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SUMMARY
Cells require coordinated control over gene expression when responding to environmental stimuli. Here we
apply scATAC-seq and single-cell RNA sequencing (scRNA-seq) in resting and stimulated human blood cells.
Collectively, we generate �91,000 single-cell profiles, allowing us to probe the cis-regulatory landscape of
the immunological response across cell types, stimuli, and time. Advancing tools to integrate multi-omics
data, we develop functional inference of gene regulation (FigR), a framework to computationally pair scA-
TAC-seq with scRNA-seq cells, connect distal cis-regulatory elements to genes, and infer gene-regulatory
networks (GRNs) to identify candidate transcription factor (TF) regulators. Utilizing these paired multi-omics
data, we define domains of regulatory chromatin (DORCs) of immune stimulation and find that cells alter chro-
matin accessibility and gene expression at timescales of minutes. Construction of the stimulation GRN elu-
cidates TF activity at disease-associated DORCs. Overall, FigR enables elucidation of regulatory interactions
across single-cell data, providing new opportunities to understand the function of cells within tissues.
INTRODUCTION

Eukaryotic cells have evolved exquisite control to continuously

sense and respond to external environmental cues.1–4 This, in

part, involves coordinated changes in signaling dynamics, tran-

scription factor (TF) binding, and, eventually, expression of

downstream target genes.3–5 Immune cells in particular harbor

tremendous plasticity in their ability to respond to stimuli, devel-

oping diverse and specific functions in response to different

pathogenic agents.6 This highly context-specific and often het-

erogeneous activation of genes promoting the appropriate

anti-viral or inflammatory response comprises one of the hall-

marks of immunity. Our understanding of immunity has evolved

over time; for example, it has been shown that chromatin may

prime cells for an immunological response,7,8 leading to ex-

hausted states,9 or further orchestrating activation of surround-

ing cells through production of key signaling molecules.10

Single-cell genomics methods have greatly advanced our un-

derstanding of cellular diversity of immune cells.11–13 Single-cell

RNA sequencing (scRNA-seq) characterizing time- and stim-

ulus-dependent transcriptional signatures in mouse10 and hu-

man14 immune cells, for example, has identified distinct tran-

scriptional programs that are activated or repressed over time

and highlighted cell-cell variability in response to immunological

stimulants.15 Concomitantly, several prior studies have applied

chromatin accessibility and gene expression assays to define
Cell
This is an open access article under the CC BY-N
cis-regulatory atlases across resting12,16,17 and stimulated14,16

immune cell types. Most recently, the coronavirus disease

2019 (COVID-19) pandemic has prompted use of single-cell

ATAC-seq and RNA-seq tools to characterize the immunological

response to infection.18,19 These diverse efforts have sought to

elucidate the epigenetic control of immune cell function; namely,

the cellular circuitry that defines the gene-regulatory network

(GRN) within the cell.

Although these efforts have resulted in tremendous insights

into the transcriptional control of immune cells, these studies

are limited by the existing repertoire of computational tools

modeling-gene regulatory dynamics among single cells.

Advances in constructing GRNs from single-cell data20,21 have

facilitated new opportunities to uncover mechanisms of cell

function and adaptation after stimulation. However, most ap-

proaches that solely utilize co-expression20,22,23 are limited in

their ability to (1) define key cis-regulatory elements and (2)

elucidate the function of master TF regulators on gene expres-

sion. Extensive prior work has demonstrated that epigenomics

data can vastly improve the determination of functional

GRNs.24–26 In one example, single-cell genomics,27–30 bulk epi-

genomics,17,31,32 and mutagenesis33–35 studies of non-coding

DNA have revealed that certain genes are largely regulated by

their enhancer landscape, whereas others are predominantly un-

der promoter control. In another example, scRNA-seq GRN

methods that use co-expression rely on the assumption that
Genomics 2, 100166, September 14, 2022 ª 2022 The Author(s). 1
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TFs activate genes; however, extensive functional experiments

show that TFs may silence chromatin to repress target

genes.36–38 We reasoned that a computational approach that

defines a gene by its connection to distal regulatory elements

would fill an unmet need of GRN modeling in single-cell geno-

mics, serving to improve our understanding of the epigenetic

mechanisms underlying the function and adaptation upon envi-

ronmental exposure of eukaryotic cells.

Here, we create an exemplar dataset for construction of im-

mune cell GRNs. To do this, we combine use of multiple stimulus

agents with chromatin accessibility and gene expression single-

cell analysis to characterize and assess the dynamics of the cis-

regulatory landscape linked with immune cell stimulation in hu-

man peripheral blood mononuclear cells (PBMCs). We then

establish functional inference of gene regulation (FigR), a gener-

alizable approach for independently or concomitantly profiled

single-cell ATAC-seq (scATAC-seq) and scRNA-seq, that (1)

computationally pairs scATAC-seq and scRNA-seq datasets

(when needed), (2) infers cis-regulatory interactions, and (3) de-

fines a TF-gene GRN. Utilizing these integrated data, we estab-

lish that changes in chromatin accessibility foreshadow changes

in gene expression upon immune stimulation of monocytes.

Last, we highlight how this approach can be used to identify

key TFs and their relationship to target genes, including stimulus

response and disease-associated domains of regulatory chro-

matin (DORCs).Our work highlights use of blood stimulation

combined with high-throughput single-cell multi-omics and ad-

vancements in developing enhancer GRNs using FigR as a

model to deduce key transcriptional regulatory modules that

are required for immune cell activation.

RESULTS

Combined high-throughput single-cell epigenomic and
transcriptional profiling of resting and stimulated
PBMCs
To characterize the chromatin accessibility and transcriptional

landscape associated with host response to stimuli in human

blood, we performed droplet-based scATAC-seq and scRNA-

seq on resting and stimulated human PBMCs at different time

points of stimulus exposure (Figure 1A; STAR Methods). Specif-

ically, cells derived from healthy donors (n = 3 or 4; Table S1)

were exposed for 1 or 6 h to stimulants known to elicit anti-

viral-like or core inflammatory responses, including lipopolysac-

charide (LPS; a component of bacterial cell membranes), phor-

bol myristate acetate (PMA) plus ionomycin (a potent ester that

activates nuclear factor kB [NF-kB] signaling),39 or interferon

gamma (IFN-Ɣ; an endogenously produced immunoregulatory

cytokine) alongside a DMSO control per time point prior to sin-

gle-cell profiling (STARMethods). These stimulants were chosen

because they have been shown to induce distinct time- and cell-

type-specific changes with unique transcriptional dynamics as

part of the host immune response.10,14,39–41 Additionally, for

the 6-h time point using each stimulant, we separately treated

cells with a Brefeldin A, a protein secretion inhibitor (Golgi inhib-

itor [GI]), attenuating paracrine signaling events in immune cells

and allowing us to distinguish between primary and secondary

stimulation response phenotypes.
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Collectively, we generated over 15 billion reads, resulting in a

high-coverage single-cell regulatory atlas comprising of 67,581

scATAC-seq and 23,754 scRNA-seq cells spanning all condi-

tions (Figure 1B) with an average of 8,865.2 (±SD= 4,837) aligned

unique nuclear fragments per cell and mean fraction of reads in

peaks (FRiP) of 0.6 (±SD = 0.05) for scATAC-seq-profiled

cells (Figures S1A and S1B) and averaging 3,021 UMIs (±SD =

425.77) for scRNA-seq-profiled cells (Figures S1C and S1D;

STAR Methods). Clustering scATAC-seq and scRNA-seq cells

(STARMethods) yielded discrete cell clusters, largely represent-

ing monocytes, T (CD4/CD8) and B lymphocytes, and natural

killer (NK) cells, with even distribution of cells from all donors

involved per cluster and condition (Figures 1C, 1D, and S1E–

S1G). Importantly, each of these broader clusters included

sub-clustering of cells by stimulus condition (Figures 1E and

S1H).

To formally annotate cell types for scRNA-seq cells, we first

aligned cells across batches (here defined as each treatment

condition) using a previously described computational approach

(in Seurat),42 enabling co-clustering and annotation of scRNA-

seq cells across conditions. Clustering of cells using this

approach yielded distinct groupings (Figures S2A and S2B)

that were enriched for cell type and stimulus-specific gene

expression markers and were used to annotate cell types (Fig-

ure S2C). Inspection of the myeloid cells for accessibility peaks

around gene promoters (scATAC-seq) and gene expression

levels (scRNA-seq) confirmed stimulus- and time-specific

changes (Figures 1F, 1G, and S2D). Importantly, all major cell

types were captured at relatively even proportions across the

treatment conditions used (Figure S2E), enabling multi-omics

integration of independently assayed chromatin accessibility

and gene expression profiles downstream.

A computational cell pairing approach for accurate
integration of single-cell chromatin accessibility and
gene expression profiles
We reasoned that data from paired contexts may enable deter-

mination of GRNs, facilitating interpretation of the key regulatory

processes underlying stimulation of immune cells. Current

frameworks supporting integration of scATAC and scRNA-seq

data29,42,43 rely on identifying ‘‘anchor’’ cells, cells that represent

shared biological states in a common lower dimensional space,

to then find representative cells from one dataset in the other.

Although useful for matching cells of corresponding cell types

(i.e., annotation-level pairing), these methods often (1) result in

high one-to-many cell barcode matching rates, resulting in over-

all lower cell usage downstream, or (2) do not adequately

address cell type imbalance between datasets.

