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Abstract

The dependence of downstream waters on upstream ecosystems necessitates an improved 

understanding of watershed-scale hydrological interactions including connections between 

wetlands and streams. An evaluation of such connections is challenging when, (1) accurate 

and complete datasets of wetland and stream locations are often not available and (2) natural 

variability in surface-water extent influences the frequency and duration of wetland/stream 

connectivity. The Upper Choptank River watershed on the Delmarva Peninsula in eastern 

Maryland and Delaware is dominated by a high density of small, forested wetlands. In this 

analysis, wetland/stream surface water connections were quantified using multiple wetland and 

stream datasets, including headwater streams and depressions mapped from a lidar-derived digital 

elevation model. Surface-water extent was mapped across the watershed for spring 2015 using 

Landsat-8, Radarsat-2 and Worldview-3 imagery. The frequency of wetland/stream connections 

increased as a more complete and accurate stream dataset was used and surface-water extent 

was included, in particular when the spatial resolution of the imagery was finer (i.e., <10 m). 

Depending on the datasets used, 12% to 60% of wetlands by count (21% to 93% of wetlands by 

area) experienced surface-water interactions with streams during spring 2015. This translated into 

a range of 50% to 94% of the watershed contributing direct surface water runoff to streamflow. 

This finding suggests that our interpretation of the frequency and duration of wetland/stream 

connections will be influenced not only by the spatial and temporal characteristics of wetlands, 

streams and potential flowpaths, but also by the completeness, accuracy and resolution of input 

datasets.
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1. Introduction

The dependence of large rivers, lakes, and coastal waters on upstream ecosystems highlights 

the importance of an improved understanding of watershed-scale hydrological interactions, 

such as variable surface water flows between wetlands and streams (Lowe and Likens 2005; 

USEPA 2015; Cohen et al. 2016). In the U.S., for example, regulation of some streams and 

wetlands under the U.S. Clean Water Act depends on understanding the impacts of these 

streams and wetlands on the integrity of downstream “navigable” waters (Downing et al. 

2007). Evaluating complex hydrological interactions at watershed scales can be difficult 

even in a highly instrumented research watershed (e.g., Spence and Phillips 2015). This is 

because non-permanent hydrological connections between wetlands and downstream waters 

occur along a continuum or gradient defined by the frequency, duration, magnitude, timing 

and rate of change of such connections (Rains et al. 2008; Sass and Creed 2008; Wilcox 

et al. 2011; Mushet et al. 2015; USEPA 2015). The detection and quantification of these 

connections have taken several different strategies including using hydrological models to 

predict the impact of wetlands on streamflow (McLaughlin et al. 2014; Evenson et al. 

2015, 2016; Golden et al. 2016), collecting field-based measurements of flow or water 

quality, such as dissolved ion concentrations (Shaw et al. 2012; Nachshon et al. 2014; 

McDonough et al. 2015; Leibowitz et al. 2016), predicting connectivity from topographic 

analysis, modeling and unit hydrograph theory (Spence 2007; Huang et al. 2011; Shaw et 

al. 2013; Chu 2015), and using remotely sensed imagery to detect surface water connections 

(Kahara et al. 2009; Niemuth et al. 2010; Vanderhoof and Alexander 2015; Vanderhoof et al. 

2016a). In this study, we remotely detected surface water connections between depressional 

wetlands and streams in the Upper Choptank River watershed on the Delmarva Peninsula 

in eastern Maryland, an area where the majority of wetlands are forested. We explored 

how the accuracy and completeness of existing and newly developed stream and wetland 

datasets as well as the spatial resolution of surface-water maps influenced our interpretation 

of within-watershed connectivity during the seasonal peak of surface water wetness (i.e., 

following snowmelt and prior to leaf-out).

Remotely sensed imagery can be an effective means to monitor surface water extent (SWE) 

and distribution over time at a landscape scale (Alsdorf et al. 2007). Landsat, at 30 m 

resolution, can be used to map and monitor changes in SWE (Sethre et al. 2005; Rover 

et al. 2011; Frohn et al. 2012; Jin et al. 2017) as well as document the occurrence of 

surface water connections, for example, as lakes expand or wetlands merge (Vanderhoof 

and Alexander 2015). Because of the moderate spatial resolution of Landsat, however, it 

is unlikely to detect narrow fill-and-spill connections (Huang et al. 2011; Leibowitz et al. 

2016) and is challenging to use in landscapes dominated by small wetlands (Huang et 

al. 2014; Halabisky et al. 2016; Vanderhoof et al. 2016a). Fine spatial resolution imagery 

(2 m resolution or finer) can improve efforts to map SWE for small wetlands (<1 ha in 
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size) (White and Lewis 2011; Whiteside and Bartolo 2015), while synthetic aperture radar 

(SAR) imagery can be helpful to map surface water in forested environments (Lang and 

Kasichke 2008; Clewley et al. 2015; Hess et al. 2015; Schlaffer et al. 2016). These sources 

of imagery could potentially improve our ability to detect narrower connections, at least 

relative to Landsat. For example, Simon et al. (2015) paired synthetic aperture radar (SAR) 

imagery with fine-resolution optical imagery to improve detection of changes in water level 

for smaller water features. We note that identifying SWE cannot be considered equivalent 

to mapping wetlands, but areas that are inundated just prior to or at the beginning of the 

growing season (i.e., mid-March to mid-April at the study site) are very likely to meet the 

U.S. federal regulatory, hydrologic definition of a wetland (i.e., inundated or saturated in 

the root zone for two weeks within the growing season) (USACE 1987). Areas that are not 

inundated, but instead have near-surface saturated soils may also meet wetland definitions.

