average scores for 3- 
class classification are provided to indicate the overall performance 
across the different classes of validation and test sets. From the valida
tion utilizing Random Forest and Meta Voting, precision was 0.922 ±
0.017 and 0.916 ± 0.022, recall was 0.922 ± 0.057 and 0.917 ± 0.084 
and AUC was 0.979 ± 0.014 and 0.933 ± 0.039, respectively. Moreover, 
based on the 3 × 3 confusion matrix, for RF and meta voting, the pre
cision was 0.909 ± 0.026 and 0.894 ± 0.011, recall was 0.907 ± 0.056 
and 0.897 ± 0.078, and AUC was 0.982 ± 0.010 and 0.922 ± 0.043, 
respectively in testing. 

Similar to the diagnostic phase, the best model performance was 
achieved using the Random Forest algorithm. Furthermore, the perfor
mance of Random Forest and meta voting algorithms for severity pre
diction based on most pertinent radiomics was evaluated. Table 4 
summarizes the performance of random forest and meta voting for 
severity prediction. It was also possible to classify CT scans with mild, 
moderate, and severe using random forest algorithm with the precision 
of 0.868 ± 0.123, recall of 0.865 ± 0.121, and AUC of 0.969 ± 0.022. 
Moreover, performance of severity prediction model using meta voting 
algorithm showed precision of 0.86 ± 0.123), recall of 0.849 ± 0.149, 
and AUC of 0.895 ± 0.072. 

On the other hand, the performance validation metrics for the vali
dation sets were precision of 0.917 ± 0.017, recall of 0.915 ± 0.044, and 
AUC of 0.98 ± 0.005. Moreover, performance of severity prediction 
model using meta voting algorithm showed precision of 0.913 ± 0.031, 
recall of 0.913 ± 0.035, and AUC (of 0.934 ± 0.015. The model accu
racy and validation show how well model is generalizing. 

4. Discussion 

CT imaging scans have been widely used in COVID-19 studies. High 
quality 3D CT images have been utilized for COVID-19 identification 
and patient management. Since early days of the pandemic, numerous 
ML-based studies were focused on different tasks including diagnosing, 
prognostic, severity prediction utilizing binary or multiple classifica
tions, using CT scans as illustrated in Table 5 [27,30–35]. 

In AI modeling for diagnosis, Huang et al. [37] analyzed the diag
nostic value of CT-based signs combined with radiomics features to 
discriminate COVID-19 from other viral pneumonia. A total of 181 CT 
scans (89 COVID-19, and 92 non-COVID-19) were utilized. In the 
training and the testing cohort, the model achieved an AUC of 0.90 and 
0.87, respectively. 

In AI modelling for prediction, Pourhomayoun and Shakibi [38] used 
7 different ML algorithms (logistic regression, support vector machine, 
decision tree, neural networks, random forest, and K-nearest neighbor) 
to predicted mortality risk of COVID-19 by using CT images. With an 
overall accuracy of 0.90, the Neural Network technique performed 
significantly better in predicting the death rate. Zhou et al. [39] 
employed a ML-based model to predict the progression of sickness 
severity. They used a genetic algorithm (GA) and support vector ma
chine algorithm for feature selection and prediction, respectively. 

In this study we utilized 9 explicit radiomics features using voting 
method to develop the 2 phase ML-based model for diagnosis and 
severity prediction of COVID-19 and pneumonia. Shape features illus
trate properties of the size and shape of the images, which was found to 

Table 2 
Performance of several classifiers (mean(SD)) for the selection of the optimal 
model.  