To address this challenge, we developed a method (scOpt-

Match) that identifies cell pairs between scATAC-seq and

scRNA-seq data using a constrained optimal cell mapping

approach (Figure 2A). For this approach, we first create a shared

co-embedding of scATAC-seq and scRNA-seq cells using ca-

nonical correlation analysis (CCA), similar to what has been

described previously as a functionality in Seurat.42 Next we

address the issues of (1) total cell number imbalance and (2)

cell type imbalance between datasets by first sub-clustering

the entire cell space and constructing a cell k-nearest neighbor



Figure 1. High-throughput single-cell epigenomic and transcriptional profiling of resting and stimulated human blood cells

(A) Schematic highlighting design of stimulation experiment. Human peripheral blood mononuclear cells (PBMCs) were stimulated with DMSO control, lipopoly-

saccharide (LPS), interferon gamma (IFN-Ɣ), or phorbol myristate acetate (PMA) plus ionomycin for 1 or 6 h with or without a Golgi inhibitor (GI ) for the 6-h treat-

ment condition. Cells were then split and profiled using scATAC-seq and scRNA-seq for each condition and time point considered.

(B) Total number of cells profiled per condition passing quality control filtering for scATAC and scRNA-seq.

(C) Uniform manifold approximation and projection (UMAP) of scATAC-seq cells based on latent semantic indexing (LSI) dimensionality reduction, with cells

colored by treatment condition.

(D) UMAP of scRNA-seq cells based on principal-component analysis (PCA) dimensionality reduction, with cells colored by treatment condition.

(E) UMAPs of scATAC-seq cells (top) and scRNA-seq cells (bottom), highlighting individual conditions under control (6 h) and PMA (1 and 6 h) conditions.

(F) Aggregate accessibility profiles for scATAC-seq monocyte cells around genes IFITM3 and HES4.

(G) Distribution of single-cell expression levels based on the imputed scRNA-seq counts for stimulation-specific gene markers shown in (F) per condition for

scRNA-seq monocyte cells.
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(kNN) graph between ATAC and RNA cells in the co-embedded

space, sampling cells from both assays within a given kNN sub-

graph (STAR Methods). Upon down-sampling to match cell

numbers between assays (i.e., scATAC or scRNA) in a given sub-
graph, cells are paired using a constrained global matching algo-

rithm,44 using the subgraph geodesic distance between ATAC-

RNA cells as a cost function. Analogous to the traveling

salesman problem, this ensures that resulting ATAC-RNA cell
Cell Genomics 2, 100166, September 14, 2022 3



Figure 2. Sparse kNN-based ATAC-RNA cell pairing allows optimal pairing and integration of scATAC-seq and scRNA-seq data

(A) Schematic highlighting scOptMatch’s strategy for computational pairing of scATAC-seq and scRNA-seq cells based on geodesic distance kNNs (yellow x

marks) within cluster subgraphs (gray x marks).

(B) Schematic depicting experimental bead enrichment of specific immune cell types from human PBMCs.

(C) Distribution of the number of instances of paired RNA cell barcode when using the greedy (left) versus scOptMatch method for the PBMC isolate dataset

pairing.

(D) Percentage of total scATAC and scRNA-seq cells paired using the two different pairing strategies.

(E) Accuracy heatmap of scATAC-scRNA-seq pairing between PBMC isolate cell types, colored by percentage of scATAC-seq cells correctly paired with the

corresponding scRNA-seq cell type.

(F) UMAP of scRNA-seq stimulated cells shown in Figure 1D, with cells aligned across stimulus conditions to enable cell type annotation, colored by annotated

cell type.

(legend continued on next page)
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pairs are minimized for the total geodesic distance among all

combinations of possible pairs. Importantly, only ATAC-RNA

cells within a certain distance (geodesic kNNs) are considered

for pairing as a prior, further speeding up computation time rela-

tive to if all possible pairs were being considered (STAR

Methods).

To create a reference dataset to benchmark scOptMatch, we

isolated cell types within PBMCs and profiled (in separate as-

says) scRNA-seq and scATAC-seq.13 The complete data re-

flected scATAC-seq (n = 17,920 cells) and scRNA-seq (n =

8,089 cells) data corresponding to five PBMC sub-populations

(Figure 2B; STAR Methods). Using these data, we determined

ATAC-RNA cell pairs using (1) the optimal matching described

above (scOptMatch) or (2) a ‘‘greedy’’ best match approach

(choosing the closest RNA cell for every ATAC cell in CCA

space). As expected, we found that scOptMatch results in a

significantly larger number of cells being paired from both data-

sets across all cells (92.06% scATAC and 98.4% scRNA;

Figures 2C and S3F), a consequence of fewer ATAC-RNA cell

multi-mapping instances (Figures 2D and S3G) compared with

the greedy approach (22.2% scRNA). Importantly, the scOpt-

Match approach also accurately maps cells of the same refer-

ence cell type (Figure 2E). To confirm the pairing performance

of scOpMatch, we applied it to previously generated SNARE-

Seq2 data for primarymotor cortex cells (n = 84,178 cells),45 rep-

resenting a less discrete cellular population with ground truth la-

bels for experimentally paired chromatin accessibility and RNA

expression profiles per cell (Figure S3H). Implementing the

same integration workflow as with unpaired data resulted in a

mean ATAC-RNA mapping rate of 90.05% (±22.3 SD) between

cells with shared cell type cluster annotations (n = 10 cluster

groups; Figure S3I), despite very few ATAC-RNA matches for

the exact same cells (<1%), with mispairings largely occurring

for very rare cell types (e.g., L5 ET-2, n = 29 cells) or closely

related cluster annotations (e.g., Sngc/Vip cells). Thus, scOpt-

Match can pair cells of similar cell types across multiple assays

using independently generated or multi-modal profiles.

Provided scOptMatch enabled approximately one-to-one

pairing of cells of similar annotations between assays, we

reasoned that it may facilitate integrative analysis of scATAC-

seq and scRNA-seq data generated from matched cellular con-

texts. We thus sought to apply it to pair our stimulus multi-omics

datasets. Pairing of scATAC and scRNA-seq cells per condition

using scOptMatch (Figures S3J–S3L), we obtained paired multi-

omics data with matching cell numbers across assays (n =

62,219). Importantly, this cell pairing further enabled cell type

annotation of scATAC-seq by simply using annotations defined

from scRNA-seq gene expression markers (Figures 2F, 2G,

and S3M). Aggregating single cells by cell type and condition

and filtering for sufficient counts resulted in 139 pseudobulks

(averaging a total of 1.94 million RNA and 2.3 million ATAC

aggregate counts). Utilizing this high-depth resource, we find

that chromatin accessibility at distal peaks is highly cell type spe-
(G) UMAP of un-aligned scRNA-seq cells (shown in Figure 1D) colored by annotat

by paired scRNA-seq cell annotations (right), enabling downstream data integra

(H) Pairwise Pearson correlation of aggregate single-cell chromatin accessibility p

and paired gene expression (right), aggregated by cell type and condition.
cific, even more so than gene expression, whereas promoter

accessibility is relatively invariant across cell types and stimula-

tion conditions (Figure 2H), validating prior reports.17,46 Overall,

the high quality of these data and the exquisite cell type speci-

ficity of distal chromatin accessibility motivated further analysis

of the GRN underlying stimulus response. We reasoned that

this scOptMatch approach for cell pairing, enabling approxi-

mately uniform pairing of scATAC to scRNA profiles, would

establish an integrated dataset and could be used for down-

stream analysis analogous to accessibility and RNA expression

profiling concomitantly within the same cell.

Identification of distal peak-gene interactions across
stimulation using integrated single-cell data
We next sought to associate changes in cis-regulatory peaks

with the expression of genes as a means to prioritize features

that are part of the immunological response GRN. To do so,

we include as part of the FigR framework a computational

approach to determine significant distal peak-to-gene expres-

sion interactions, as performed previously on multi-modal

data.28 Specifically, we used computationally paired cells (n =

62,219 cells per assay) to correlate accessibility from peaks

found within a fixed window (100 kb) around each gene’s tran-

scription start site (TSS) with expression of that genewith permu-

tation-based testing to estimate the statistical significance for a

given peak-gene pair (Figure 3A; STARMethods). In this way, we

identified a total of 34,370 unique chromatin accessibility peaks

genome wide, showing a significant association with gene

expression (permutation p % 0.05), spanning a total of 11,304

genes. Prioritizing genes based on their total number of signifi-

cantly correlated peaks, we identified a subset of genes associ-

ated with a high density of peak-gene interactions, which we

recently described as DORCs28 (Figure 3B; n R 7 significant

peak-gene associations, n = 1,128 genes, n = 12,583 peaks;

Data S1).

The list of DORC-associated genes included many known me-

diators of immunological response associated with innate and

adaptive immune response pathways,10,40,47,48 as also confirmed

by gene set enrichment analysis (GSEA) (Figure S4A; Data S1).