A landscape or watershed-scale assessment of surface-water connectivity between streams 

and wetlands requires accurate input maps regarding stream and wetland locations (Baker 

et al. 2007; Habtezion et al. 2016). However, due in part to the limited spatial resolution 

of most existing topographic data sources, the majority of headwater streams have not yet 

been mapped (Hansen 2001; Heine et al. 2004). Lidar-derived digital elevation models 

(DEMs) have been used to predict and map tributaries that are not consistently documented 

by current hydrographic maps, including ephemeral streams and constructed channels or 

ditches that function as tributaries within a drainage network (James et al. 2006; Murphy 

et al. 2008; White et al. 2012). The U.S. Geological Survey (USGS), which produces 

a national stream dataset (i.e., the National Hydrography Dataset (NHD)), is presently 

experimenting with automated and semi-automated methods to delineate hydrographic 

features from lidar DEMs to enhance NHD. However, NHD has not yet been updated to 

include these approaches (Steve Aichele, oral communication, 2016). For wetlands, the 

National Wetland Inventory (NWI) maps, produced by the U.S. Fish and Wildlife Service, 

are the most spatially and categorically detailed and accurate wetland maps in the United 

States. However, NWI funding has not been sufficient to maintain a consistently up-to-date 

dataset. This is particularly an issue in regions that have experienced extensive land-use 

change in the past few decades (Tiner 2009). Additionally, as NWI wetlands were visually 

interpreted from aerial photography, errors of omission and commission are highest for 

wetland types that are difficult to detect with photointerpretation, including small, forested 

wetlands, farmed wetlands, and partly drained wetlands (Stolt and Baker 1995; Tiner 1999). 

To help refine existing estimates of wetland location and extent, lidar-derived DEMs have 

been used to map depressional wetlands (during both leaf-on and leaf-off periods), most 

often to estimate wetland surface-water storage capacity (Gleason et al. 2007; Lane and 

D’Amico 2010; Huang et al. 2011) or to map wetlands that are difficult to detect, such as 

vernal pools (Wu et al. 2014), sinkholes (Wu et al. 2016) or forested wetlands (Creed et al. 

2003; Lang et al. 2013).

The northern Delmarva Peninsula in eastern Maryland and Delaware is characterized by a 

high density of forested, depressional wetlands, commonly referred to as Delmarva bays 

(Tiner 2003). Delmarva bays are shallow, closed depressions, normally elliptical or ovate in 

shape, with 80% ranging in size from 0.5 to 5.7 ha and show a high degree of similarity 

to Carolina bays (Sharitz and Gibbons 1982; Fenstermacher et al. 2014). SWE in forested 
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portions of the region has been mapped using C-band SAR (2003 and 2004) (Lang et 

al. 2008; Lang and Kasischke 2008), and lidar (Lang et al. 2012), while efforts using 

Landsat imagery have targeted leaf-off periods and paired Landsat with lidar backscatter 

intensity (Huang et al. 2014; Jin et al. 2017). Surface-water extent has been shown to 

vary interannually and be positively correlated with stream flow (Huang et al. 2014). Most 

efforts to date have focused on characterizing total SWE, while efforts to map SWE at the 

scale of individual wetlands has been limited to efforts using lidar backscatter intensity and 

lidar-derived topographic metrics (Lang and McCarty 2009; Lang et al. 2013). Efforts to 

predict wetland connectivity have examined stream dataset accuracy (Lang et al. 2012), but 

have not incorporated SWE. Documentation of actual wetland/stream connectivity has been 

limited to field observations of a few select sites (McDonough et al. 2015; Epting 2017). In 

this study, we examined how the completeness, accuracy and spatial resolution of stream, 

wetland and SWE datasets influenced our interpretation of wetland/stream surface-water 

connectivity in the Upper Choptank River watershed. Our research questions were:

1. How does the completeness and accuracy of wetland and stream datasets 

influence our interpretation of wetland/stream connections?

2. How does the spatial resolution of imagery influence estimates of total surface 

water extent and the detection of wetland/stream connections (Landsat [30 m], 

Radarsat-2 [5.6 m], Worldview-3 [2 m])?

2. Methods

To explore how the completeness, accuracy and spatial resolution of input datasets 

influenced our interpretation of the abundance of wetland/stream connections, we used two 

datasets to define wetlands, (1) NWI wetlands (USFWS 2010) and (2) wet topographic 

depressions derived from a lidar DEM; three datasets to define streams, (1) the high-

resolution National Hydrography Dataset (NHD) (USGS 2013), (2) a previously published 

semi-automated stream dataset (Lang et al. 2012), and (3) a stream dataset that estimated 

headwater stream extent; and three sources of imagery to define SWE, (1) Landsat, (2) 

Radarsat-2 and (3) Worldview-3. A complete list of products used in our analysis is shown 

in Table 1.

2.1 Study Area

Our study area was defined as the Upper Choptank River watershed (123,730 ha), upstream 

from the intersection of Tuckahoe Creek and Choptank River, on the Delmarva Peninsula in 

eastern Maryland and Delaware (Figure 1). The Delmarva Peninsula is within the ecoregion, 

the Outer Coastal Plain, and is dominated by poorly drained soils on floodplains and 

well-drained soils in the uplands (Lowrance et al. 1997). The surficial aquifer is unconfined 

with sediments dominated by sand and gravel (Lowrance et al. 1997). During dry periods the 

wetlands serve to recharge groundwater, while during wet periods, these wetlands receive 

water from adjacent upland areas via surface and subsurface water, as well as groundwater. 

During such periods, groundwater can discharge into wetlands (i.e., high water table) 

resulting in wetlands filling and spilling into downstream wetlands or streams, or flooding 

adjacent upland areas (Snodgrass et al. 1996; Sun et al. 2006; Pyzoha et al. 2008).
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Land cover within the study area is dominated by agricultural crops and grazed grass 

(59%), woody wetlands (20%), and deciduous forest (10%) (Homer et al. 2015). Much 

of the watershed has been hydrologically modified to accommodate agricultural activities. 

Maryland and Delaware have lost more than 73% and 54% of their wetlands, respectively 

(Dahl 1990). The primary types of wetlands remaining within the watershed are wetland 

depressions (e.g., Delmarva bays) and wetland flats, as well as riparian wetlands. Average 

weather conditions were derived from National Oceanic and Atmospheric Administration 

(NOAA) weather stations within and adjacent to the study area. Long-term (1950 – 

2014) summer (June – August) temperatures averaged 23.6°C, while winter (December 

– February) temperatures averaged 2.2°C. Winter precipitation averaged 7.9 cm per month 

while summer precipitation averaged 11.2 cm per month. The 2014˗15 winter prior to 

the image collection was colder and wetter than average (temperature averaged 0.6°C and 

precipitation averaged 10.2 cm per month (29% wetter than normal)).