Classifier Class Precision Recall AUC 

Random Forest Healthy 0.907 
(0.052) 

0.977 
(0.026) 

0.990 
(0.008) 

COVID-19 0.942 
(0.049) 

0.926 
(0.060) 

0.984 
(0.017) 

Pneumonia 0.919 
(0.054) 

0.863 
(0.072) 

0.963 
(0.022) 

Macro-Ave 0.922 
(0.017) 

0.922 
(0.057) 

0.979 
(0.014) 

Meta voting Healthy 0.891 
(0.063) 

0.992 
(0.019) 

0.966 
(0.017) 

COVID-19 0.927 
(0.049) 

0.935 
(0.054) 

0.944 
(0.041) 

Pneumonia 0.932 
(0.056) 

0.826 
(0.076) 

0.890 
(0.038) 

Macro-Ave 0.916 
(0.022) 

0.917 
(0.084) 

0.933 
(0.039) 

Naïve Bays Healthy 0.824 
(0.047) 

0.998 
(0.005) 

0.968 
(0.018) 

COVID-19 0.760 
(0.076) 

0.902 
(0.065) 

0.969 
(0.021) 

Pneumonia 0.866 
(0.079) 

0.562 
(0.098) 

0.874 
(0.042) 

Macro-Ave 0.816 
(0.053) 

0.82(0.229) 0.937 
(0.054) 

Support Vector 
Machine 

Healthy 0.815 
(0.050) 

0.964 
(0.051) 

0.945 
(0.027) 

COVID-19 0.821 
(0.071) 

0.855 
(0.037) 

0.907 
(0.043) 

Pneumonia 0.823 
(0.075) 

0.656 
(0.080) 

0.774 
(0.047) 

Macro-Ave 0.819 
(0.004) 

0.825 
(0.156) 

0.875 
(0.089) 

K-nearest-neighbor Healthy 0.931 
(0.047) 

0.927 
(0.058) 

0.943 
(0.027) 

COVID-19 0.896 
(0.058) 

0.923 
(0.064) 

0.932 
(0.040) 

Pneumonia 0.871 
(0.074) 

0.841(0.08) 0.877 
(0.048) 

Macro-Ave 0.899 
(0.030) 

0.897 
(0.048) 

0.917 
(0.035) 

Bagging Healthy 0.831 
(0.066) 

0.962 
(0.046) 

0.979 
(0.016) 

COVID-19 0.880 
(0.083) 

0.864 
(0.073) 

0.969 
(0.023) 

Pneumonia 0.838 
(0.087) 

0.734 
(0.103) 

0.922 
(0.035) 

Macro-Ave 0.849 
(0.026) 

0.853 
(0.114) 

0.956 
(0.030) 

Decision Tree Healthy 0.874 
(0.061) 

0.909 
(0.076) 

0.942 
(0.035) 

COVID-19 0.889 
(0.065) 

0.897 
(0.097) 

0.924 
(0.044) 

Pneumonia 0.840 
(0.095) 

0.789 
(0.091) 

0.867 
(0.056) 

Macro-Ave 0.867 
(0.025) 

0.865 
(0.066) 

0.911 
(0.039)  
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Fig. 5. Boxplots of the AUC, Precision, and recall for different classier algorithms and classifications; healthy (A,B,C), COVID-19 (D,E,F), pneumonia (G,H,I).  

Table 3 
Classification (healthy, COVID-19, pneumonia) performance (mean (SD)) indices by random forest and meta voting.   

Classifier Class Precision Recall F1-score Accuracy AUC 

Test RF Healthy 0.934(0.090) 0.969(0.077) 0.951(0.065) 0.970(0.032) 0.993(0.011) 
COVID-19 0.913(0.010) 0.893(0.116) 0.894(0.079) 0.940(0.039) 0.984(0.020) 
Pneumonia 0.881(0.105) 0.859(0.111) 0.863(0.078) 0.908(0.046) 0.969(0.024) 
Macro-Ave 0.909(0.026) 0.907(0.056) 0.902(0.044) 0.939(0.031) 0.982(0.010) 

Meta voting Healthy 0.908(0.104) 0.969(0.073) 0.934(0.077) 0.962(0.033) 0.964(0.044) 
COVID-19 0.888(0.097) 0.910(0.086) 0.893(0.05) 0.929(0.042) 0.927(0.043) 
Pneumonia 0.887(0.096) 0.813(0.119) 0.844(0.077) 0.894(0.049) 0.877(0.061) 
Macro-Ave 0.894(0.011) 0.897(0.078) 0.89(0.045) 0.928(0.034) 0.922(0.043) 

