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Abstract

Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet 

stream gauging stations are distributed sparsely across rivers globally and may not capture 

the diversity of fluvial network properties and anthropogenic influences. Here we evaluate 

the placement bias of a global stream gauge dataset on its representation of socioecological, 

hydrologic, climatic and physiographic diversity of rivers. We find that gauges are located 

disproportionally in large, perennial rivers draining more human-occupied watersheds. Gauges 

are sparsely distributed in protected areas and rivers characterized by non-perennial flow regimes, 

both of which are critical to freshwater conservation and water security concerns. Disparities 

between the geography of the global gauging network and the broad diversity of streams 

and rivers weakens our ability to understand critical hydrologic processes and make informed 

water-management and policy decisions. Our findings underscore the need to address current 

gauge placement biases by investing in and prioritizing the installation of new gauging stations, 

embracing alternative water-monitoring strategies, advancing innovation in hydrologic modelling, 

and increasing accessibility of local and regional gauging data to support human responses to 

water challenges, both today and in the future.

Stream gauging stations that measure water level surface elevation and estimate volumetric 

discharge (collectively referred to here as ‘flow’) are fundamental to water information 

systems1,2. Networks of stream gauging stations (or ‘stream gauges’) inform water-

allocation decisions to support human and ecosystem water needs and help forecast 

flood and drought risk to society3. Collecting and archiving long-term hydrologic data is 

required for analysis of hydroclimatic trends4 and quantification of the effects of flow 

regime alteration on the ecology5, capacity to transport pollutants6 and biogeochemistry (for 

example, carbon fluxes7) of freshwater ecosystems. Thus, information from gauge networks 

underpins our understanding of global water and elemental cycles and provides critical 

knowledge for managing water resources.

The location of gauging stations is influenced by many factors, most notably the need 

for information for managing water for human water needs8. However, gauge installation 

dictated by local and national planning may have yielded inadvertent biases in data when 

describing rivers and streams across regional or global scales. Hydrometric networks should 

be representative of regional socioecological factors, climate conditions and landscape 

heterogeneity. For example, skewed spatial representation in the rain gauge network 

is a source of bias in precipitation estimates9, and similar landscape bias exists in 

the locations of US Geological Survey (USGS) stream gauges10,11. Similar placement 
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bias in the global stream gauge network may limit our understanding of human water-

supply systems, compromise efforts to achieve global biodiversity goals12, challenge the 

estimation of hydrologic impacts of human activities13 and undermine best practices for 

determining environmental and cultural flow standards14. Yet our ability to assess the global 

representativeness of gauges has, until recently, been limited by a lack of global-scale stream 

gauge and environmental data.

Here we leverage recent global hydrologic datasets to report an investigation of potential 

biases in the spatial distribution of the global stream gauge network. We represented the 

global river network using the Global Reach-level A priori Discharge Estimates for Surface 

Water and Ocean Topography (GRADES) dataset15, which derived nearly 3 million river 

segments based on the 90 m MERIT Hydro digital elevation model16 (Supplementary 

Methods). GRADES also contains daily discharge estimates from 1979–2013 at these ~3 

million river segments with drainage areas >25 km2 (Fig. 1). We used a global database 

of 32,091 stream gauges17,18 to map gauge placement along the GRADES river network. 

We combined this with a suite of socioecological, climatic and physiographic characteristics 

of rivers from HydroATLAS19 to assess spatial and landscape biases in gauge placement. 

Leveraging these global databases, we (1) determined whether the current network of stream 

gauges accurately reflects the distribution of socioecological and environmental conditions 

among global rivers, (2) quantified the representativeness of the existing gauge network 

within major freshwater habitat types that shape global patterns in biodiversity and (3) 

identified priority geographic areas where new gauge installation would reduce global biases 

in gauge placement.

Biases of the global gauge network

We compared currently gauged river segments to a global river dataset (GRADES) 

according to 13 geospatial attributes that represent important aspects of hydrology, climate, 

physiography and socioecological conditions (Fig. 2; details in Supplementary Table 2). 