Notably, among these genes, we see a large fraction of distal

cis-regulatory associations (>5 kb away from the gene TSS;

Figures 3C, S4B, and S4C). By scoring cells using the total asso-

ciated peak accessibility signal per DORC (referred to as the

DORC accessibility score), we determine correspondence be-

tween chromatin accessibility and gene expression across single

cells (Figures 3D, S4D, and S4E) or across pseudobulks for each

DORC, stimulation condition, andcell type (Figure 3E). Uponcom-

parison with matched control conditions (DMSO controls), we

observed the largest effect onDORCaccessibility and expression

from treatment with PMA, as seen across most cell types, and a

moremoderate effect with treatment of IFNƔ or LPS, as seen pre-

dominantly inmonocytes (Figure 3F). Notably, we found that stim-

ulation induces a larger change in the transcriptome of the cells in
ed cell type (left) and scATAC-seq stimulated cells (shown in Figure 1C) colored

tion for stimulated scATAC- and scRNA-seq-profiled cells.

rofiles associated with gene promoters (left), distal from the promoter (center)

Cell Genomics 2, 100166, September 14, 2022 5



Figure 3. Integrative multi-omics analysis identifies key regulatory modules associated with stimulus response in single cells

(A) Schematic of cis-regulatory analyses for identification of significant chromatin accessibility peak-gene associations using computationally paired scATAC-

seq and scRNA-seq stimulation datasets.

(B) Top hits based on the number of significant gene-peak correlations across all cell types and stimulus conditions.

(C) Loop plots highlighting significant peak-gene associations for DORC TRAF1, determined using the approach outlined in (A).

(D) UMAP of DORC accessibility scores (left) and paired RNA expression (right) for TRAF1.

(E) Pairwise Pearson correlation of aggregate DORC accessibility scores and RNA expression of cells per condition per cell type across all DORCs, clustered

using hierarchical clustering by DORC score correlations.

(F) Global DORC accessibility (top) and gene expression (bottom) change displayed based on the Pearson correlation coefficient of the aggregate score across

DORCs for each stimulation condition versus its corresponding control condition, shown per condition per cell type annotation.

(G) Heatmap showing themean difference in single-cell DORC accessibility for the union of the top 10 differential DORCs across conditions and cell types (n = 53

genes). The cell type color bar represents the cell group having the most significant change across all conditions for that assay.

Resource
ll

OPEN ACCESS
comparison with chromatin accessibility, but cell types concor-

dantly altered chromatin and expression to induce activation of

immunity genes (Figures 3E and 3F). Interestingly, we also find

that addition of the GI strongly attenuates the immune response

to PMA (CD8, NK, and B cells) and LPS (CD8), likely a conse-

quence of inhibiting paracrine signaling, and in response to IFN

(monocytes), likely a consequence of inhibiting autocrine

signaling. Surprisingly, only a few cell types, including B and

CD8 T lymphocytes, exhibited this dampened response in acces-

sibility and gene expression change after 6 h of PMA exposure

when simultaneously treated with the GI, suggesting that, in

most contexts, DORCs are intrinsically regulated.

Single-cell differential testing among DORCs identified a num-

ber of essential regulators of immunological response
6 Cell Genomics 2, 100166, September 14, 2022
(Figures 3G and S4F; Data S2 and S3). This includes shared

LPS- and IFN-induced genes (MX1, IFIT3, OAS3, and OASL)

and PMA-induced genes associated with cellular apoptosis

and survival (NR4A1/2/3, EGR1, REL, and TRAF1). Interestingly,

we also observe primary ligand-encoding genes (IL1A, IL1B, and

CCL3) and immune inhibitors (CD274 [also known as PDL1],

NFKBIA, and TNIP1) among these top differential DORCs.

Notably, our cis-regulatory analysis recovers DORCs, the major-

ity of which (�79%) include genes previously annotated to be

linked to super-enhancer regions across diverse cellular con-

texts31 (STAR Methods; Figures S4G and S4H), the remainder

(n = 238 genes) includes several stimulation response genes

(IFIT1, MX1, OAS1/3, IL13, IL3RA, and IL27RA) and cell type

markers (CD14, NKG7, GZMK, and CD8B). Our approach to



Figure 4. Chromatin and gene expression dynamics with respect to stimulus response time

(A) UMAP of scATAC cells colored by estimated NN stimulation (stim) time per stimulus condition.

(B) UpSet plot highlighting overlap of monocyte-constrained DORC genes determined for the three different stimulus conditions.

(C) Heatmaps highlighting smoothed normalized DORC accessibility, RNA expression, and residual (DORC-RNA) levels for DORC genes (n = 38) identified to be

associated with LPS NN stimulation time in control (1 h) and stimulated (1 h/6 h) monocytes (n = 1,776 cells).

(D) Chromatin (DORC) versus gene expression (RNA) dynamics of DORCs FOSB (left) and IFIT3 (right) with respect to smoothed PMA and LPS NN stim time,

respectively, for control (1 h) and stimulated (1 h/6 h) monocytes (n = 2,002 cells for PMA + control, n = 2,601 cells for IFNƔ + control). A dotted line represents

a LOESS fit to the values obtained from a sliding average of DORC accessibility or RNA expression levels (n = 100 cells per sliding window bin). The color bar

indicates the most frequent (mode) cell condition within each bin.

(E) Same as in (D) but for TRAF1 with respect to LPS-stimulated and control (1 h) monocytes.

(F) Smoothed accessibility scores for individual cis-regulated elements correlated with TRAF1 expression in control and LPS-stimulatedmonocytes shown in (D),

ordered by LPS NN stim time.
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identify DORCs uncovers genes under extensive chromatin con-

trol, likely a result of immune cells requiring exquisite control of

transcription at these genes, reflecting key hubs of immunolog-

ical response.

Stimulated cells are characterized by early changes in
the chromatin accessibility landscape that primes gene
expression
Previously, we usedmulti-modal data to show that DORC acces-

sibility foreshadows gene expression along developmental tra-

jectories and that this activity is predictive of cell state transi-

tions.28 To this end, we sought to use paired multi-omics data

to find out whether cells prime for an immunological response

through their chromatin accessibility states. Methods to deduce

trajectory pseudotime often require definition of a single root cell

type. Because we identified 18 discrete cell types, precluding

use of pseudotime, we sought to utilize an alternate approach
to define trajectories. To do this, we computed a cell nearest

neighbor (NN) stimulation time per treatment which represents

theweighted average of stimulus exposure time based on exper-

imental treatment labels. Briefly, we take cell-NNs (k = 50) for

each cell and compute the average neighborhood for control,

1-h-stimulated, and 6-h-stimulated cells, assigning weights of

0, 1, and 2, respectively (Figures 4A and S5A; STAR Methods).

This continuous measure of time allows us to investigate the

chromatin accessibility and gene expression dynamics along

the stimulation trajectory (Figure S5B).

Using thesestimulation timedefinitions,wesought todetermine

whether chromatin accessibility activates before gene expression

to ‘‘prime’’ or ‘‘foreshadow’’ immunological response. For this

analysis, we chose to focus on the monocyte cellular population

because it is directly activated in response to our inflammatory

factors, as described by prior literature and our observations

with the GI (Figures 3F and 3G), to assess chromatin and gene
Cell Genomics 2, 100166, September 14, 2022 7
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expression dynamics with respect to stimulation time. Restricting

our peak-gene correlation approach strictly to control 1 h, stimu-

lation 1 h, and stimulation 6 h monocytes, we identified a set of

DORC genes associated with LPS (n = 38 genes), IFNƔ (n = 33

genes), or PMA (n = 39 genes) stimulation of monocytes. These

DORCs includeknownexpressionmarkers induceduponstimula-

tion in myeloid cells.40 Interestingly, we also found that a small

subset of these monocyte-specific DORCs is shared across mul-

tiple stimuli (Figure 4B). By averaging single-cell DORC accessi-

bility and RNA levels in response to the NN stimulation (stim)

time for each treatment (STARMethods), we visualize the change

ofchromatinaccessibilityandgeneexpressionalong thecontrol (0

h) to 6-h stimulation time axis (Figures 4C, S5C, and S5D).

Calculating the difference in chromatin versus RNA (residuals),

we predominantly observed that chromatin accessibility change

precedes that of expression (high residuals) at early time points.

At later time points, we found that residuals were low, reflecting

an accumulation of RNA after immune stimulation. These obser-

vations were stereotyped by the genes FOSB and IFIT3with LPS

and PMA treatment, respectively (Figures 4C, 4D, and S5E).

These changes occurred on relatively fast timescales; for

example, chromatin change of FOSB was an early event occur-

ring within the 60-min time point. Notably, these changes in

DORC accessibility are constituted by individual cis-regulatory

elements where some elements become accessible quickly

(i.e., the promoter), whereas others are slow to become acces-

sible (some distal regulatory elements) along the stimulation

time axis, as highlighted for the LPS-responsive gene tumor ne-

crosis factor (TNF) receptor-associated factor 1 (TRAF1)

(Figures 4E and 4F). Conversely, we note a few exceptions,

including the PMA-responsive heat shock protein-encoding

genes HSP90AA1 and HSPH1, which exhibit early expression

gain compared with the corresponding change in DORC acces-

sibility (Figure S5F). We demonstrate, using computationally

paired multi-omics data, the ability to detect activation of chro-

matin accessibility prior to gene expression associated with

stimulation-like cell states.

