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Introduction

The Paris Agreement requires countries to undertake deep decarbonization efforts to reduce 

long-term temperature change to “well below 2°C above pre-industrial levels and to 
pursue efforts to limit the temperature increase to 1.5°C” (UNFCCC, 2015). Outlining 

how this could be achieved, Article 4.1 of the Agreement states that countries should 

“aim to reach global peaking of greenhouse gas emissions as soon as possible...and to 
undertake rapid reductions thereafter…so as to achieve a balance between anthropogenic 
emissions by sources and removals by sinks of greenhouse gases in the second half of this 
century” implying that countries should strive to achieve net-zero emissions. In addition, the 

Intergovernmental Panel on Climate Change (IPCC) has concluded based on latest science 

that net global CO2 emissions should reach zero by around 2050 to limit warming to 1.5 °C. 

Net CO2 emissions should reach zero around 2070 to limit warming to 2 °C (IPCC, 2014, 

2018). This net-zero framing has proven to be an effective organizing device for countries as 

they make their future emission reductions plans. It is a more tangible goal for an individual 

actor than the goal of limiting warming to a particular level, which depends on the actions 

of all actors. Indeed, an increasing number of countries – including major economies such 

as China – have announced net-zero emissions pledges generally consistent with the IPCC’s 

guidelines for 1.5 °C (Climate Watch, 2020).

Previous studies that have assessed long-term national and international deep 

decarbonization scenarios suggest that achieving net-zero emissions will entail not only 

rapid decarbonization of energy, land, urban and infrastructure (including transport and 

buildings), and industrial systems, but also large-scale deployments of carbon dioxide 

removal (CDR) measures (Clarke et al., 2009; Clarke et al., 2014; DDPP, 2015; Fawcett 

et al., 2014; IPCC, 2018; Weyant and Kriegler, 2014). CDR measures discussed in the 

literature include surface-based measures such as enhancement of terrestrial CO2 uptake 

through afforestation and reforestation, coastal blue carbon, increasing soil carbon through 
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biochar application, and enhanced weathering, and subsurface-based measures that include 

storing atmospheric CO2 in geological formations through technologies such as bioenergy in 

combination with carbon capture and storage (BECCS) and direct air capture (DAC) (IPCC, 

2018; National Academies of Sciences Engineering and Medicine, 2019).

As the international community gears up to design net-zero emissions strategies, 

policymakers and analysts are faced with several open issues and questions about the role of 

CDR. We highlight three pertinent issues that have been discussed widely in the emissions 

mitigation literature, underscoring their importance in the context of net-zero emissions 

strategies. Foremost, there are questions about the scale of CDR measures required to 

achieve net-zero emissions and how that might affect the costs of emissions mitigation. 

Similarly, there are concerns about the possible and unintended consequences of large-scale 

deployment of CDR for other societal priorities such as the Sustainable Development 

Goals (SDGs) beyond climate (Fuhrman et al., 2020; Fuss et al., 2020; Roy et al., 2018). 

Furthermore, there are questions about where CDR will be undertaken around the world 

and what this might mean about emissions trading and the interpretation of country-level 

net-zero pledges. This perspective offers insights on the above issues and questions, and in 

doing so, contributes to the continuing debate on the role of CDR in deep decarbonization 

(Anderson and Peters, 2016; Fuss et al., 2018; Lenzi et al., 2018; Minx et al., 2018; Nemet 

et al., 2018; Williamson, 2016).

A zero-sum game: The scale of CDR deployment will affect the level of mitigation required 
in the energy system

Net zero emissions requires that emission sources—such as CO2 emissions from the 

combustion of fossil fuels, land-use changes, and non-CO2 emissions from agriculture and 

livestock, fossil fuel extraction, waste disposal, and refrigerants and chemicals – must be 

balanced by CDR measures. Hence, the scale of CDR could dictate the scale of emission 

reduction efforts required in the energy system (Figure 1) (The White House, 2016). The 

greater the scale of CDR, the lower is the pressure to reduce energy-system CO2 emissions.

By extension, although the economic costs of reducing CO2 emissions depend on various 

factors such as technology availability, technological change, renewable integration, and 

institutional factors, ceteris paribus, greater CDR deployment would imply lower costs of 

achieving net-zero pledges. By contrast, lower amounts of CDR would imply more rapid 

transformations of the energy system including measures to reduce demand which could be 

expensive (Clarke et al., 2014).

In this zero-sum game, non-CO2 emissions take on a particularly important role since some 

non-CO2 emissions – such as methane emissions from cattle due to enteric fermentation – 

are hard to reduce (Clark et al., 2020; Harmsen et al., 2019; Herrero et al., 2016). What 

confounds this zero-sum game further is that there is large uncertainty in the potential 

for CDR measures. For example, even though afforestation is a mature option with ample 

experience, the ability for terrestrial systems to absorb CO2 at scales suggested by global 

decarbonization studies is uncertain (IPCC, 2019). Likewise, BECCS and DAC technologies 

are immature and remain expensive (Fuss et al., 2018).
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Another key subtlety that could affect the scale of CDR is how net-zero is measured in 

the first place. Stabilization of radiative forcing and therefore global average temperature 

requires that net global CO2 emissions be zero (IPCC, 2018). However, non-CO2 emissions, 

and particularly methane need not be zero as their concentrations are related to emissions 

rates rather than cumulative emissions. While this is a subtlety at present, this could be 

important when societies are getting close to net-zero emissions.