2.2 Lidar Processing

2.2.1 Lidar DEMs—The lidar DEM used in the analysis was created from three separate 

lidar data collection efforts (April–June 2003 (vertical accuracy root mean square error 

(RMSE) = 14.3 cm) and March–April 2006 (vertical accuracy RMSE = 18.5 cm) for 

Maryland (1 m resolution) and April 2007 (vertical accuracy RMSE = 18.5 cm) for 

Delaware (3 m resolution)) (Lang et al. 2012). The DEM was calculated from the adjusted 

bare-earth lidar point files using inverse distance-weighted interpolation. The 1 m and 3 m 

resolution DEMs were resampled to 2 m resolution using cubic convolution.

2.2.2 Mapping Wetland Depressions and Wetland Contributing Area—
Depressions were identified using the Stochastic Depression Analysis Tool in Whitebox 

Geospatial Analysis Tools, an open source software (Lindsay 2014), largely following 

methods by Wu et al. (2014). The Depression Analysis Tool aims to separate out error 

artifacts in the DEM from “true” depressions. We used a Gaussian probability function 

(mean = 0, RMSE = 18.5 cm) to derive a normal distribution of potential error values. In 

each of the 20 iterations, a random sample from the potential error values was added to the 

original DEM prior to depressions being filled and identified using the depression filling 

technique of Wang and Liu (2006). Cells were considered part of a depression if identified 

as such in 80% of the 20 iterations (Wu et al. 2014). An edge-preserving smoothing filter 

with a 3-pixel by 3-pixel window was applied to reduce noise, or random error, within the 

final depression raster. Depressions smaller than 50 m2 were removed (17,217 of 52,560 

depressions) (Wu et al. 2014). To improve our confidence that depressions represented water 

or wetland features, only depressions that overlapped with surface water extent, as identified 

by the Worldview-3 water classification were retained. This step was meant to reduce 

errors of commission, but could have resulted in an underestimation of wetland features, 

particularly for features that store water for only short periods of time.

We also utilized an existing wetland dataset, the NWI dataset (U.S. Fish and Wildlife 

Service 2010). Non-riverine, palustrine and lacustrine wetlands were analyzed separately 

from riverine wetlands to improve comparability between the depression and NWI datasets. 

Further, internal divisions indicating a change in wetland type within a spatially continuous 
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wetland feature were dissolved to more accurately compare feature counts between the NWI 

and depression datasets. Contributing area was calculated for each depression and NWI 

wetland using the standard D8 flow direction algorithm from the hydrologically filled lidar 

DEM using ArcHydro in ArcGIS 10.3 (McCauley and Anteau 2014).

2.2.3 Mapping the Stream Network—Three versions of the stream network, 

representing a range of accuracy and completeness, were included in the analysis (Table 

1). The stream network was first defined by the high resolution NHD (USGS 2013). A 

semi-automated stream network was also used (Lang et al. 2012). This version was meant 

to include the same stream types as NHD (i.e., perennial and intermittent), but because it 

was derived from a lidar DEM, it showed improved accuracy relative to NHD (Lang et 

al. 2012). Third, ephemeral headwater streams were mapped and added onto the existing 

semi-automated stream network (Lang et al. 2012) to create an estimate of the total stream 

network (i.e., perennial, intermittent, and ephemeral). The total stream network dataset was 

created to account for streams typically excluded from the NHD dataset such as ephemeral 

streams and stream lengths <1.6 km (USGS 2000).

To map the total stream network, flow accumulation was calculated on the filled lidar 

DEM using the FD8 flow accumulation algorithm (Freeman 1991) in Whitebox GAT. 

The selection of a flow-accumulation threshold was guided by field-based points (n=30) 

collected in 2014 and 2015 in ephemeral and intermittent streams (Epting 2017). The 

location of these points were often near but not at the start of the stream origin due to limited 

land access (Epting 2017). A flow accumulation threshold of 50,000 m2 captured 95% of 

the non-ditch ephemeral and intermittent streams and showed the most realistic headwater-

stream extent based on our field experience regarding stream extent in the watershed. The 

headwater-stream extensions were added to the existing semi-automated stream network to 

create our estimate of the total stream network. Despite differences in the digital accuracy of 

the NHD (horizontal inaccuracy of 14 m) (USGS 2000) versus the semi-automated and total 

stream network versions (horizontal inaccuracy of 50 cm or less), for consistency purposes, 

all three datasets were buffered by 2 m to account for stream width and riparian habitat. To 

account for stream width in the main stem of the Choptank River and larger tributaries, the 

NHD area was added to each of the three buffered stream networks. NHD area was restricted 

to the Upper Choptank River.

2.3 SWE Mapping and Validation

SWE was mapped across the Upper Choptank River watershed using Landsat (30 m 

resolution), Radarsat-2 (5.6 m resolution) and Worldview-3 (2 m resolution). The SWE 

maps were validated using field-collected data as well as points visually identified from the 

raw Worldview-3 imagery.

2.3.1 Worldview-3 and Landsat Image Processing—A Worldview-3 image was 

collected across the watershed on April 6, 2015, and delivered as nine separate images. In 

addition, three Landsat images were processed: Landsat-8 images collected on April 4, 2015 

(p14r33) and April 11, 2015 (p15r33) and a Landsat-7 ETM+ image collected on April 12, 

2015 (p14r33) (Table 2). The Landsat images were atmospherically corrected and converted 
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to surface reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System 

(Masek et al. 2006). In ENVI, the Worldview-3 images were atmospherically corrected 

and converted to ground reflectance using Fast Line-of-sight Atmospheric Analysis of 

Hypercubes (FLAASH) (Adler-Golden et al. 1998, 1999). The Landsat and Worldview-3 

imagery were then similarly processed in ENVI by first applying a minimum noise fraction 

transformation to reduce noise in the data (Green et al. 1988). Surface water was identified 

using the Matched Filtering algorithm, which is designed to detect the abundance of a 

known endmember (e.g., water) against a composite of unknown background endmembers 

(e.g., vegetation, soil) using a partial unmixing technique (Turin 1960; Vanderhoof et al. 