A computational approach to identify candidate TF
regulators of DORC activity
At the core of FigR, we developed a computational approach to

define a GRN of immunological response using multi-omics

data. At this stage, FigR uses paired scATAC-seq and scRNA-

seq data and specifically tests for enrichment of TF motifs

among predetermined cis-regulatory elements (i.e., DORCs) as

well as correlation of TF expression with the overall accessibility

level for a given DORC gene (DORC score) to infer likely TF acti-

vators and repressors (Figure 5A). First, for a given DORC gene,

we determine a pool of DORC cis-regulatory elements based on

its DORC accessibility kNNs. This assumes that DORCs that are

co-variable across the entire cell space are co-regulated by

shared TFs. We then perform a statistical test for significance

(Z test) of TF motif enrichment using the frequency of motif

matches across a reference database of TF motifs relative to a

background set of permuted peaks matched for GC content

and global peak accessibility. Concomitantly, we compute the

Spearman correlation coefficient between the TF RNA expres-

sion levels and the DORC accessibility score. Last, to determine
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activators and repressors, we combine significance estimates of

relative motif enrichment (Z test P) and RNA expression correla-

tion (Z test P) for a given DORC relative to all TFs, computing a

signed probability score we call a ‘‘regulation probability’’

(‘‘regulation score’’ on �log10 scale), representing the intersec-

tion of motif-enriched and RNA-correlated TFs. To enable dis-

covery of new regulators using this approach, we curated an

expanded set of unique human (n = 1,141) and mouse (n =

890) TF binding sequencemotifs, which extends a previously es-

tablished database49 (STAR Methods).

To demonstrate the utility of the FigR GRNmethod, we apply it

to the paired stimulation scATAC-seq and scRNA-seq data to

reveal key regulators of stimulus response. To do this, we begin

by testing all stimulus-responsive DORC genes (n = 1,128) and

reference TF motifs (Figure 5B; Data S4). Filtering TF-DORC as-

sociations using a regulation score threshold (abs(regulation

score)R 1), we can then query putative TF regulators for a given

DORC (Figures 5C, 5D, S6A, and S6B) as well as sets of DORCs

that are potentially driven by a specific TF (Figure S6C). For

example, FigR identifies known activators of MX1, including

the IRF family of TFs: IRF3, IRF7, IRF9, and STAT2, all belonging

to the IFN signaling pathway.50 We generally distinguish TF acti-

vators from TF repressors based on their mean regulation score

across all DORCs (Figure 5E) or by the fraction of positively and

negatively regulated DORCs (Figure S6D). For example, we see

SPI1 (PU.1), BACH1, and BCL11A as top transcriptional activa-

tors whose roles have been described previously17,51,52 and

BCL11B as a top transcriptional repressor (Figures 5E, S6C,

and S6D). Importantly, BCL11B has been shown to be a key

repressor in T cell maturation.53–55 Other examples of repressors

nominated by FigR include KLF9,56 BACH2,57,58 IKZF1,59,60 and

ZBTB4.61 Our approach estimates that 35.6% of TFs associated

with DORCs (absolute(regulation score) R 1) to have repressive

associations (mean regulation score < 0 across all target

DORCs), in line with previous work reflecting the understanding

that a large fraction of TFs function as repressors.37,38 Last,

demonstrating the value of the unbiased nature of FigR’s GRN

inference and utilization of an expanded TF motif database, we

identify new regulatory interactions governing immune cell func-

tion (Figure S6E). We highlight ZEB2, which has been implicated

as a repressor of CD8+ T cell function.62 FigR verifies its repres-

sive activity and identifies downstream target DORCs (n = 132;

regulation score < �1.5), including IL7R and TCF7, which are

associated with immunological memory in T cells.63 We also

identify the activator ZNF467, a completely novel regulator,

which regulates 86 genes (regulation score > 1.5). Among the

direct targets of ZNF467, we find CD14, a key marker of mono-

cytes and essential for immunological function in monocyte acti-

vation and differentiation.64 Importantly, we observe expression

of these TFs to be stimulus specific and cell type specific (Fig-

ure S6F), suggesting FigR’s ability to leverage covariance in sin-

gle-cell data to determine context-specific associations.

To highlight the broad generalizability of this approach, we

applied our approach to existing multi-modal data from alterna-

tive tissues, including SNARE-Seq2 data from the human cortex

and SHARE-seq data frommurine skin tissue. cis-regulatory cor-

relations for the SNARE-Seq2 brain data (Figure S3H) identified a

subset of genes linked to DORCs (n = 432; Figure S7A), including



Figure 5. Design and application of FigR’s gene regulatory network (GRN) workflow to identify TF modulators of immune response DORCs

(A) Schematic describing the FigR GRN workflow.

(B) Scatterplot showing all DORC-to-TF associations, colored by the signed regulation score.

(C) Candidate TF regulators of MX1. Highlighted points are TFs with abs(regulation score) R 1 (�log10 scale), with all other TFs shown in gray.

(D) Regulation scores (signed, �log10 scale) for the highlighted TFs in (C).

(E) Mean regulation score (signed, �log10 scale) across all DORCs (n = 1,128) per TF (n = 870), highlighting select TF activators (right skewed) versus TF repres-

sors (left skewed).

(F) Heatmap of DORC regulation scores (left) for all significant TF-DORC enrichments for DORCs implicating GWAS variants (abs(regulation score)R 1.5; n = 89

TFs, n = 73 DORCs). The corresponding minimum GWAS P (right; �log10 scale) for each DORC across all diseases considered is also shown.

(G) TF-DORC network visualization for SLE GWAS SNP-implicated DORCs (orange nodes) and their associated TFs (gray nodes) from (F). Edges are scaled and

colored by the signed regulation score.
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knownmarkers of neuronal (excitatory: FEZF2,RORB; inhibitory:

PVALB, LAMP5, GAD1), and non-neuronal (microglia: PAX6,

SLC1A3; oligodendrocyte: MBP, FA2H) differentiation

(Figures S7B and S7C). Applying FigR’s GRN analysis approach

using these cortex-specific DORCs (Figure S7D), we nominated

several TF modulators of DORC activity, including the SOX fam-

ily members SOX10/13, OLIG1/2, POU3F2, and DLX1/2, as TF

activators and PAX6 and BATF3 as prominent repressors

(Figures S7E–S7G). Next, using predefined peak-gene associa-

tions, our GRN inference approach recovered TF regulators of

DORCs we previously found to be associated with murine hair

follicle differentiation (Figure S7H).28 This includes the activators

Lef1, Hoxc13, and Grhl1 and repressors Tcf12 and Pou2f3 (Fig-

ure S7I). We determined the activator Dlx365 and repressors

Zeb1 and Barx266 to be top TF regulators (Figures S7J and

S7K). To assess differences between FigR’s approach of incor-

porating cis-regulatory elements surrounding a subset of genes

(i.e., DORCs) and alternative methods that use scRNA-seq co-

expression to derive GRNs, we performed a comparison of prior-

itized regulators determined using our approach and SCENIC20

when applied to the stimulation PBMC data (STAR Methods).

Comparing the number of DORC genes positively regulated by

a given TF for either method, we observed a subset of TFs for

which a larger number of targets determined via FigR compared

with SCENIC were called and vice versa (Figure S8A). Interest-

ingly, interrogating GM12878 chromatin immunoprecipitation

sequencing (ChIP-seq) data for the top TFs from either category

suggests that SCENIC-prioritized TF regulators tend to bind pro-

moter regions, whereas those prioritized by FigR overlapped

regulatory elements mapping to distal enhancers more than ex-

pected by baseline (Figure S8B). This suggests that FigR indeed

prioritizes TFs that are more enhancer associated. Thus, we

show that FigR can exploit diverse single-cell technologies for

experimentally paired multi-modal data to derive GRNs using

empirically derived peak-to-gene and TF-to-peak motif associa-

tions to arrive at candidate TF regulators.

We next wanted to determine whether the inferred stimulus

response GRN from FigR may be used to reveal the regulatory

mechanisms underlying disease-associated genetic variants

and their non-coding regulatory elements. To uncover disease-

associated cell states, we scored single cells for accessibility

associated with GWAS SNP-overlapping peaks (GWAS,

p < 10�7; Figure S8C).We observed stimulus- and cell-type-spe-

cific enrichment of chromatin accessibility for different inflamma-

tory diseases tested (Figure S8D), validating prior work16,67

showing that immunological stimulation uncovers regulatory el-

ements enriched for disease GWAS variants. For example, we

observed elevated enrichment of GWAS-associated accessi-

bility in LPS- and IFNƔ-stimulated B lymphocyte and monocyte

cells for systemic lupus erythematosus (SLE) and IFNƔ- and

PMA-stimulated CD4/CD8 lymphocytes for allergies (Fig-

ure S8E). We find that our immunological stimulations uncover

cell states and their corresponding chromatin accessibility pro-

files relevant to autoimmunity and associated genetic variation.

Next we reasoned that our GRN-based analysis may identify

relevant mechanisms of disease-associated genetic variation.

For example, the regulator NF-kB is known to function across

cell types to promote inflammatory gene expression.68 Indeed,
10 Cell Genomics 2, 100166, September 14, 2022
we found NF-kB to drive activity of a large fraction of GWAS

variant-associated DORCs (Figure 5F). Extending this analysis

to all DORCs (n = 77), we uncovered 89 putative TF drivers

(abs(regulation score) R 1.5), revealing a combination of line-

age-determining as well as stimulus-responsive TFs spanning

one or more diseases (Figure 5F). Closer inspection of the sub-

set of SLE-specific DORCs (n = 15 DORCs, n = 48 associated

TFs) revealed key regulatory associations, including previously

determined SLE genes: BLK, IRF5, IRF8, and NCF2 (Figure 5G).

Our approach can prioritize DORCs and their putative TF regu-

lators to dissect the regulatory programs implicated in diverse

autoimmune diseases. We include the inferred stimulus-

response PBMC GRN, which can be interactively visualized

through an RShiny web application (https://buenrostrolab.

shinyapps.io/stimFigR/).