CDR measures could create tradeoffs and synergies with societal priorities beyond climate

CDR measures could create varying degrees of synergies and tradeoffs with societal 

priorities other than climate (Figure 2) (Fuhrman et al., 2019; Fuhrman et al., 2020; Fuss 

et al., 2020; Roy et al., 2018). In general, CDR measures that restore or enhance natural 

processes tend to have greater synergies. For example, restoration of natural ecosystems 

and soil carbon sequestration could provide co-benefits such as improved biodiversity, soil 

quality, and local food security (IPCC, 2018). By contrast, CDR measures that require 

conversion of agricultural lands to either forest or bioenergy production such as afforestation 

and BECCS could create competition for land to grow crops resulting in higher crop prices, 

thus creating tradeoffs with societal priorities such as food security and hunger eradication 

(Calvin et al., 2014; Iyer et al., 2018; von Stechow et al., 2015; von Stechow et al., 

2016). Synergies and tradeoffs of CDR with other societal priorities highlight the need 

for policymakers to incorporate governance mechanisms and regulations that would limit 

trade-offs and maximize synergies in net-zero strategies.

It’s all about location, location, location

Global decarbonization studies generally agree that that the timing of carbon neutrality can 

vary substantially across countries while global emissions reach zero by around mid-century 

(Clarke et al., 2014; Luderer et al., 2018; Rogelj et al., 2018a; Rogelj et al., 2018b; Schaeffer 

et al., 2020). The studies suggest that while all countries reduce emissions to close to 

zero around mid-century, the location of CDR is the fundamental determinant of when 

individual countries reach net zero. Countries endowed with substantial resources for CDR, 

for example, through afforestation or an abundance of geological storage, reach net zero 

first, moving into net negative emissions in order to allow for other countries without these 

CDR options to maintain positive emissions for some time into the future. In some of the 

above studies, some countries never reach zero this century, while others reach zero in or 

before 2040 and then provide CDR services to the rest of the world.

The role of CDR and its geographical dispersion implies that many countries without 

meaningful CDR options will be dependent on other countries to offset their residual 

emissions. That is, net-zero pledges may very well be based on trade and not on actual 

net zero within the country boundaries. While this raises fundamental questions about what 

is actually meant by net-zero pledges, it is not clear that countries have internalized this 

potential character of their pledges or communicated their need to work in collaboration 

with other countries to facilitate this balancing of sources and sinks.

In addition, this CDR-driven need for collaborative action raises the importance of emissions 

trading in facilitating global carbon neutrality. At present, discussions about Article 6 of the 
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Paris Agreement – which outlines options for emissions trading – often focus on near-term 

economic efficiency gains that might emerge from its implementation, and perhaps the 

ability to use those efficiency gains to achieve greater ambition. Yet, in the context of 

net-zero, the value of Article 6 and the trading that it implies may extend beyond modest 

economic efficiency gains and may prove to be a necessity, as countries without meaningful 

CDR capabilities will be unable to meet net-zero pledges within their boundaries.

More broadly, given the critical importance that CDR will play in achieving carbon 

neutrality both globally and, importantly, in individual countries, it will be important for 

the international community – that includes policymakers and analysts – to better understand 

when and where CDR might take place in the future. This understanding could be an 

important precursor for efforts to ensure equitable distribution of CDR responsibilities and 

formulate schemes for sharing the benefits of CDR across multiple countries (Fyson et al., 

2020).

Concluding thoughts: Net-zero could set the stage for net-negative emissions

As countries design net-zero emissions strategies and evaluate the role of CDR in them, it is 

important to note that net-zero is very likely en route toward net-negative emissions – which 

global decarbonization studies highlight as being important to limit global temperature 

change to less than 2 °C and even more so to limit temperature change to less than 1.5 

°C (Clarke et al., 2014; IPCC, 2018). The same studies also suggest that while net-zero 

could be achieved primarily with terrestrial CDR measures, it might be harder to achieve 

large net-negative emissions without engineered measures such as BECCS or DAC. Hence, 

establishing policies to incentivize R&D and deployment of more nascent CDR measures 

in the near-term as part of the net-zero emissions strategies could help bring down costs to 

enable net-negative emissions in the future.

Furthermore, the design of net-zero emissions strategies will require due considerations 

of how CDR activities are funded. So long as emissions are net-zero or above, CDR 

activities can be funded by the remaining emitting sectors. However, once emissions become 

net-negative, any tax revenues from emitting sectors would be less than the needed funds 

to subsidize CDR activities. If emission mitigation policies are largely non-price-based 

regulations – as is the case in many countries today, additional revenue might need to be 

generated to fund CDR activities.

Nevertheless, it may be difficult for policymakers to pre-commit to net-negative emission 

targets. A different suite of policies might be needed to incentivize net-negative emissions 

compared to the policies that can drive emissions to net zero. There is a clear need to focus 

today on policies that will drive the transition to net zero. Decisions about policies that could 

potentially deliver net-negative emissions may be best left for future generations.
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Figure 1: 
Conceptual figure showing the implications of the scale of CDR in a zero-sum game. The 

greater the scale of CDR, the higher are CO2 emissions from fossil fuels and industry. With 

very low levels of CDR, achieving net-zero could be infeasible (which is shown by an “X” 

in the figure) (The White House, 2016).
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Figure 2: 
Consequences of CDR measures for various societal priorities beyond climate (summarized 

based on a detailed assessment by Fuhrman et al. (2019)).
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