Validation RF Healthy 0.907(0.052) 0.977(0.026) 0.939(0.026) 0.962(0.020) 0.990(0.008) 
COVID-19 0.942(0.049) 0.926(0.060) 0.94(0.037) 0.956(0.025) 0.984(0.017) 
Pneumonia 0.919(0.054) 0.863(0.072) 0.887(0.042) 0.919(0.024) 0.963(0.022) 
Macro-Ave 0.922(0.017) 0.922(0.057) 0.922(0.030) 0.945(0.023) 0.979(0.014) 

Meta voting Healthy 0.891(0.063) 0.992(0.019) 0.938(0.031) 0.959(0.023) 0.966(0.017) 
COVID-19 0.927(0.049) 0.935(0.054) 0.930(0.037) 0.956(0.023) 0.944(0.041) 
Pneumonia 0.932(0.056) 0.826(0.076) 0.874(0.047) 0.914(0.024) 0.890(0.038) 
Macro-Ave 0.916(0.022) 0.917(0.084) 0.914(0.034) 0.943(0.025) 0.933(0.039)  

Table 4 
Classification (mild, moderate, severe) performance (mean (SD)) indices by random forest and meta voting.   

Classifier Class Precision Recall F1-score Accuracy AUC 

Test RF Mild 0.958(0.058) 0.960(0.054) 0.957(0.039) 0.962(0.035) 0.987(0.018) 
Moderate 0.728(0.230) 0.729(0.233) 0.694(0.197) 0.915(0.050) 0.944(0.055) 
Severe 0.920(0.075) 0.908(0.081) 0.908(0.072) 0.927(0.049) 0.976(0.029) 
Macro-Ave 0.868(0.123) 0.865(0.121) 0.853(0.139) 0.934(0.024) 0.969(0.022) 

Meta voting Mild 0.959(0.059) 0.965(0.053) 0.959(0.037) 0.965(0.032) 0.959(0.064) 
Moderate 0.722(0.242) 0.680(0.244) 0.663(0.202) 0.910(0.056) 0.816(0.122) 
Severe 0.899(0.092) 0.902(0.098) 0.894(0.075) 0.915(0.054) 0.911(0.062) 
Macro-Ave 0.86(0.123) 0.849(0.149) 0.838(0.155) 0.93(0.030) 0.895(0.072)  

Validation 
RF Mild 0.938(0.037) 0.965(0.031) 0.951(0.22) 0.961(0.017) 0.986(0.014) 

Moderate 0.905(0.065) 0.902(0.050) 0.901(0.034) 0.946(0.019) 0.981(0.019) 
Severe 0.910(0.042) 0.880(0.057) 0.893(0.033) 0.928(0.021) 0.975(0.010) 
Macro-Ave 0.917(0.017) 0.915(0.044) 0.915(0.031) 0.945(0.016) 0.98(0.005) 

Meta voting Mild 0.937(0.043) 0.946(0.032) 0.941(0.022) 0.955(0.016) 0.950(0.025) 
Moderate 0.878(0.070) 0.918(0.049) 0.850(0.199) 0.941(0.018) 0.935(0.023) 
Severe 0.924(0.048) 0.876(0.060) 0.897(0.038) 0.932(0.025) 0.919(0.031) 
Macro-Ave 0.913(0.031) 0.913(0.035) 0.896(0.045) 0.942(0.011) 0.934(0.015)  
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be effective in the classification/severity prediction of COVID-19 and 
pneumonia infections. Indication of shape feature dimensions was sug
gested to be investigated during each phase of COVID-19 [34,40,41]. 

First-order statistics represent the distribution of voxel intensities 
within the region of interest that significantly related to the pixel values 
on the CT scan through basic metrics. The first-order features mainly 
indicate the internal texture of lung regions [42]. Kurtosis is one of 
first-order features that is used to compute of the “peakedness” of the 
distribution of the values. Luís et al. [43] confirmed that COVID-19 in
duces consolidation and ground glass opacification, resulting in lower 
kurtosis values and flatter peak. 