DISCUSSION

Here we generated a regulatory atlas of immunological stimula-

tion in human blood. This effort was enabled by high-coverage

single-cell data and development of a new computational frame-

work supporting multi-omics data integration, cis-regulatory an-

alyses, and construction of an enhancer-aware GRN based on

single-cell profiles. In this effort, we overcame 3 key challenges:

(1) we implemented an approach to better computationally pair

single cells, (2) we associate distal cis-regulatory peaks with

target genes, and (3) we associate TFs with target genes. Impor-

tantly, the capability of FigR to infer GRNs using independently or

concomitantly generated single-cell ATAC/RNA data will broadly

enable DORC-GRN analyses across the broad range of scATAC-

seq and related multi-omics technologies. Unlike prior methods

that solely use co-expression or static measures of co-accessi-

bility, GRN construction using our proposed FigR framework le-

verages chromatin and RNA dynamics through correlation of

these features across single cells, providing a means to identify

gene-regulatory relationships spanning cell states. To do this,

we utilize an empirical statistical approach to compute the prob-

ability of a TF-gene interaction, avoiding use of parameterized

machine learning approaches. We observe that this determina-

tion of expression-linked cis-regulatory elements using single-

cell data inherently selects for genes generally regulated by

super-enhancers without the need for independent profiling of

histone modifications, as we also confirm in prior work using

multi-modal data,28 while harboring context-specific variability

across single cells.

Importantly, we also show that the statistical tools in FigR

(peak-gene and TF-gene) are generalizable and can be applied

to true multi-modal datasets assaying chromatin accessibility

and gene expression from the same cell. We believe that a

multi-omics-based approach that incorporates both elements

that are thought to be functionally relevant to TF activity (i.e., TF

RNA expression level together with enrichment of a bindingmotif

within cis-regulatory elements) would reduce potential false pos-

itives that can occur from using only ATAC (enhancer-promoter

correlation) or RNA (gene-gene co-expression) information alone

and can enable unbiased identification of repressive TF-DORC

relationships that would not be possible otherwise. In support

of this observation, we find that �36% of TFs largely function

https://buenrostrolab.shinyapps.io/stimFigR/
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as repressors, consistent with prior functional studies in

Drosophila37 and in cell lines38 that report a large fraction of TFs

function as repressors. The fact that DORCs contain many asso-

ciatedpeaks (mean=11.15) enables us todetermine estimatesof

enriched TF motifs at these loci. However, a limitation of this

approach (and similar methods utilizing single-cell data) is that

one can only determine regulatory relationships when they are

variable across single cells, constraining GRN models to

observed changes across cell states and precluding analysis of

‘‘housekeeping’’ regulators. Our framework may benefit from

prior determination of cluster-specific peaks because it may aid

identification of rare cell populations and their specific DORCs.

We find that DORCs closely correspond to super-enhancers

(78%) and that GWAS variants are enriched within DORCs that

respond to immunological stimuli. Thus, defining peak-gene in-

teractions and DORCs provides a useful platform to annotate

the function of non-coding genetic variants corresponding to

autoimmune and inflammatory conditions. Prior epigenomic

studies have extensively utilized bulk analysis of histone modifi-

cations, chromatin accessibility, and genome topology to anno-

tate the function of disease-associated non-coding genetic vari-

ation.16,31,41,48,69 Advancing beyond these prior studies, our

single-cell multi-omics GRN approach provides a framework

for associating key disease-associated loci with their target

genes and regulating TFs at single-cell resolution, showcasing

the utility of this approach using immune cells in response to

stimuli.

Generally supporting the hypothesis that chromatin accessi-

bility foreshadows gene expression (chromatin potential28), we

find that chromatin accessibility precedes gene expression

even with the extraordinarily fast gene expression dynamics

associated with immunological stimulation. This, together with

a large body of work,1,70,71 upends the notion that chromatin

change is ‘‘slow’’ or ‘‘stable’’ and instead paints a picture where

chromatin structure is highly dynamic. Future work focused on

models distinguishing promoter versus distal enhancer accessi-

bility changes among DORCs and TF drivers of these changes

may provide additional insights into the regulatory mechanisms

underlying gene priming and activation associated with cell-

state-specific changes. We anticipate that our approach for

defining GRNs will enable elucidation of latent chromatin states

that prime or inhibit cells from diverse environmentally induced

stimuli.

We envision that future studies will improve our capacity to

predict gene-regulatory relationships using single-cell data.

Specifically, because FigR GRN associations rely on correla-

tions, we anticipate that advancements in machine learning-

based methods, informed by emerging efforts in large-scale

perturbation assays,33,72,73 may be used to more accurately

capture regulatory interactions. Higher-coverage multi-omics

measurements may enable use of TF footprinting,74,75 providing

a direct measurement of TF-peak interactions. These multi-

omics single-cell methods and models constructing GRNs

advance our ability to nominate essential regulators, defining

candidates that may be used for high-throughput perturbation

screens76 that reveal the function of genetic variants or TFs

that drive cells into new states. We envision a future of single-

cell genomics that will shift toward studies of gene-regulatory
processes advancing the predictive capability of cells undergo-

ing fate transitions as well as elucidating the latent/primed po-

tential of cells prior to environmental stimulation and their rele-

vance in development and disease.

Limitations of the study
In our framework, we incorporated use of correlation coefficients

to capture variability across single-cell chromatin accessibility

and coupled gene expression changes together with permuta-

tion-based significance testing. This limits applications in cases

where the modalities are coupled but the covariance is weak

(e.g., testing across a single cell type) orwhere features can some-

times be dominated bymore prevalent cellular populations. There

arenowmultiple tools toassistwithpairingofcellsacross indepen-

dently assayed modalities, including scATAC-seq and scRNA-

seq. These should be evaluated, together with scOptMatch, using

a variety of single-cell multi-omics datasets for benchmarking and

for potential future incorporation into the FigR framework. Last,

further ‘‘ground truth’’ experimental data confirming enhancer-

gene or TF-gene relationships will be invaluable to the field in

resolving the accuracy of GRN methods, including FigR.
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Biological samples

Human peripheral blood mononuclear cells

(PBMCs), Donor1, 24 yo, Female, 100M cells

Allcells Cat# LP, CR, MNC, 100M; Lot#3003978

Human peripheral blood mononuclear cells

(PBMCs), Donor2, 25 yo, Male, 25M cells

Allcells Cat# LP, CR, MNC, 25M; Lot#3003790

Human peripheral blood mononuclear cells

(PBMCs), Donor3, 26 yo, Male, 25M cells

Allcells Cat# LP, CR, MNC, 25M; Lot#3003748

Human peripheral blood mononuclear cells

(PBMCs), Donor4, 37 yo, Male, 25M cells

Allcells Cat# LP, CR, MNC, 25M; Lot#3003459

Chemicals, peptides, and recombinant proteins

DNase I Thermo Fisher Scientific Cat# 18047019

1x PBS Thermo Fisher Scientific Cat# 10010023

BSA MilliporeSigma Cat# A9418-5G

Lipopolysaccharide Invivogen Cat# tlrl-3pelps

Phorbol 12-myristate 13-acetate MilliporeSigma Cat# P8139

Ionomycin calcium salt MilliporeSigma Cat# I0634

Interferon gamma Cell Applications Cat# RP1077

GolgiPlug BD Biosciences Cat# 555029

Tween 20, 10% solution Teknova Cat# T0710

Digitonin Promega Cat# G9441

Ampure XP beads Beckman Coulter Cat# A63880

Bst 2.0 WarmStart NEB Cat# M0538S

Critical commercial assays

SureCell ATAC-Seq Library Prep Kit Bio-Rad Cat# 17004620

SureCell ddSEQ Index Kit Bio-Rad Cat# 12009360

High-Sensitivity DNA kit Agilent Cat# 5067-4626

NextSeq High Output Kit (150 cycles) Illumina Cat# 20024907

SureCell WTA 30 Library Prep Kit Illumina Cat# 20014280

Deposited data

All raw and processed scATAC-seq and

scRNA-seq data

This paper GEO:GSE178431

Software and algorithms

R (v4.0.5) R Core Team https://www.R-project.org

chromVAR R package (v1.12.0) Schep et al., 201749 https://github.com/GreenleafLab/chromVAR

motifmatchr R package (v1.12.0) Schep et al., 201749 https://github.com/GreenleafLab/motifmatchr

hyper R package (v1.7.0) Federico et al., 202085 https://github.com/montilab/hypeR

Seurat R package (v3.9.9) Stuart et al., 201942 https://satijalab.org/seurat/

ArchR R package (v1.0.1) Granja et al., 202129 https://www.archrproject.com/

ggplot2 R package (v3.3.3) Wickham et al., 201686 https://ggplot2.tidyverse.org/

optmatch R package (v0.9-13) Hansen and Klopfer, 200644 https://github.com/markmfredrickson/optmatch

SCENIC R package (v1.2.4) Aibar et al., 201720 https://scenic.aertslab.org/

FNN R package (v1.1.3) Beygelzimer et al., 201987 https://cran.r-project.org/web/packages/FNN/

index.html

igraph R package (v1.2.6) Csardi and Nepusz, 200688 https://igraph.org/r/

ggnet R package (v0.1.0) Briatte et al., 2016 https://briatte.github.io/ggnet/
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MACS2 (v2.1.2) Zhang et al., 200878 https://github.com/taoliu/MACS/

samtools (v1.9) Li et al., 200989 http://samtools.sourceforge.net

Analysis code generated for this manuscript This paper https://github.com/buenrostrolab/stimATAC_

analyses_code/

Zenodo archive: https://zenodo.org/badge/

latestdoi/288481382

FigR R package (v1.0.1) This paper Github: https://github.com/buenrostrolab/FigR

Zenodo archive: https://doi.org/10.5281/

zenodo.6795583

cisBP Human and Mouse TF motif position

frequency matrix (PFM) lists

This paper Zenodo archive: https://doi.org/10.5281/

zenodo.6814702

Other

Resource website (R Shiny App) for browsing

stimulus multi-omic single cell data and DORC

features/GRN

This paper https://buenrostrolab.shinyapps.io/stimFigR/

Zenodo archive: https://doi.org/10.5281/

zenodo.6820097
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jason D.