We used Wasserstein distance20,21 to contrast the statistical distribution of each attribute 

of gauged versus all river segments to identify the types of river that are over- or under-

represented by the current gauge network (Fig. 2 and Supplementary Fig. 4). Gauge 

placement favoured large (high Strahler stream order), perennial and highly dam-regulated 

rivers (Fig. 2a,b,d). Watersheds with high population density and large human footprints (a 

composite metric for anthropogenic influences) were over-represented, whereas rivers with 

high proportions of upstream protected areas (lands conserved by governmental or other 

organizations) and small human footprints were under-represented (Fig. 2a,c). The gauge 

network also disproportionately favoured mid-latitude (Supplementary Fig. 1) and mesic 

climates, whereas gauge coverage in extremely hot or cold regions was relatively sparse 

(Fig. 2e).

The overall patterns of bias in stream gauge placement suggested under-representation 

of areas previously identified as critical to freshwater conservation efforts2,22, including 

catchments with protected areas23 and headwater streams24. A lack of monitoring in areas 

with minimal human impact or those with unique ecological features limits the potential to 

develop and implement science-based water policy. For example, free-flowing watersheds 
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(Fig. 2, ‘Flow regulation’) and those containing protected areas (Fig. 2, ‘Protected area’) 

provide freshwater habitat critical to preserving biodiversity12 but are under-represented 

in the existing gauge network (bias values of 0.49 and 0.13, respectively; Fig. 2a). 

Furthermore, monitoring rivers in protected areas is crucial for evaluating threats such 

as encroaching urban and rural development23,25 and for developing reference sites and 

realistic conservation, restoration and management goals26. Similar data are needed for 

non-perennial streams and free-flowing rivers, many of which are changing in abundance 

in response to climate change13,27. Inadequate monitoring of habitats relative to their 

prevalence (or their conservation importance) also hinders our ability to inform policy 

decisions regarding their protection28. Thus, the intersection of conservation priorities 

and gauge location emphasizes the need to adequately capture watershed heterogeneity in 

hydrometric networks.

Biases in terms of major habitat types

The global stream gauge network is biased towards specific river and landscape attributes, 

and patterns in gauge placement bias may not be uniform across all habitat types. We 

assigned a major freshwater habitat29 to each gauge and conducted bias analyses within 

each habitat type to identify patterns in gauge placement bias specific to particular habitats 

(Fig. 3). Similarities in bias patterns among habitat types were found, particularly with 

respect to climate. Rivers in tropical and temperate habitats each clustered based on patterns 

of bias, with patterns in precipitation and air temperature especially pronounced. Biases 

in polar fresh waters varied from some overall trends, including an under-representation 

of areas with high human footprints. The greatest instances of bias largely occurred in 

polar and xeric freshwaters, while temperate habitats had the lowest degree of bias overall. 

Representation (or lack thereof) was consistent across all habitat types for some variables, 

including under-representation of catchments containing protected areas and a high bias 

towards increased flow permanence (the proportion of days with active flow; Methods). 

The tendency for gauge placement to favour heavily regulated rivers was also greatest 

in xeric regions, presumably due to the greater need to monitor water in water-scarce 

environments30. Small rivers (that is, low Strahler stream order) were under-represented 

across all habitat types, a pattern most pronounced in large river deltas and tropical 

and subtropical rivers, ecosystems facing tremendous freshwater biodiversity challenges31. 

Note that patterns for both flow permanence and stream order are probably much more 

exaggerated than what we show here given the 25 km2 watershed size limitation present in 

our river network.

The tendency for extreme climates to be under-represented in the global gauge network 

highlights a present-day challenge for water resource professionals. If the global 

hydrometric network does not adequately capture variability in environmental characteristics 

among rivers, hydrologic patterns of many watersheds become difficult to understand 

and forecast32. For example, it is challenging to investigate patterns in intermittent and 

ephemeral streams due to biases against gauge placement in non-perennial rivers33,34. 

Interest in non-perennial rivers has increased over the past several decades35, and the 

potential source of error from skewed discharge estimates could present a challenge for 

identifying changes over time36. Investing in monitoring environmental ‘extremes’ now 
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will improve future modelling efforts as these characteristics (for example, intermittency) 

become more common37. Similarly, systematic under-representation of small rivers across 

habitats limits our understanding of watershed structure and function, including regional 

probability of drying38, upstream contributions to watershed carbon budgets39 and the 

importance of headwater streams in supporting biodiversity and ecological integrity 

throughout their corresponding watersheds24. Building gauge infrastructure to adequately 

reflect hydrologic diversity within a watershed is thus fundamental to building effective 

water and ecosystem management approaches in the future.