2016a). The algorithm is similar to Spectral Mixture Analysis (SMA), but does not require 

knowledge of all of the endmembers within a scene. The output values were linearly 

stretched to maximize the spread of pixel values, enhancing our ability to distinguish 

inundated from non-inundated pixels. A Frost filter with a 3-pixel by 3-pixel window was 

applied to reduce noise in the data (Shi and Fung 1994). The imagery was co-registered to 

the lidar DEM using approximately 30 tie points. Worldview-3 pixels with a water per-pixel 

fraction of >0.25 were classified as inundated. Landsat pixels with a water per-pixel fraction 

of >0.4 were classified as inundated. Thresholds were specific to the source of imagery 

in order to balance errors of omission and commission for a given inundation map. The 

classified Worldview-3 images were mosaicked together. The Worldview-3 imagery did 

not extend to the farthest northeast corner of the watershed, necessitating our usage of a 

“clipped” watershed extent for the analysis (Figure 1). For the Landsat inundation map, the 

Landsat-8 image collected on April 11, 2015 (p15r33) was used as the primary image. The 

Landsat-8 image collected on April 4, 2015 (p14r33) and Landsat-7 ETM+ image collected 

on April 12, 2015 (p14r33) were mosaicked with the April 11, 2015 image to compensate 

for limited extent of the primary image, cloud-cover data gaps, and data gaps due to the 

Landsat-7 ETM+ scan-line error.

2.3.2 Radarsat-2 Image Pre-processing—Fine-resolution, quad-polarization 

Radarsat-2 imagery was acquired on March 24, 26, and 31, as well as April 2 and 9, 

2015, across the study area and provided in Single Look Complex (SLC) data format. 

Specific details regarding the Radarsat-2 image acquisitions are included in Table 2. The 

Radarsat-2 imagery was processed using PCI Geomatica’s SAR Polarimetric Workstation. 

Raw digital numbers were converted to Sigma Naught or the backscattering coefficient 

with units of decibels for analysis (Parmuchi et al. 2002). The SLC quad-polarization data, 

which represents complex data, were extracted to a 3×3 covariance matrix (Lee and Pottier 

2009). Three decompositions were applied to the covariance matrix, including the Cloude-

Pottier (Cloude and Pottier 1997), Touzi (Touzi et al. 2007) and Freeman-Durden (Freeman-

Durden, 1998) decompositions. The SLC data were also extracted to the normalized 

Kennaugh scattering matrix, which has been found to optimize detection of surface water 

under vegetation (Schmitt and Brisco, 2013; Schmitt et al. 2015). The Polar Lee Adaptive 

Filter was applied to the covariance matrix and normalized Kennaugh scattering matrix 

outputs with a 5-pixel by 5-pixel window to reduce noise, but preserve edges. Output 

rasters were resampled to 5.6 m resolution using cubic convolution to ensure identical cell 

resolutions between image dates and coregistered to the lidar DEM using tie points. The 
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mathematical details of these procedures are provided in Schmitt and Brisco (2013) and 

Touzi et al. (2007). Pre-processing steps are shown in Figure 2.

2.3.3 Mapping Forest Extent with Radarsat-2—Differences in vegetation structure 

between forest and non-forest land-cover types influence the SAR backscatter signal from 

water (Kandus et al. 2001; Yuan et al. 2015); therefore, separate SWE models were derived 

for forest and non-forest cover types for each of the Radarsat-2 dates. Forest extent was 

mapped from Radarsat-2. All Radarsat-2 imagery outputs were used in a random forest 

model and spatially implemented using ModelMap in R for each of the six Radardsat-2 

dates. The random forest model was trained on four cover categories, non-inundated forest, 

inundated forest, open water and non-inundated non-forest. The training points (250 points 

for each of the four cover categories) were derived from the raw Worldview-3 imagery. The 

model used 500 binary trees or bootstrap iterations using out-of-bag (OOB) samples (70% of 

points used to train, 30% of points used to validate). The output maps were consolidated into 

forest (non-inundated forest + inundated forest) and non-forest (open water + non-inundated 

non-forest) cover types. The consolidated validation statistics reported by the random forest 

models indicated an overall accuracy of 99% to distinguish forest from non-forest cover 

types. The outputs from the six dates were mosaicked into a single forest/non-forest map for 

the watershed.

2.3.4 Mapping SWE with Radarsat-2—To map SWE from Radarsat-2, training points 

for forested models were identified primarily using the field data and supplemented 

using the raw Worldview-3 imagery (502 inundated points, 535 non-inundated points). 

For the non-forested models, training points were identified from the raw Worldview-3 

imagery (923 inundated points, 904 non-inundated points). The images were classified 

into inundated/non-inundated using a random forest model (Liaw and Wiener 2015) with 

the spatial component implemented using ModelMap (Freeman et al. 2016) in R (R 

Development Core Team, 2015). Variables included per Radarsat-2 date were selected 

using variable selection (varSelRF package) which uses backwards variable elimination and 

selection based on the importance spectrum to select the smallest number of non-redundant 

metrics (Díaz-Uriarte and de Andrés 2005) (Table A1). A random forest model was derived 

for each date to take into account between-image differences in image extent and angle 

of inclination. Similar to mapping forest extent, we ran 500 binary trees or bootstrap 

iterations using OOB samples (70% of points used to train, 30% of points used to validate). 

The output SWE maps were filtered so that inundated polygons were only retained if 

they overlapped buffered streams, as defined by the total stream network or lidar-derived 

depressions. This step has been shown to reduce errors of commission, particularly within 

forested cover types (Vanderhoof et al. 2017). The Radarsat-2 SWE maps for each of the 

six dates were mosaicked together to produce a single forest-model SWE map and a single 

non-forest-model SWE map. Dates with higher accuracy within the forested cover type 

were prioritized (Vanderhoof et al. 2017). March 24 showed the highest accuracy, and was 

therefore used as the primary surface-water extent and covered 77.6% of the study area. The 

two models were then combined using the forest extent map to create a final Radarsat-2 

surface-water extent map across the watershed.
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2.3.5 Field Data Collection—Field data to validate the forest portions of the SWE 

maps were collected on March 16, 17, 24, 25, and 31, as well as April 1 and 6, 2015, on two 

properties, one located east of Tuckahoe Creek and the other west of the main stem of the 

Choptank River. The field effort coincided with the Radarsat-2 and Worldview-3 satellite 

flyover dates. Multiple two-person teams identified and walked areas of homogenous 

surface-water status using GPS units. Homogenous patches of non-inundated land cover 

were only recorded if they were at least 20 m from the nearest inundated area with standing 

water. A total of 12.8 ha (73 polygons) of forested, inundated area and a total of 4.4 ha (34 

polygons) of forested non-inundated area were identified and co-registered to a lidar DEM 

(2 m resolution) using tie points.