A gray level co-occurrence matrix (GLCM) provides the arrangement 
of voxel pairs to determine texture such as homogeneity (a reflection of 
the uniformity) of the distribution of voxels. Moreover, the gray run 
length matrix (GLRLM) provides the size of the uniform run per each 
gray level [44]. Recently, Hongmei et al. [45] illustrated that uniformity 
was less for COVID-19 than lesions in the non-COVID-19 class, with a 
greater range in irregular texture for the COVID-19 class. They indicated 
a more heterogeneous lung texture possibly on the grounds of diversity 
in airspace disease phenotypes such as crazy paving on visual inspection. 

Moura et al. [43] observed more heterogeneity of GLRLM in the 
upper left region of COVID-19 class which may be due to consolidation 
that tended to diffuse. Pizzi et al. [40] predicted that the increasing 
homogeneity in COVID-19 might correlate with the degree of inflam
matory infiltrate in the early stage of diffuse alveolar damage. In the 

severe phase, however, ground glass opacity develops in density and 
heterogeneity, forming a crazy paving pattern. The Gray Level Zone 
Length Matrix (GLZLM) gives parameters about the uniform zone size of 
each gray level in 3D or 2D region of interest. The gray-level nonuni
formity of the COVID-19 group tended to be larger in compared to those 
of non-COVID-19 ones [44]. Moreover, GLSZM quantifies gray-level 
zones in an image as the number of connected voxels that share the 
same gray-level intensity. 

For the first task (diagnosis), the validation of our 2 phase ML-based 
model utilizing RF and meta voting algorithms achieved AUCs of 0.979 
± 0.014 and 0.933 ± 0.039, respectively. For testing, RF and meta 
voting achieved AUCs of 0.982 ± 0.010 and 0.922 ± 0.043, respec
tively. Despite, for the second task (severity prediction) validation of our 
model achieved AUC of 0.969 ± 0.022 using RF algorithm and AUC of 
0.895 ± 0.072 for meta voting. For testing, AUCs are 0.98 ± 0.005 and 
0.934 ± 0.015 for RF and meta voting, respectively. The gap between 
the training and validation accuracy indicates the amount of overfitting 
[46]. In this study the percentage difference between accuracy of vali
dation and testing for diagnosis task are 1.1% and 0.2% for RF and meta 
voting, respectively. Moreover, the gap between accuracy of validation 
and testing in severity prediction are 0.3% and 0.4% for RF and meta 
voting, respectively. 

Despite addressing bias and limitations in establishing a generaliz
able model, some aspects should be considered in evaluating the results: 
(i) our proposed model is based on a medium sample size, however for 

Table 5 
ML-based models used in COVID-19.  

Ref Task Model 
Training 

Feature 
selection 
method 

Modality/Subjects Accuracy Specificity sensitivity AUC 

Xie et al. 
[21] 

Diagnosis LR UA, LASSO 301 CT images, 33 COVID- 
19, 136 non-COVID-19, 48 
malignant, 84 benign 
lesions of indeterminate 
nature 

0.89 0.90 0.83 0.90 

Chen et al. 
[26] 

Diagnosis MLR LASSO 136 CT images, 70 COVID- 
19, 66 non-COVID-19 

0.94 (95% CI 
0.87–1.0) 

0.94 (95% CI 
0.87–1.0) 

– 0.99 (95% CI 0.97–1) 

Shi et al. 
[27] 

Diagnosis iSARF – 2685 CT images, 1658 
COVID-19, 1027 
community acquired 
pneumonia 

0.88 0.83 0.90 0.94 

Rezaeijo 
et al. 
[28] 

Diagnosis RF PC, RFE 194 CT images, 98 COVID- 
19, 96 suspected COVID-19 

0.98 – – 1.00 

Shiri et al. 
[22] 

Diagnosis RF ANOVA, 
KW, RFE 

26,307 CT images, 15,146 
COVID-19, 9657 non- 
COVID-19 

0.96 (RF + Relief), 
0.94 (RF + RFE), 
0.94 (RF +
ANOVA) 

0.94 (RF +
Relief), 
0.93(RF +
RFE),0.93(RF +
ANOVA) 

0.98 (RF +
Relief), 0.96 (RF 
+ RFE),0.96 (RF 
+ ANOVA) 

0.99 (RF + Relief), 
0.98(RF + RFE), 0.98 
(RF + ANOVA) 