Spatial distribution of under-represented rivers

Our analyses identified areas where additional gauge installation would improve the 

hydrologic, climatic, physiographic and socioecological representation by the global gauge 

network. Priority areas were determined by adding a hypothetical gauge to a river segment 

currently lacking a gauge then calculating the resulting change in overall average bias of the 

resulting global network and repeating for all segments currently without gauges (Methods). 

Positive or negative values indicate whether adding a gauge to a river segment would 

increase or decrease global overall bias, respectively. Regions with the lowest contribution 

to bias reduction were in North America, Europe and Asia, largely due to existing gauge 

coverage (Fig. 4 and Supplementary Fig. 1). Addition of gauges to arid regions was 

consistently important for bias reduction, including across large swaths of western North 

America, northern Africa, central and northern Australia and the Eurasian steppe. As large 

rivers were over-represented in the current gauge network, adding more gauges on larger 

rivers contributed little to global bias reduction, regardless of the surrounding segment 

attributes, as seen in the Nile River in Egypt and Sudan (Fig. 4). Although there is 

correlation between areas of high priority (Fig. 4) and currently under-gauged geographic 

regions (Fig. 1), variation in priority was better explained by geospatial attributes. For 

example, non-perennial rivers are globally common yet under-gauged, so rivers in xeric 

regions remain a high priority for new gauges regardless of existing gauge density (for 

example, southwestern North America). On the other hand, high-gradient mountainous 

regions have generally high global gauge coverage (Fig. 3) and are thus low priority (for 

example, the Himalayas) regardless of current gauge presence. It is thus important to note 

that contribution to global bias reduction does not necessarily correspond to conservation 

priority or importance for human water needs (for example, the Himalayas40).

Addressing patterns of gauge placement bias on a global scale requires greater integration of 

gauging infrastructure and data platforms from local to international levels2. Stream gauges 

serve a variety of water resource and management needs41,42; thus, strategies to develop a 

more representative gauge network that balances local water-management information needs 

with larger-scale priorities to reduce global bias in which regions and biomes are represented 

would increase societal value of the overall gauging network. Improvements to gauge 

infrastructure must also balance equity and data access for communities requiring more 

informed water-management practices43. Multiple alternatives to adding gauges may help 

bring this goal within reach. For example, advances in remote sensing technology44 have 

enabled global water resource estimates. While remote sensing cannot fully replace in situ 

discharge monitoring, the addition of these methods for large rivers may enable a shift of in-
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stream gauging resources to smaller rivers. The addition of remote sensing and subsequent 

reallocation of in-stream monitoring can improve overall watershed coverage and enable 

detailed, large-scale assessments of river networks45. Furthermore, community science 

efforts can provide data for systems lacking stream gauges46, and greater river network 

coverage can improve modelling approaches where costs of new gauge infrastructure 

are prohibitive38. Our analysis provides an important first step to identify representation 

disparities in global water information systems; this information, coupled with continued 

communication between water infrastructure decisionmakers and data users, will help ensure 

stream gauge networks adequately support human and ecosystem water information needs.

Discussion

By demonstrating the biases in the current global gauge network, we underscore the need for 

additional (or relocation of) gauging to improve representation of certain river attributes 

in the global network. Unbiased representation will improve our ability to understand 

ways to support human and ecosystem water needs into the future, particularly as valuable 

long-term data are generated2. Gauge placement decisions are made to satisfy a variety of 

local factors, but the use of gauge data to draw conclusions about watershed hydrology, 

ecology and human water needs comes with the necessity that the gauge network is 

representative of the attributes of all rivers11. Better accounting for socioecological and 

environmental heterogeneity in gauge networks will improve hydrologic models47 and their 

utility in informing water security challenges and strategies for addressing the freshwater 

biodiversity crisis12. Further, given the paucity of water information in some of the world’s 

river basins, additional gauges and advances in alternative data sources can substantially 

improve the information base upon which water resource-management decisions are made. 