2.3.6 SWE Validation—Accuracy statistics were derived using an independent set of 

data points, not used to train the random forest models. Each final SWE map was validated 

using 400 inundated points (200 within forest, 200 within non-forest cover types) and 400 

non-inundated points (200 within forest, 200 within non-forest cover types). Validation 

points within forest were randomly selected from the polygons created during field sampling 

and supplemented using the raw Worldview-3 imagery to obtain enough validation points. 

Validation points within non-forest cover types were randomly selected from the raw 

Worldview-3 imagery. For Worldview-3 and Radarsat-2, points were a minimum distance 

of 6 m apart. For Landsat, points were a minimum distance of 30 m apart. Accuracy metrics 

presented included overall accuracy, omission error, commission error, Dice coefficient, and 

relative bias. Omission and commission errors were calculated for the category “inundated.” 

The Dice coefficient is the conditional probability that if one classifier (product or reference 

data) identifies a pixel as inundated, the other one will as well, and therefore integrates 

omission and commission errors (Fleiss 1981; Forbes 1995). The relative bias provides the 

proportion that inundated area is under- or overestimated relative to the inundated area of the 

reference product (Padilla et al. 2014). Accuracy statistics are provided in Table 3.

2.4 Wetland/Stream Connection Analysis

Surface-water connection and wetland/stream connection were used as general terms 

indicating multiple mechanisms through which wetlands can contribute surface water to 

downstream waters, including wetland fill-and-spill, a stream flowing in or out of a wetland, 

stream overbank flow, and flood-and-merge. In using these terms, we made no assumption 

about the mechanism of connection or shifts or loss of wetland function that can co-occur 

with changes in surface-water extent. A wetland was assumed to demonstrate a stream 

connection if it (1) intersected the stream network (Figure 3A), or (2) intersected a stream-

connected patch of surface water, as mapped by Landsat, Radarsat-2 or Worldview-3 

(Figure 4). Wetlands that did not intersect the stream network, but became connected 

to the stream network once we mapped actual surface-water extent, were referred to as 

variably connected (VC) wetlands or depressions (Figure 4). Wetlands or depressions that 

neither intersected the total stream network nor intersected stream-connected SWE were 

referred to as no connection observed or NCO wetlands or depressions. It is important to 

note that inaccuracies in the stream networks, the spatial resolution of the imagery, and 

the limited temporal extent of the imagery all acted to limit the number of connections 

detectable using this approach. Cyclical or episodic linear connections (e.g., ephemeral and 
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intermittent streams, swales, ditches) that connect some waters (e.g., Tromp-van Meerveld 

and McDonnell 2006) may not have been mapped by the stream networks and are often 

narrow (e.g., <1 m in width), and therefore will be difficult to detect, even with fine-

resolution imagery. In addition, other connections are likely to occur only in very wet 

years (Vanderhoof et al. 2016a). For example, although the 2015 winter was 29% wetter 

than normal, snow melted and accumulated multiple times over the early spring period 

meaning that a different distribution of the winter precipitation could have elevated spring 

surface-water extents. However, this approach allowed us to quantify how data inputs may 

influence our interpretation of connection abundance. Additional details regarding data 

processing methods are supplied in the Appendix as Supplemental Online Material.

3. Results

3.1 Wetlands and Stream Dataset Comparisons

The lidar-derived depressions showed high spatial overlap with the NWI wetlands. By 

area, 95% of the NWI wetlands co-occurred with a depressional feature, while 77% of the 

depressions, by area, co-occurred with NWI wetlands, after excluding agricultural areas, 

defined as the 2011 National Land Cover Dataset (NLCD) categories cultivated crops 

and hay/pasture (Table 4). The depressions, however, diverged substantially from NWI 

wetlands when comparing total count and area. We mapped 400% more depressions by 

count than NWI wetlands, while the NWI mapped almost 600% more area as wetland than 

the depression dataset (Figure 3B and 3C). Visually, both the depressions and NWI wetlands 

spatially aligned with patterns of SWE. However, in general, SWE seemed to correspond 

more closely with depression extent, while the NWI wetland extent tended to overestimate 

SWE (Figure 5). When comparing surface-water extent with the NWI wetland extent, its 

overestimation of wetland extent was particularly common in the northern portion of the 

watershed where it was common for wetland boundaries to closely follow forest boundaries 

(Figure 3C). Relative to the high-resolution flowline of the NHD, the semi-automated stream 

dataset of Lang et al. (2012) contributed 53% more stream length, while the total stream 

network that estimated headwater extent added an additional 17% stream length relative to 

the semi-automated stream dataset (Table 5, Figure 3A).

3.2 Wetland/stream Connections

The percent of SWE connected to the stream network depended on (1) the stream dataset 

used and (2) on the source of imagery used to define SWE (Figure 6). The percent of total 

SWE that was stream connected varied from 56% to 71% for Landsat, 48% to 68% for 

Radarsat-2 and 62% to 75% for Worldview-3 depending on the stream network used (Table 

6). As greater stream length was mapped, more of the SWE, by area, was shown to be 

connected to the stream network. In addition to the stream dataset and source of imagery, 

the percent of wetlands shown to be stream connected also depended on how wetlands were 

defined. For depressions, the percent shown to have a surface-water connection ranged from 

12% by count (21% by area) using NHD to 49% by count (56% by area) using the total 

stream network and including SWE defined by all three sources of imagery (Table 7, Figure 

7). Non-riverine NWI wetlands ranged from 23% stream-connected by count (60% by area) 

to 60% stream-connected by count (93% by area) (Table 7, Figure 7). Not considering 
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SWE, increasing stream extent to include headwater streams increased depression/stream 

connections 9% by count and 13% by area and NWI wetland/stream connections 12% by 

count and 20% by area.