Yue et al. 
[29] 

Prediction LR, RF – 31 CT images COVID-19 – 0.90 by LR, 1.0 
by RF 

1.0 by LR, 0.75 by 
RF 

0.97 (95% CI, 
0.83–1.0) by LR, 0.92 
(95% CI, 0.67–1.0) by 
RF 

Xu et al. 
[30] 

Prediction SVM LASSO 284 CT images COVID-19, 
75 early, 58 progressive, 75 
severe, 76 absorption 

– – – 0.90 

Zhu et al. 
[31] 

Prediction RF SFS, LASSO 408 CT images, COVID-19, 
86 sever, 322 non-sever 

0.86 ± 2.2 0.88 ± 1.45 0.77 ± 3.36 0.86 ± 2.27 

Qiu et al. 
[32] 

Prediction SLR LASSO 1160 CT images, COVID-19 
infected pumonary 

– – – 0.87 

This study Diagnosis 
and 
Prediction 

RF, meta 
voting 

SC, Voting 300 CT images, 100 COVID- 
19, 100 pneumonia, 100 
Helathy 

0.94 ± 0.031 and 
0.92 ± 0.034 
(diagnosis). 
0.93 ± 0.024 and 
0.93 ± 0.030 
(prediction) 

0.95 ± 0.020 
and 0.95 ±
0.010 
(diagnosis). 
0.95 ± 0.011 
and 0.95 ±
0.020 
(prediction) 

0.90 ± 0.056 and 
0.90 ± 0.078 
(diagnosis). 
0.87 ± 0.121 and 
0.85 ± 0.149 
(prediction) 

0.98 ± 0.010 and 0.92 
± 0.043 (diagnosis) 
0.93 ± 0.024 and 0.93 
± 0.030 (prediction) 

*LR: Logistic Regression, RF: Random Forest, MRL: Multi Linear Regression, SVM: Support Vector Machine, RFE: Recursive Feature Elimination, SLR: Stepwise Logistic 
Regression, KW: Kruskal-wallis, PC: Pearson Correlation, iSARF: infection Size Aware Random Forest method, LASSO: least absolute shrinkage and selection operator, 
UA: Univariate Analysis, SFS: Sample Feature Selection, SC: Spearman Correlation. 
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full generalizability, multi-centric/large datasets are required. As a 
result, using accurate data from the open source COVID-19 data re
pository could increase the model’s accuracy; (ii) our model does not 
include clinical, demographic and laboratory data. However, previous 
studies showed significant correlation of CT radiomics with these find
ings [7,21,30,47]; (iii) we enrolled in-patient COVID-19 positive and 
pneumonia. Therefore, the moderate group was significantly lower than 
the mild and severe groups. To solve this issue, SMOTE algorithm was 
employed on training set only to obtain reproducible and repeatable 
performance; (iv) we did not include the impact of lesion biologic het
erogeneity of lungs as well as the acquisition and reconstruction pa
rameters on explicit CT radiomics features. However, COVID-19 
diagnosis can result in considering infected pulmonary lesions in both 
lungs (right and left), reconstruction parameters have the potential to 
enhance the model performance [12,36,48]; (v) Despite the consensus 
that COVID-19 positive pulmonary involvement led to our chest CT 
severity scores. For determining the percentage of lung involvement in 
moderate and severe classes, other quantitative techniques, such as 
interrater reliability scores, may be helpful [49]. Future work should 
include different types of data (clinical and radiological) as prognostic 
indicators to develop a comprehensive model with a large sample size 
using multi-centre data to maximize the model performance. 

5. Conclusion 

CT radiomics features can be utilized towards derivation of bio
markers for COVID-19 and pneumonia diagnosis and severity prediction 
in a single 2-phase ML-based model. In terms of accuracy, the ML-based 
model demonstrated high performance in classifying COVID-19 and 
pneumonia (98%) cases using CT radiomics. In the second phase, an 
accuracy of 97% was achieved in classifying mild, moderate, and severe 
diseases. Our proposed, validated 2-phase model demonstrated great 
potential in assessing COVID-19 CT images towards rapid, reliable 
assessment and effective management of patients. 
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