Although local and regional assessments need to work within the bounds of community 

data needs, a global perspective illustrates that the locally driven process of building 

hydrometric networks has led to a biased system which falls short of equitably meeting 

social and ecosystem water information needs. However, local and global data needs are not 

at odds so long as representation (or lack thereof) of river heterogeneity is considered when 

investigating gauge data across large spatial scales.

We recommend future gauge placement decisions consider under-represented geospatial 

attributes when adding to existing gauge networks. Specifically, we recommend prioritizing 

additional gauge placement in areas of environmental vulnerability in addition to locations 

in need of socially relevant hydrologic data. We show that gauge infrastructure is lagging 

in areas critical to freshwater conservation, particularly areas with low human impact and 

intermittent flow conditions. We do not support the removal of gauges to compensate for 

bias, as loss of any gauge data could pose negative consequences for local data needs; 

however, our framework could be used to characterize compound losses associated with 

discontinuation of gauges. Fluctuations in the operation and availability of stream gauge 

data pose a substantial challenge for water information systems48. Previous studies2 have 

offered a series of solutions to water information challenges that highlight the need for 

greater cooperation among practitioners in making data widely and openly available. Such 

cooperation from local to international entities will be necessary to modify or grow existing 

hydrometric networks to reduce bias on continental or greater scales. Many areas that are 
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under-represented occur in countries that face major economic challenges (for example, 

parts of Africa, Southeast Asia and Central and South America). These areas may need 

financial assistance to improve the gauge network that forms a vital part of their water 

infrastructure. Cooperative solutions to irregular coverage in water information systems (for 

example, the World Bank ‘National Hydrology Project for India’) either through greater data 

accessibility or alternative gauging solutions could provide the best opportunity to address 

global water challenges of the future.

Methods

We used an international assemblage of stream gauge datasets and a compilation of 

13 geospatial attributes that span a range of hydrologic, climatic, physiographic and 

socioecological conditions to assess the spatial representativeness of the current gauge 

network (Fig. 1). Our global gauge network contains 32,091 stream gauging stations 

compiled from two global stream gauge datasets: the Global Streamflow Indices and 

Metadata Archive (GSIM18) with additional gauges from a recent publication17 that 

provides daily discharge data for a subset of gauges. Hydrologic data were obtained from 

the GRADES hydrographic dataset15 and include the river network, river morphometry 

and modelled daily discharge from 1979–2013 at 2,896,897 river segments with drainage 

areas larger than 25 km2. Here we defined ‘segments’ as contiguous sections of river 

between two tributaries or else the mouth or origin of the river. Climatic, physiographic 

and socioecological attributes were obtained from the HydroATLAS v1.0 database19, 

which describes landscape characteristics relevant to individual river segments (or reach15). 

Climatic factors included estimates of air temperature and precipitation; physiographic 

variables described river morphometry (stream order, gradient, catchment area); and 

socioecological attributes correspond to various landscape features relevant to human impact 

on rivers (regulation, catchment land cover and a cumulative metric of human landscape 

impact called ‘footprint’) and social well-being (gross domestic product). Finally, major 

freshwater habitat types were quantified according to the Freshwater Ecoregions of the 

World map19,29 to allow for habitat-specific analyses. Freshwater Ecoregions of the World 

delineates the globe into 426 units that are 311,605 km2 on average. Units belong to 12 

potential habitat types based on common attributes of freshwater ‘biomes’. Each biome is 

characterized by the biotic, chemical and physical characteristics of ecoregions as they apply 

to ecosystem dynamics and biodiversity in freshwater systems29.

We combined GRADES and HydroATLAS datasets through geospatial analysis performed 

using the Python GeoPandas library49. Specifically, the middle point of each of the 2.9 

million GRADES river segments was linked with HydroATLAS by finding the nearest 

HydroATLAS river segments by a radius search of 5 km (details in Supplementary 

Information ‘Geospatial Attributes‘). HydroATLAS attribute data were then assigned 

to GRADES river segments and combined with GRADES-estimated flow permanence 

(Supplementary Fig. 2) to provide a full accounting of relevant hydrologic (Strahler 

stream order; flow permanence), climatic (air temperature and precipitation, localized to 

the segment), physiographic (upstream catchment area; segment channel gradient) and 

socioecological (degree of regulation at the segment pour point; cropland and urban land 

use in the upstream catchment; the extent of protected area contained within the segment 
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catchment; human population density and human footprint in the upstream catchment; sum 

of the gross domestic product of the upstream catchment) conditions for all river segments 