Buenrostro (jason_buenrostro@harvard.edu).

Materials availability
This study did not generate unique reagents.

Data and code availability
Raw and processed data can be accessed through GEO (GEO ID GSE178431).

Analysis code can be found on GitHub (https://github.com/buenrostrolab/stimATAC_analyses_code), and the FigR workflow can

be implemented in R using the downloadable FigR package (https://github.com/buenrostrolab/FigR). The package release has also

been published under v1.0.1 on Zenodo (https://doi.org/10.5281/zenodo.6795583), along with the analyses code (https://zenodo.

org/badge/latestdoi/288481382). Additionally, gene regulatory networks and single cell profiles (cell metadata, DORC scores and

paired RNA expression) for stimulation data can be interactively queried through our R Shiny app (https://buenrostrolab.

shinyapps.io/stimFigR/; Zenodo code archive: https://doi.org/10.5281/zenodo.6820097). Newly curated TF motif PFM lists for hu-

man and mouse are available for download and use as R PFMList objects on Github and on Zenodo (https://doi.org/10.5281/

zenodo.6814702). Normalized aggregate scATAC-seq coverage profiles (BigWig) can be visualized for monocytes per condition

(https://genome.ucsc.edu/s/vkartha/stimATAC_CD14_conditions) or for control 1h cells across paired cell type annotations

(https://genome.ucsc.edu/s/vkartha/stimATAC_Control1h_cellTypes) using the UCSC genome browser.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Human peripheral blood mononuclear cells
Cryopreserved human peripheral blood mononuclear cells (PBMCs) and isolated peripheral blood CD4+, CD8+, CD14+, CD19+ and

CD56+ cells were purchased from AllCells (see Table S1 for catalog numbers and donor information). Cells were quickly thawed in a

37�C water bath, rinsed with culture medium (Iscove’s Modified Dulbecco’s Medium (IMDM) (ATCC) supplemented with 10% FBS

and 1% Pen/Strep) and then treated with 0.2 U/mL DNase I (Thermo Fisher Scientific) in 10mL of culture medium at 37�C for 30 min.

After DNase I treatment, cells were washed with medium once and then twice with ice-cold 1x PBS (Gibco) + 0.1% BSA

(MilliporeSigma). Cells were then filtered with a 35 mm cell strainer (Corning) and cell viability and concentration were measured

with trypan blue on the TC20 Automated Cell Counter (Bio-Rad). Cell viability was greater than 80% for all samples.

Human PBMCs stimulations
PBMCswere quickly thawed in a 37�Cwater bath, rinsedwith culturemedium (RPMI 1640medium supplementedwith 15%FBS and

1% Pen/Strep) and then treated with 0.2 U/mL DNase I in 10mL of culture medium at 37�C for 30 min. After DNase I treatment, cells

were washedwithmediumonce, filteredwith a 35 mmcell strainer and cell viability and concentration weremeasuredwith trypan blue
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on the TC20 Automated Cell Counter. Cell viability was greater than 90% for all samples. Cells were plated at a concentration of

1 3 106 cell/mL, rested at 37�C and 5% CO2 for 1 h and then treated with the specified concentrations of the following stimulants

(or DMSO as a control) for either 1h or 6h:

1) 20 ng/mL Lipopolysaccharide (LPS) (tlrl-3pelps, Invivogen),

2) 50 ng/mL Phorbol 12-myristate 13-acetate (PMA) (P8139, MilliporeSigma) + 250 ng/mL Ionomycin calcium salt (I0634,

MilliporeSigma),

3) 20 ng/mL Interferon gamma (IFN-Ɣ) (RP1077, Cell Applications)

For the "Golgi Inhibitor" experiments, cells were incubated for 6 hwith GolgiPlug (555029, BDBiosciences) at a 1:1000 dilution plus

stimulants at the concentrations indicated above (or GolgiPlug only as a control).

After stimulation, cells were washed twice with ice-cold 1x PBS + 0.1% BSA and cell viability and concentration were measured

with trypan blue on the TC20 Automated Cell Counter.

scATAC-seq experimental methods
Cell lysis and tagmentation

For a detailed description of tagmentation protocols and buffer formulations refer to the SureCell ATAC-Seq Library Prep Kit User

Guide (17004620, Bio-Rad). Harvested cells and tagmentation related buffers were chilled on ice. Lysis was performed simulta-

neously with tagmentation. Washed and pelleted cells were resuspended in Whole Cell Tagmentation Mix containing 0.1% Tween

20, 0.01%Digitonin, 1x PBS supplementedwith 0.1%BSA, ATAC Tagmentation Buffer and ATACTagmentation Enzyme (ATAC Tag-

mentation Buffer and Enzyme are both included in the SureCell ATAC-Seq Library Prep Kit (17004620, Bio-Rad)). Cells were mixed

and agitated on a ThermoMixer (5382000023, Eppendorf) for 30 min at 37�C. Tagmented cells were kept on ice prior to

encapsulation.

Droplet library preparation and sequencing

For a detailed protocol and complete formulations, refer to the SureCell ATAC-Seq Library Prep Kit User Guide (17004620, Bio-Rad).

Tagmented cells were loaded onto a ddSEQ Single-Cell Isolator (12004336, Bio-Rad). Single-cell ATAC-seq libraries were prepared

using the SureCell ATAC-Seq Library Prep Kit (17004620, Bio-Rad) and SureCell ddSEQ Index Kit (12009360, Bio-Rad). Bead bar-

coding and sample indexing were performed in a C1000 TouchTM Thermal cycler with a 96-Deep Well Reaction Module (1851197,

Bio-Rad): 37�C for 30min, 85�C for 10min, 72�C for 5min, 98�C for 30 s, eight cycles of 98�C for 10 s, 55�C for 30 s, and 72�C for 60 s,

and a single 72�C extension for 5 min to finish. Emulsions were broken and products cleaned up using Ampure XP beads (A63880,

Beckman Coulter). Barcoded amplicons were further amplified using a C1000 TouchTM Thermal cycler with a 96-DeepWell Reaction

Module: 98�C for 30 s, six to nine cycles (cycle number depending on the cell input, Section 4 Table 3 of the User Guide) of 98�C for 10

s, 55�C for 30 s, and 72�C for 60 s, and a single 72�Cextension for 5min to finish. PCRproducts were purified using Ampure XP beads

and quantified on an Agilent Bioanalyzer (G2939BA, Agilent) using the High-Sensitivity DNA kit (5067-4626, Agilent). Libraries were

loaded at 1.5 p.m. on a NextSeq 550 (SY-415-1002, Illumina) using the NextSeq High Output Kit (150 cycles; 20024907, Illumina) and

sequencing was performed using the following read protocol: Read 1 118 cycles, i7 index read eight cycles, and Read 2 40 cycles. A

custom sequencing primer is required for Read 1 (16005986, Bio-Rad; included in the kit).

scRNA-seq experimental methods

Single-cell RNA-seq (scRNA-seq) data for LPS, PMA or IFNƔ-stimulated cells, and isolate (bead-enriched) PBMCs comprising

CD19+, CD4+ T-cells, CD8+ T-cells, CD56+ Natural Killer (NK) cells and CD14+ monocytes were generated using the SureCell

WTA 30 Library Prep Kit for the ddSEQ System (20014280, Illumina) with the following modifications. A higher concentration of beads

was used to obtain 1,000–2,000 single-cells per emulsion, whilst minimizing the number of droplets with multiple beads to <10%.