Including SWE from spring 2015 improved our ability to detect wetland/stream connections, 

but its contribution for this point in time was influenced by the spatial resolution of the 

imagery. Landsat showed a slightly higher rate of omission in non-forest cover, relative 

to Radarsat-2 and Worldview-3 (Table 3), likely because of the prevalence of small ponds 

in agricultural fields that were difficult to detect with Landsat. In forested cover, however, 

Landsat showed a similar ability to detect wetlands as Radarsat-2 and Worldview-3 (Table 

3), the difference was most prominent at the edge of wetlands where the spatial resolution 

influenced the ability of Landsat to detect narrower connections between wetlands and 

between wetlands and streams. Consequently, Landsat SWE contributed less to identifying 

additional wetland/stream connections while Radarsat-2 and Worldview-3 SWE showed a 

similar ability to identify additional wetland/stream connections. Across the three stream 

datasets, adding Landsat SWE identified on average an additional 7% and 5% depressions 

and wetlands, respectively as stream-connected. These percentages increased to 15% and 

18% for Radarsat-2 SWE, and 14% and 12% for Worldview-3 SWE (Table 7). By 

calculating the contributing area for each depression and wetland, we were also able to 

quantify the variability in our interpretation of the percent of the watershed contributing 

to streamflow in the Choptank River. Depending on the datasets used, the estimated 

contributing area varied from 50% to 94% (Table 7, Figure 8). These findings suggest 

that incorporating fine-resolution SWE imagery was most important for identifying wetland/

stream connections remotely, while identifying streams not mapped by NHD was also 

important.

3.3 Non-permanent wetland/stream connections

A subset of the depressions during spring 2015 only became connected to the stream 

network as surface water expanded (VC depressions), in this case during spring high-water 

conditions when groundwater was discharging to wetlands and wetlands had filled-and-

spilled. These depressions occurred in many different land-cover types including woody 

wetlands, forest, and cultivated crops, but relative to the distribution of all wetlands 

depressions by land cover type, VC depressions identified during spring 2015 occurred 

disproportionately in woody wetlands and less often in cultivated crops, likely due to 

agriculture-related modifications to water flow (Table 8). VC depressions occurred closer to 

each of the three stream datasets relative to all depressions, as well as depressions in which 

we did not observe a stream connection during the spring 2015 observations (Table 9). VC 

wetlands showed a mean Euclidean distance of 60 m to 94 m from a stream, depending on 

the source of imagery used to define SWE, and stream dataset used. However the maximum 

Euclidean distance from VC wetland to the total stream network was much larger than the 

mean value, approximately 466 m. We generally observed longer distances for VC wetlands 

using the less extensive stream datasets (e.g., NHD and semi-automated) relative to the total 

stream network (Table 9), which suggests that surface water extent may be contributing 

more towards creating VC wetlands than the extensiveness of the mapped stream network. 

The version of stream network showed a strong influence, however, on the mean distance for 
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depressions to the streams. For all non-stream intersecting depressions, the mean distance to 

nearest stream ranged from an average of 199 m using the NHD dataset to 102 m using the 

total stream network (Table 9).

4. Discussion

Characterizing the frequency, duration and magnitude of wetland/stream connections is 

relevant not only to the implementation of federal, state, and local wetland policies, but 

also to understanding how water, nutrients, and pollutants are retained or move within a 

watershed and contribute to or influence the amount and quality of downstream waters. 

Detecting and characterizing such connections, which can vary through time and occur 

via the exchange of surface water, shallow subsurface water or groundwater, is extremely 

challenging, in part, because of incomplete data about influencing factors such as surface 

storage, geology, and soil characteristics, as well as wetland and stream extent. Existing 

approaches to identify and monitor wetland/stream connections show distinct advantages 

and disadvantages. While field-based approaches can help detect connections, and may 

be necessary to detect narrow and temporary connections, it is typically cost prohibitive 

to attempt to detect all wetland/stream connections throughout a watershed or even sub-

watershed in the field. Semi-distributed hydrological models are beginning to be applied 

to model wetland/stream connections by incorporating structural wetland-connectivity 

relationships (Evenson et al. 2015, 2016). The advantage of this approach is that the 

summed contribution of wetlands to streamflow can be modeled for a continuous temporal 

record. However, such models are typically calibrated and validated using stream gage data 

and often calculate SWE as a residual of the model, meaning that uncertainty associated 

with the SWE contributes to uncertainty associated with predictions of which wetlands are 

connected to streams.

Approaches that rely on remotely sensed imagery can provide estimates of wetland/stream 

connectivity at much greater spatial extents than field-based efforts, and may provide greater 

certainty by reducing errors of commission when identifying wetland/stream connections, 

relative to current hydrological models. However, as shown in this analysis, the detection of 

such connections depends on the quality of the wetland and stream input datasets, and the 

temporal and spatial resolution of the imagery used to map SWE. This means that errors 

of omission (i.e., missing existing wetland/stream connections) can be expected to be high 

due to the spatial and temporal limitations of the imagery, in particular when connections 

are temporary in response to precipitation events, or when subsurface connections play 

an important role. Regardless, remotely sensed imagery, particularly when analyses are 

targeted to wet periods or points in time and use fine-resolution imagery as in this analysis, 

can provide a baseline picture to improve our estimation in particular of the frequency of 

surface-water connections. It is possible that pairing fine spatial resolution imagery, which 

tends to have a longer temporal return interval, with moderate spatial resolution imagery, 

such as Landsat, which can provide a more continuous record (1984-present, every 8 to 

16 days) could also help characterize the timing and duration of surface-water connections. 

Continued collection and processing of fine-resolution imagery can also be used to monitor 

the influence of landscape changes, including degradation (e.g., agricultural drainage) and 

restoration of depressional wetlands on wetland/stream connectivity, but this effort would 
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be greatly helped by occasional lidar data collection which can allow for documentation of 

topographic changes influencing surface storage and flow.

In this analysis, we found that our interpretation of the total frequency of wetland/stream 

connections and the corresponding estimates of watershed contributing area ranged widely 

depending on (1) the accuracy and completeness of the wetland and stream maps, and (2) 

the spatial resolution of imagery used to define SWE for spring 2015. Including headwater 

streams increased the amount of wetland/stream interactions detected; however, we can’t 

assume that all streams in the stream network are active at a given point in time. Work by 

others in the watershed has shown that many of these streams are ephemeral or intermittent 

(McDonough et al. 2015; Epting, 2017), meaning that at times of year when the stream 

network is disconnected, remotely sensed surface-water connections may overestimate water 

contributing to stream-flow. In addition, our analysis suggests that including any SWE 

map improves our ability to detect wetland/stream connections, but both Radarsat-2 and 

Worldview-3 showed an improved ability, relative to Landsat to detect narrower connections, 

likely because of the finer spatial resolution of these data sources, relative to Landsat. It also 

became evident that minor differences in SWE can change which wetlands are identified as 

stream-connected (Figure 6). This suggests that uncertainty in SWE, particularly in forested 

environments, can introduce uncertainty in estimates of wetland/stream connectivity.