(Supplementary Table 2). Gauge locations were snapped to GRADES river segments by 

first performing an automatic nearest search and then human corrections to identify the 

segments with existing gauge infrastructure (Fig. 1). All global river segments were then 

assigned to one of 11 major freshwater habitat types29 via spatial overlay (polar freshwaters, 

n = 410,501; large river deltas, n = 21,089; tropical and subtropical floodplain rivers and 

wetlands, n = 364,853; montane freshwaters, n = 76,118; temperate coastal rivers, n = 

282,660; temperate upland rivers, n = 169,271; temperate floodplain rivers and wetlands, n = 

319,541; tropical and subtropical coastal rivers, n = 241,372; tropical and subtropical upland 

rivers, n = 205,441; large lakes, n = 80,244; xeric freshwaters and endorheic basins, n = 

715,829).

In addition to the variables provided by HydroATLAS, we investigated patterns of flow 

intermittency, as it is an increasingly common but under-studied aspect of global rivers34,50. 

As a measure of discharge, we estimated flow permanence (that is, proportion of gauge 

record with non-zero flow35) using GRADES simulated discharge15 and daily discharge 

observations from one of the gauge station databases that was used in this study17. Note 

that the GSIM gauge database18 does not contain daily discharge values that are necessary 

for this analysis, so flow permanence was estimated for all segments based on discharge 

data from 17,406 gauges. We also note that GRADES is a modelled daily discharge 

product, so it requires adaptation and acknowledgement of its limitations before it can be 

used to estimate flow permanence: first, GRADES is not free of biases and uncertainties 

according to its evaluation against >14,000 gauges in Lin et al.15; second, GRADES was 

not specifically developed to estimate no-flow occurrence. As a result, GRADES rarely 

estimates a discharge of zero but rather reports a very small discharge (for example, 10−2 

m3 s−1), which indicates very low flow, possibly zero discharge. Therefore, we needed to 

establish a low discharge threshold for GRADES that can be used to categorize whether a 

river segment is flowing, which also addresses the small discharge bias. As there was no pre-

established threshold, we examined the simulated GRADES discharge when stream gauges 

reported zero flow42. We used the gauge dataset17 to accomplish this task and validated 

our results with measurements from two independent datasets of streamflow observations. 

Of the 17,406 gauges in the flow permanence dataset17, 3,925 gauges contained zero-flow 

observations, yielding a total of 4,680,335 zero-flow observations from 1979–2013. When 

gauges reported zero flow, the GRADES simulated discharge had a median value of 0.16 

m3 s−1 with a first quartile value of 0.028 m3 s−1 and a third quartile value of 0.83 

m3 s−1 (Supplementary Fig. 3). We used the median value to threshold the GRADES 

discharge, meaning if GRADES simulated a discharge below 0.16 m3 s−1, we deemed that 

this discharge was at zero flow, similar to the methods used elsewhere51. We also applied the 

same technique using the first and third quartile discharge values. We then estimated flow 

permanence by calculating the proportion of days from 1979–2013 that a river segment in 

GRADES was estimated to be actively flowing (Supplementary Fig. 2).

We validated the no-flow threshold by examining the timing of no-flow events from two 

other independent observational datasets. The first dataset from Kennard et al.52 contains 

streamflow observations from 830 Australian gauge stations. The second dataset, from 
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the US Environmental Protection Agency (USEPA) National Aquatic Resource Surveys, 

contains no-flow observations from 289 sites across the contiguous United States53. We 

removed all observations that (1) were duplicated with those in the gauge database17; (2) 

had drainage areas <25 km2, which is the minimum drainage area of the GRADES database 

and (3) did not fall within the time period 1979–2013. We then snapped these no-flow 

observations to the nearest GRADES river network segment using a maximum distance 

threshold of 500 m. Applying these data filters yielded 89,187 no-flow observations from 

Kennard et al.52 and 292 no-flow observations from the USEPA database (Supplementary 

Fig. 3). Using the timing of no-flow events from these two observational datasets and 

applying the non-parametric Mann–Whitney U test, we found that the distribution of the 

means of GRADES simulated discharges at zero flow from Kennard et al.52 and the USEPA 

was not statistically different from that of the gauge dataset17 at a 95% confidence level and 

concluded that our approach is valid with an acceptable amount of uncertainty. However, 

we acknowledge that there is uncertainty associated with using gauge data to calculate the 

GRADES-based zero-flow estimates because of the sparsity of gauges relative to the total 

river network length and the demonstrated location bias of the global gauge network.