Furthermore, Bst 2.0 WarmStart (M0538S, NEB) was added to the droplet mix to perform temperature activated second strand syn-

thesis in droplets.

scATAC-seq analysis workflow
Raw read processing, demultiplexing and alignment

Per-read bead barcodes were parsed and trimmed using UMI-TOOLs (https://github.com/CGATOxford/UMI-tools),77 and the re-

maining read fragments were aligned using BWA (https://github.com/lh3/bwa) on the Illumina BaseSpace online application. Consti-

tutive elements of the bead barcodes were assigned to the closest known sequence allowing for up to one mismatch per 6-mer or

7-mer (mean > 99% parsing efficiency across experiments). All sequence libraries were aligned to the hg19 reference genome. We

then used bead-based ATAC-seq data processing (BAP, v0.6.4) (https://github.com/caleblareau/bap)13 to help identify systematic

biases (i.e. reads aligning to an inordinately large number of barcodes), barcode-aware deduplication of reads, and to performmerg-

ing of multiple bead barcode instances associated with the same cell (barcodemerging is necessary due to the nature of the Bio-Rad

SureCell scATAC-seq procedure used in this study, which enables multiple beads per droplet). For a detailed description of the bead

barcode merging strategy see.13 We ran BAP using a single input alignment (.bam) file for a given experiment with a bead barcode

identifier indicated by the SAM tag ‘‘DB’’, and default parameters.
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Chromatin accessibility peak calling

Genome-wide chromatin accessibility peaks were called using MACS v2 (MACS2)78 on the merged aligned scATAC-seq reads per

treatment condition, with the following flags explicitly set: –nomodel, –nolambda, –keep-dup all, –call-summits; generating a list of

peak summit calls per condition. Summits were then ranked per condition based on their FDR score (from MACS2), and the summit

scores rank-normalized such that the normalized summit scores rendered are comparable across conditions, as performed previ-

ously.11 Peak summits were then padded by 400 bases on either end (generating 801 bp windows), and overlapping peak windows

filtered iteratively such that windows with higher scores were retained at each step. This resulted in a filtered list of disjoint peaks (n =

219,136), which were finally resized to 301 bp (i.e. ± 150 bp from each peak summit) and used for all downstream analyses.

scATAC-seq counts generation and QC

Single cell counts for reads in peaks were generated by intersecting the peak window regions (see previous section) with aligned

fragments. First, we offset the start and end coordinates of the aligned fragments to identify Tn5 cut sites by +4 or�5 bp for fragments

aligning to the positive or negative strand, respectively. These are then intersected with peak window regions using the findOverlaps

function in R, and the total number of unique fragment cut sites overlapping a given peak window tallied for each unique cell barcode

detected in the data, producing amatrix of single cell chromatin accessibility counts in peaks (rows) by cells (columns). Only cells with

fraction of total reads in peaks (FRIP) R 0.5, a minimum of 2,000 unique nuclear fragments (UN-Fs), and a sequencing library dupli-

cation rate R0.15 were retained. Cell barcode doublets were inferred and filtered out using ArchR.29 This resulted in a total of n =

67,581 and n = 17,920 cells, for the stimulated and isolate PBMC cells, respectively.

TF motif accessibility scoring

Single cell accessibility scores for TF motifs were computed using chromVAR,49 as also previously described.12,13 For TF motif

accessibility scores, the peak by TF motif overlap annotation matrix was generated using a list of human TF motif PWMs (n =

870) from the chromVARmotifs package in R (https://github.com/GreenleafLab/chromVARmotifs), and used along with the scA-

TAC-seq reads in peaks matrix to generate accessibility Z-scores for across all scATAC-seq stimulated cells passing filter.

Gene activity scoring

Single cell gene activity scores were generated using scATAC-seq data based on an exponential decay weighted sum of fragment

counts around a given gene TSS as we have previously described79 for all scATAC-seq cells passing filter, using the hg19 reference

for gene TSSs. Raw gene scores were then normalized by dividing by the mean gene score per cell.

scATAC-seq cell clustering, visualization and annotation

Single cell clustering of ATAC-seq data was performed using the ArchR framework.29 First, the accessibility counts in a tiled window

matrix was determined using default parameters. ArchR’s iterative LSI dimensionality reduction was performed for n = 30 compo-

nents and n = 2 iterations, taking the top variable 50000 peaks and evaluating resolutions 0.1 to 0.4, sampling 20,000 cells. Cells

were projected in 2D space using uniform manifold approximation and projection (UMAP), based on the top 30 LSI components

with the addUMAP function (nNeighbors = 50, metric = ’’cosine’’, min.dist = 0.5). These steps were applied independently for

both stimulation cell scATAC-seq cells and PBMC isolate cell scATAC-seq cells passing filters. Annotation of stimulation scA-

TAC-seq cells was obtained using the corresponding annotation of paired scRNA-seq cells (see sections ‘scRNA-seq cell cell clus-

tering, visualization and annotation’ and ‘scRNA-seq and scATAC-seq OptMatch pairing’ below for more details). For isolate PBMC

scATAC-seq cell clustering, the same LSI and UMAP parameters were used to obtain 2D clustering of cells based on peak

accessibility.

GWAS variant enrichment analyses

Summary statistics for 12 of the 14 GWAS traits were downloaded from sources as previously described.80 The remaining traits were

downloaded from the SAIGE resource (Adult/Child onset asthma)81 or the EAGLE consortium (Eczema).82 Raw summary statistics

were then reformatted uniformly for downstream analyses and processing, including a per-SNP association p value threshold of

p < 10�7 for the list of final variants considered for peak-SNP overlaps. For each trait considered, filtered variant loci were intersected

with peaks using the findOverlaps R function, to generate a peak by variant binary overlapmatrix. This was thenmultiplied by a variant

by trait binary annotation matrix to yield a peak by trait annotation matrix. This resulting annotation matrix was used, along with

scATAC-seq reads in peak counts, as input to chromVAR to generate single cell trait Z-scores based on the relative enrichment

of ATAC-seq counts within these trait-associated peaks (used for UMAP visualizations in Figure S6J). For aggregate SNP scores,

single cell Z-scores were converted to one-tailed p values using a Z-test, and the resulting p values combined using the Fisher

method,83 per condition and cell type, and used for heatmap visualizations (related to Figure S6K).

scRNA-seq analysis workflow
Raw read processing, demultiplexing and alignment

The library preparation for scRNA-seq experiments configures the reads such that read one contains a cell barcode and UMI and

read two the cDNA generated from the transcript. Cell barcodes and UMIs were parsed from read one and written into the read

name of the corresponding read in the read two fastq. All read two files with valid cell barcodes were aligned using STAR

(v2.5.2b) to hg19 (UCSC; PAR masked) reference genome. Reads that aligned to abundant features (chrM, rRNA, and sncRNA)

were filtered from the analysis.
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scRNA-seq counts generation and QC

Transcript counts per barcode were then generated by counting the number of unique genic UMIs for each read with a minimum

mapping quality of 12 that aligned unambiguously to an annotated exon in the RefSeq annotation of hg19. The distribution of unique

genic UMI per barcode was then filtered to separate barcodes present in droplets with cells from barcodes present in cell-free drop-

lets. First, a background filtration step was performed to remove barcodes that arose from sequencing errors and empty droplets by

computing a background threshold. The background threshold was computed to filter barcodes that arose from sequencing errors

and empty droplets by performing a kernel density estimate on the log10 transformed genic UMIs per barcode distribution wherein

the largest peak is assumed to be from cell-free droplets. The number of UMIs corresponding to this peak was deemed the ‘‘back-

ground level’’. The half-height of the background peak was calculated by measuring the distance from the top of the background

peak to the point on the right where the density dropped to 50% of the peak. The SD of the background peak was then estimated

by dividing the half-width by 1.17 under the assumption of the background peak being a normal distribution. Finally, the background

threshold was calculated as the background level + 5 * the SD of the background peak. All barcodes below this value were filtered

from the analysis.

After background filtration, the remaining barcodes in the genic UMI count distributionwere subjected to a ‘‘knee calling’’ algorithm

wherein inflection points in kernel density estimate of the log10 transformed UMI count distribution were identified. The leftmost in-

flection point (= higher genic UMI count) was used to determine the final cell count.

Gene-mapped counts were then loaded into R as a Seurat object42 and used for downstream analysis. Geneswith at least one UMI

across cells were retained, and cells with number of unique feature counts >200 and <5000 were initially retained. Normalization and

scaling of RNA gene expression levels was performed using the SCTransform function. scRNA cell barcode doublets were inferred

using DoubletFinder84 and removed.

scRNA-seq cell clustering, visualization and annotation

For the stimulation scRNA-seq cell clustering (shown in Figure 1), PCA was first run on the normalized scRNA-seq counts using the

runPCA function in Seurat. The first 30 PCs were then used to run UMAP for single cell 2D projection using Seurat’s RunUMAP func-

tion. For stim-corrected clustering of scRNA-seq cells (Figure S2, used for cell type annotation), we followed Seurat’s workflow for

integrating batches using canonical correlation analysis (CCA), where we treated each condition (e.g. Control 1h or LPS 6h) as a

batch, following the integration protocol steps for finding cell integration anchors with default settings (https://satijalab.org/seurat/

archive/v3.1/immune_alignment.html). The corresponding batch-aligned integrated data was scaled, and PCAdimensionality reduc-

tion was run. UMAP was used for the final cell projection (top 30 PCs, min.dist = 0.5), and a cell kNN graph was determined using the

FindNeighbors function in Seurat (k = 10 cell neighbors). Cells were then grouped into clusters using the FindClusters Seurat function

(resolution = 0.8; SLM algorithm), and cluster and cell annotationsmanually assigned by visualizing themean and percent expression

of cell identity markers within cell clusters (Figure S2). Broader annotations (e.g. monocytes) were determined by merging finer cell

groupings (e.g. CD14 and CD16 monocytes). For isolate PBMC scRNA-seq and SNARE-Seq2 (RNA) cell clustering, the same PCA

and UMAP parameters were used to obtain 2D clustering of cells (Figure S3).

scRNA-seq and scATAC-seq scOptMatch pairing
Computational pairing of scATAC and scRNA cells was performed either per treatment condition (stimulation data) or across all cells

(PBMC isolates) using an approach we refer to throughout as ‘‘OptMatch’’. First, the union of the top 5,000 variable genes based on

genescore (ATAC) and gene expression (RNA) was taken across all cells, determined using Seurat’s FindVariableFeatures function

on normalized scATAC genescores and normalized scRNA gene expression. These features were then used to perform a canonical

correlation analysis (CCA) using the RunCCA function. The L2-normalized CCA components (n = 30) were then visualized using

UMAP to highlight co-embedding of the two assays for the same cellular context (Figure S3). This was done for the PBMC isolate

data (n = 17,920 ATAC, n = 8,089 RNA cells), themulti-modal SNARE-Seq2 brain cell data (n = 84,178 cells), as well as the stimulation

data (n = 67,581 ATAC, n = 23,754 RNA cells).