The abundance of wetland/stream connections was also found to depend on the wetland 

dataset used. A higher wetland count when using depressions instead of NWI was likely a 

consequence of deriving the depressions using a finer map scale. In addition, errors within 

the NWI dataset were likely due to the difficulty of mapping forested wetlands with aerial 

imagery (Tiner 2009). However, the Delmarva Peninsula is a low gradient landscape in 

which Delmarva bays co-occur with large, forested wetland flats that may not have been 

adequately captured by stochastic depression analysis, due to the shallower depth and less 

distinct shape of these wetlands. In addition, although filtering depressions using SWE 

helped increase confidence that depressions represented wetlands, it could have excluded 

wetland features that were saturated or dry at the time of imagery collection. To minimize 

this potential source of error, the imagery was collected at the seasonal peak in wetness 

during a wet year (29% more winter precipitation than normal). The differences between 

the two datasets had several implications for our study. First, because the depression dataset 

divided the landscape into many more potential wetland features, the percent of depressions 

that showed a connection to a stream tended to be lower than when the NWI dataset was 

used. Alternatively, fewer wetland/stream connections were detected by count using the 

NWI dataset, because several depressions were typically represented by a single wetland 

polygon in the NWI dataset.

This study builds upon a very limited number of studies using remotely sensed SWE to 

characterize wetland/stream connections. We can compare our findings in the Delmarva 

Peninsula to findings in other regions with a high density of depressional wetlands. In 

the Prairie Pothole Region (PPR), Vanderhoof et al. (2016b), using the NWI wetland 

dataset, NHD streams and Landsat imagery, found that the percent of wetlands that showed 

a wetland/stream connection varied between 7.5% and 35% across different ecoregions 

within the PPR. In comparison, using the identical datasets we found a similar proportion, 
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27% of the NWI wetlands showed a stream connection within the Upper Choptank River 

watershed. However, improving the stream network and adding fine-resolution sources 

of SWE increased this percent to 60% of the NWI wetlands showing a wetland/stream 

connection across the Upper Choptank River watershed. This finding suggests that improved 

datasets (e.g., Baker et al. 2007) could lead to more accurate estimates of wetland/stream 

surface water connectivity in other regions, such as the Prairie Pothole Region (Baker et al. 

2007; Nadeau and Rains 2007).

Similar to the Prairie Pothole Region, the Upper Choptank River watershed also contains 

an abundance of agricultural activities, which have substantially modified the flow of 

water across the watershed (Lang et al. 2012; Homer et al. 2015; McDonough et al. 

2015). Agricultural activities can both increase and decrease wetland/stream connections. 

Filling wetlands with soil and lowering the water table through increased water withdrawal 

can decrease expected surface-water connectivity, while ditches can extend the stream 

network, potentially increasing surface-water connectivity (De Laney 1995; Blann et al. 

2009; McCauley and Anteau 2014). Lang et al. (2012) made specific efforts to manually 

digitize ditches across the Upper Choptank River watershed when they created their stream 

dataset. Ditch location is driven by human needs and often does not follow surrounding 

topography. This means that ditches are often not identified by topography-based efforts 

to map streams (Lang et al. 2012). However, the difference in wetland/stream connectivity 

between the NHD and semi-automated stream datasets suggest that ditch networks, which 

are typically connected to the stream network, contribute wetland/stream connections in 

agriculturally dominated landscapes.

In addition to the role of agriculture, the geology of the Delmarva is also critical to 

consider in our analysis. Our interpretation of the frequency of wetland/stream surface 

water connections within the Upper Choptank River watershed must also consider that 

groundwater exchanges in the Delmarva and Carolina bays ranges from episodic to nearly 

continuous (Schalles and Shure 1989; Lide et al. 1995; Sun et al. 2006) with many bays 

serving as both recharge and discharge sites at different points in time (De Laney 1995; 

Pyzoha et al. 2008). The prevalence of groundwater exchange in the region means that 

surface water represents only one mechanism for water exchange between wetlands and 

streams. This is dissimilar to other regions dominated by a high density of depressional 

wetlands, such as the Prairie Pothole Region, in which glacial deposits limit groundwater 

contributions to streams (Winter & Rosenberry 1995; van der Kamp & Hayashi 2009).

Advances in airborne and satellite technology continue to improve our ability to detect and 

monitor SWE and wetland/stream connections. The 3D Elevation Program of the USGS has 

recently begun systematically collecting lidar data over the conterminous U.S. and Hawaii 

that could be used to improve both wetland and stream maps. Unmanned aerial vehicles 

(UAVs, or “drones”) have been used to collect sub-decimeter multispectral imagery for 

surveying wetlands (Jensen et al. 2011; Chabot and Bird 2013), but have not yet been widely 

applied for monitoring SWE. Additionally, the recent and planned launches of the Sentinel 

satellite series, which includes radar, multispectral and hyperspectral sensors will support 

continuous data collection at short return intervals (2 to 6 days) and will greatly improve our 

ability to monitor temporal variation in SWE and wetland/stream connections.
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5. Conclusion

Improved characterization of wetland/stream interactions is necessary to predict how water, 

nutrients and pollutants will move within a watershed, and to improve our understanding 

of watershed-scale hydrological interactions (Marton et al. 2015). Remotely sensed imagery 

can help characterize the spatial and temporal frequency of wetland/stream interactions at 

a landscape scale. Although obtaining and processing fine-resolution sources of imagery, 

such as lidar or Worldview-3, can be time intensive, this analysis suggests that improving 

the accuracy and completeness of the input datasets can substantially improve your ability to 

detect wetland/stream connections for a point in time. The identification of wetland/stream 

interactions is also more challenging in forested environments in which uncertainty in SWE 

is elevated relative to non-forest environments. Consideration of what datasets to use will 

depend not only on the land-cover type and wetland and stream size, but also on the 

dominant mechanisms through which water is exchanged between wetlands and streams. 