We quantified the representativeness of the global stream gauge network by applying a 

semi-parametric, permutation-based statistical analysis on the compiled global geospatial 

datasets21. The representativeness of the global gauge network refers to the degree to which 

the statistical distribution of the environmental and socioecological attributes captured in 

the gauge network is similar to the statistical distribution of values for all rivers of the 

world. Representativeness was quantified by the 2-Wasserstein distance, which identifies 

disparities between the two distributions20,21. Wasserstein distances are absolute values so 

the directionality of divergence in distributions (whether the disparity was caused by over- 

or under-representation in the sample distribution) was identified using standardized bias 

according to variable means54. Positive values indicated that variables were over-represented 

for river segments containing gauges versus all river segments, whereas negative values 

indicated under-representation. We performed this analysis for the globe (less Antarctica and 

Greenland, which do not host stream gauges in this dataset) and for each major freshwater 

habitat type29.

We conducted simulations to calculate the overall change in global bias in gauge placement 

(averaged across all variables) if a new gauge were installed to identify high value locations 

for potential stream gauge additions. This was accomplished by adding a single ‘new’ 

gauge to each river segment in turn and calculating the resulting change in overall average 

bias across all geospatial attributes. This process was then repeated for each river segment 

currently lacking a gauge. This approach results in a ‘bias change’ value for each river 

segment that reflects its individual contribution to global bias if a single gauge were added to 

the network. Negative change in bias indicated that the addition of a gauge on that segment 

would decrease global bias in the gauge network. A positive change in bias indicated that 

global gauge network bias would increase as a result of gauge placement on that segment. 

We mapped the global river network to illustrate the contribution of each river segment to 

improving the representativeness of the global river network and identified spatial patterns in 

contribution to bias reduction (Fig. 4).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Data availability

All data from this study are available at https://doi.org/10.17605/OSF.IO/NYA8R.
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Fig. 1. 
Global distribution of stream gauges (red crosses; N=17,406) along the river network (blue) 

identified by GRADES (Lin et al. 2019) with four example gauges shown. (a) Mississippi 

River, Louisiana, USA (Station: USGS 07374000; photo: USGS); (b) Little Ruaha River, 

Tanzania (Station: 1KA2A; photo: J.D. Olden) (c) Weida, Thuringia, Germany (Station: 

57729; photo: R. Dupas); (d) Kororoit Creek, Victoria, Australia (photo: Tim Fletcher).
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Fig. 2. 
Comparison of currently gauged river segments to the GRADES dataset according to 

geospatial attributes. a, Bias in the global gauge network according to variables describing 

hydrology, climate, physiography and socioecological conditions. Symbol size is scaled 

according to the magnitude of bias (Wasserstein distance) and colour indicates direction 

of bias; red indicates over-representation (positive standardized bias), and blue indicates 

under-representation (negative standardized bias). b–e, Examples of gauged river segments 

(yellow) versus all global river segments (black) for values of flow permanence (b), human 

footprint (c), degree of flow regulation (d) and mean annual air temperature (e). Where 

gauged segments show lower cumulative probability than all segments, it indicates under-

representation of those values (along the x axes) in the gauge network and vice versa.
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Fig. 3. 
Bias in the gauge network for 11 Freshwater Ecoregions of the World (Abell et al. 2008) 

according to variables describing hydrology, climate, physiography, and socio-ecological 

conditions. The magnitude of bias (Wasserstein distance) ranges from positive (red) to 

negative (blue). Ecoregions are hierarchically clustered based on bias values.
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Fig. 4. 
Estimated amount of global mean bias change (Wasserstein distance) resulting from a gauge 

being installed on each river segment. Red indicates priority areas for potential new gauges 

(which would result in greater reduction in global bias). Specific river segment coloration 

does not denote actual representation by gauges, but the general importance of that ‘type’ of 

river in the bias reduction of the global hydrometric network.
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