In the future, characterizing wetland/stream interactions, in particular to quantify not just 

surface, but also subsurface and ground-based interactions, will likely require a coupling of 

field-based, hydrological modeling and remote sensing approaches.
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Figure 1. 
The study area consisted of the Upper Choptank River watershed. Study area extent was 

limited by extent of the Worldview-3 imagery.
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Figure 2. 
Flowchart of Radarsat-2 processing steps. ModelMap and randomForest refer to R packages. 

SLC: Single Look Complex. DEM: digital elevation model. SWE: surface water extent.
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Figure 3. 
A comparison between the stream network by A) the National Hydrography Dataset (NHD), 

B) the semi-automated dataset, C) total stream network, D) three stream networks overlaid 

on one another, E) distribution of lidar-derived depressions and, F) distribution of National 

Wetland Inventory (NWI) wetlands (includes both riverine and non-riverine wetlands). 

The stream datasets in part D are layered to show the “novel” contributions of the semi-

automated and total stream network so that the National Hydrography Dataset (NHD) is 

shown on top, followed by the semi-automated dataset, and the total stream network on the 

bottom.
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Figure 4. 
An example showing how wetland/stream surface water connections were classified using 

the stream network and surface water extent, as defined by Worldview-3 surface water extent 

(SWE). A wetland was assumed to demonstrate a stream-connection if it: (1) intersected 

a version of the stream network (dark blue) or (2) intersected a stream-connected patch 

of surface water (green). Depressions that neither intersected the total stream network nor 

intersected stream-connected SWE at the date the imagery was collected (in this example as 

defined by Worldview-3, April 6, 2015) were referred to as no connection observed or NCO 

depressions (brown).
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Figure 5. 
A comparison of surface water extent (SWE) as mapped in forested wetlands using: A) 

Worldview-3, B) Radarsat-2, C) Landsat, and compared with wetland datasets, including: D) 

lidar-derived depressions and E) National Wetland Inventory (NWI) wetlands, and F) raw 

Worldview-3 (WV-3) imagery. Copyright 2017 Digital Globe, Next View License.
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Figure 6. 
Forested depressions that showed a connection to a stream via surface water varied 

depending on the source of imagery used to define surface-water extent (SWE). Wetland/

stream connections were defined as (1) wetlands directly intersected the stream network (SI) 

or (2) intersected a stream-connected surface water polygon (Landsat, WV-3 or R2 SWE). 

Wetlands for which no connection to a stream was observed for this point in time were 

labeled as NCO. NCO: no stream-connection observed. SI: depression intersected a stream. 

R2: Radarsat-2. WV-3: Worldview-3. NHD: National Hydrography Dataset. Copyright 2017 

Digital Globe, Next View License.
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Figure 7. 
The percent of: A) National Wetland Inventory (NWI) non-riverine wetland area and B) 

depression area connected to streams by stream dataset and integrating surface water extent. 

R2: Radarsat-2. WV-3: Worldview-3. NHD: National Hydrography Dataset.
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Figure 8. 
Contributing area estimated from: A) depressions intersecting the National Hydrography 

Dataset (NHD) (50% contributing), B) depressions intersecting the total stream network 

and surface water extent (SWE) defined by Landsat, Radarsat-2 and Worldview-3 (82% 

contributing), C) National Wetland Inventory (NWI) wetlands intersecting the NHD (75% 

contributing), and D) NWI wetlands intersecting the total stream network and SWE defined 

by Landsat, Radarsat-2 and Worldview-3 (94% contributing). Minimum and maximum refer 

to the range of percent contributing area using different combinations of input datasets.
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Table 8.

The distribution of depressions that showed a non-permanent surface-water connection to a stream within 

the total stream network (variably connected or VC depressions) versus those for which no connection was 

observed (NCO depressions) by land cover type using the 2011 National Land Cover Dataset (NLCD). 

Depressions that intersected the stream network directly were excluded from this analysis.

NLCD Cover Class VC depressions (%) NCO depressions (%) All depressions (%)

Open water 0.7 0.0 1.6

Developed/Barren 15.9 8.8 11.1

Forest 18.4 26.1 21.4

Shrub/scrub 2.3 3.2 2.7

Grassland 0.4 0.6 0.5

Pasture/Hay 3.2 7.0 5.7

Cultivated Crops 17.1 27.9 23.4

Woody wetlands 40.2 26.3 31.5

Emergent Herbaceous wetlands 1.8 0.2 2.0
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Table 9.

The mean Euclidean distance between categories of depressions to each of the three stream datasets. The 

depressions that showed a variable or non-permanent connection (VC depressions) were specific to each 

source of imagery and stream dataset combination. NCO (no connection observed) depressions showed no 

stream connection regardless of the source of imagery. Depressions have been separated out by imagery type 

including Radarsat-2 (R2) and Worldview-3 (WV-3). NHD: National Hydrograph Dataset, SE: standard error.

Depression Category Mean distance (SE) (NHD) Mean distance (SE) (semi-
automated)

Mean distance (SE) (total 
stream network)

All depressions 176.0 (1.1) 121.9 (0.8) 81.8 (0.5)

all non-stream intersecting 
depressions 198.8 (1.2) 144.2 (0.9) 102.0 (0.6)

VC depressions (Landsat) 77.4 (2.6) 88.4 (2.6) 67.9 (1.4)

VC depressions (R2) 72.3 (2.0) 68.7 (1.5) 59.7 (0.9)

VC depressions (WV-3) 93.9 (2.1) 89.5 (1.8) 66.1 (1.1)

NCO depressions 219.5 (1.5) 155.0 (1.1) 118.5 (0.7)

Wetl Ecol Manag. Author manuscript; available in PMC 2022 October 05.


	Abstract
	Introduction
	Methods
	Study Area
	Lidar Processing
	Lidar DEMs
	Mapping Wetland Depressions and Wetland Contributing Area
	Mapping the Stream Network

	SWE Mapping and Validation
	Worldview-3 and Landsat Image Processing
	Radarsat-2 Image Pre-processing
	Mapping Forest Extent with Radarsat-2
	Mapping SWE with Radarsat-2
	Field Data Collection
	SWE Validation

	Wetland/Stream Connection Analysis

	Results
	Wetlands and Stream Dataset Comparisons
	Wetland/stream Connections
	Non-permanent wetland/stream connections

	Discussion
	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.