Next, to (globally) balance ATAC and RNA cell numbers, we first randomly divide the larger (in our case, ATAC) dataset into chunks

of cells size equal to the original number of cells in the smaller (in our case, RNA) dataset, re-sampling cells from the RNA cell pool to

match the remainder (unsampled) ATAC cells for the final smaller cell chunk. Then, for each generated cell chunk having the same

number of sampled ATAC and RNA cells, we rederive a 5D UMAP cell embedding based on the CCA components (1–20; k = 30 cell

neighbors) using the uwot R package, and determine for each cell an undirected k-nearest neighbor (kNN) graph (k = 5 cell neighbors)

based on the five UMAP embedding dimensions. Using this neighbor graph, we determine the shortest path distance (geodesic dis-

tance) between all cells using the shortest.paths function in the igraph R package, using which we divide the cell chunk into con-

nected subgraphs (subclusters with finite non-zero geodesic distance) using the clusters function in the igraph package, only retain-

ing subgraphs of size 50 cells or more. For each subgraph, we then deal with assay cell type imbalance by matching the number of

local ATAC/RNA cells through random sampling of the smaller to the larger dataset, without replacement, yielding equal cells for

ATAC and RNA in the subgraph.

To greatly reduce computational complexity of optimal matching (traveling salesman problem), we implement a sparse-kNN

matching approach by only pairing ATAC-RNA cells that are within a geodesic distance kNN range (kg) from each other in the sub-

graph, where the threshold kg is set as:
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kg = ðnATAC + nRNAÞ�ft
where.

ft = Fraction of total cells in the subgraph to consider as geodesic kNN upper-bound (set to 0.1)

nATAC = # ATAC cells in subgraph

nRNA = # RNA cells in subgraph.

Finally, using the geodesic distance as a cost function, we determine the optimal pairing within the established geodesic ATAC -

RNA kNNs subgraph cell space using the fullmatch function in the optmatch R package (https://github.com/markmfredrickson/

optmatch),44 setting the following non-default parameters: tol: 0.0001, max_multimatch = 5.

The overall performance of the OptMatch approach described above for pairing single cells across ATAC/RNA datasets was as-

sessed using previously published scATAC-seq data13 from cells sorted for CD19+, CD4+ T-cells, CD8+ T-cells, CD56+ Natural Killer

(NK) cells and CD14+ monocytes, and newly generated scRNA-seq data from the same cell pool for each enriched cell population

(see scRNA-seq experimental methods). For comparison, we also determined a ‘‘greedy’’ assignment of cell pairs, for which we as-

signed each cell in the ATAC dataset to the cell with the highest similarity score in the RNA dataset (maximum Pearson correlation

based on the first 20 CCA components). Overall performance between the two pairingmodes was determined based on the percent-

age accuracy based onmatching concordant cell types across assays for each sorting experiment (e.g. how often a CD19+ cell in the

ATAC dataset paired with a CD19+ cell in the RNA dataset), the frequency of ‘multi-matches’ (multiple RNA cells pairing to a single

ATAC cell), and the final percentage of paired cells in both ATAC and RNA datasets. Pairs were visualized by picking 300 ATAC-RNA

pairs at random, highlighting the corresponding cells in CCA UMAP space.

Aggregate ATAC and RNA profiles
Paired aggregate single cell peak (scATAC-seq) and gene (scRNA-seq) ‘‘pseudobulk’’ counts for different conditions and cell types

(see Figure 3E) were obtained by summing the normalized scATAC-seq peak accessibility counts separately for promoter peaks

(peak windows found within 1000 bp upstream and 300 bp downstream of each gene’s TSS, using the promoters function in the

GRanges package) and distal peaks (peaks found outside defined promoter window), and by summing Seurat-normalized

scRNA-seq gene counts across cells per condition and cell type. These pseudobulk counts were then quantile-normalized to adjust

for differences in overall cell numbers across groupings.

Peak-gene cis-regulatory correlation analysis
High density domains of regulatory chromatin (DORCs) were determined using scATAC-seq and scRNA-seq data for computation-

ally-paired cells (see section above). Briefly, a 100 kb window was taken around the TSS of all hg19 RefSeq genes that were found to

be expressed based on scRNASeq data. Next, peak-gene pairs where peak summits overlapped a given gene TSS window were

determined (n = 155,831 peaks and 18,151 genes and a total of 343,640 gene-peak pairs). For each pair, the observed gene-

peak correlation coefficient (Spearman ⍴) was determined by correlating the mean-centered scATAC-seq peak counts with the cor-

responding gene’s expression across all ATAC-RNA paired cells (n = 62,219 cells). Permuted correlation coefficients for each gene-

peak pair were calculated using background peaks matched for GC content and total chromatin accessibility levels across cells for

each peak tested, determined using chromVAR (n = 100 iterations). Finally, the significance of each gene-peak association was

determined using a one-tailed Z-test computed from the observed and permuted coefficients. Only gene-peak associations that

show positive correlations and were statistically significant (Z-test permutation p % 0.05) were considered, and used to identify

DORCs based on the number of significant peaks associated with each gene (DORCs = genes with nR 7 associated peaks). Single

cell DORC scores per gene were calculated as the sum of normalized scATAC-seq reads in peak counts (mean-centered) using the

corresponding significantly correlated DORC-peaks for that gene, and smoothed for visualization based on k = 30 cell kNNs derived

using the scATAC-seq LSI components.

DORC super-enhancer analysis
To determine overlap of stimulation DORCs and previously annotated super-enhancer regions, we used a previously annotated31 list

of genes associated with super-enhancers spanning different cellular contexts (n = 86). We then determined and visualized the cu-

mulative fraction of all stimulus DORCs (n = 1,128) that overlap with each of the different super-enhancer linked gene lists.

Differential DORC analyses
For differential testing of DORC accessibility scores or expression levels, we used normalized single cell DORC scores (paired

scATAC-seq cells; n = 62,219), or RNA expression (unpaired scRNA-seq cells; n = 23,754) and performed differential testing using

a Wilcoxon rank-sum test per cell type (CD4/CD8 T, B, Monocyte, and NK), comparing each stimulus condition to its corresponding

control condition (e.g. IFNƔ 1h vs Control 1h for Monocytes) for all determined DORCs (n = 1,128 genes). FDR was determined to

adjust for multiple tests. For visualization, only the union of top 10 genes (ranked by nominal DORC ATACWilcoxon test P) per com-

parison were kept (n = 53 DORCs), and a heatmap of the difference in mean single cell score (DORC accessibility or RNA expression)
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was used, showing the most significant change across any of the five cell types assessed for each DORC and condition, along with

the corresponding cell type which reported the minimum P across any condition for each DORC.

Cell nearest neighbor (NN) stimulation time calculation
Cell NN stimulation time was computed based on a weighted average of cell-nearest neighbor conditions based on their chromatin

accessibility profiles. For each scATAC-seq cell in the paired stimulation data (n = 62,219), we used the first 30 LSI components

(based on chromatin accessibility single cell peak counts) to derive a k = 50 nearest neighbor (NN) graph as the cell’s nearest con-

dition cells, leaving out the Golgi inhibitor treatment condition. Then, for each cell and its kNNs, we computed the mean stimulation

time as the weighted average of its kNNs, using a weight of 0, one and two for Control 1/6 h, stimulation 1h and stimulation 6h time

points respectively, done separately for each of the three stimulus conditions (LPS, IFN or PMA). The resulting estimates were then

rescaled to fall between 0 and 1, and used for downstream analyses including fitting and visualization of single cell DORC and paired

RNA expression values to NN stimulation time.

DORC accessibility and RNA expression dynamics
To visualize dynamics of DORC accessibility and gene expression along the NN stimulation time axis, we took scATAC-seq cells an-

notated as monocytes pertaining to control 1h, as well as stimulation 1h and stimulation 6h time conditions for LPS (n = 1,776 cells),

IFNƔ (n = 2,601 cells) and PMA (n = 2,002 cells). Using a window size of n = 100 cells, we then computed the rolling average DORC

accessibility and (paired) gene expression value, which was then min-max normalized to the 1–99 percentile value, respectively.

Additionally, we fit a loess smoothing function (loess alpha = 0.1) using the normalized DORC/RNA values to the smoothed (rolling

average) NN stimulation time, which was overlaid and visualized.

Motif database
From cisBP (http://cisbp.ccbr.utoronto.ca/index.php), we curated position frequency matrices (PFMs) that represented a total of

113,635 human motifs and 107,308 mouse motifs. We filter motifs to a unique subset, one motif for each TF regulator, resulting in

1,143 unique human or 895 uniquemouse TFs andmotifs. To do this, we iterated through each unique TF to find all associated motifs

from the high-quality motif list (as annotated by cisBP). For these associated high-quality motifs, we computed a similarity matrix

using the Pearson correlation of the PFMs. To select the most representative motif for each TF regulator, we found the motif corre-

lated with themost other motifs of the same TF at R > 0.9. If a TF was not represented in the high-quality list, we repeated the process

using the medium- and low-quality databases for TF regulators. The final curated motif database contains 1,141 human and 890

mouse unique regulators and motifs, and can be incorporated with FigR and other PFM utilizing packages.

FigR GRN workflow
To associate TF regulators to target DORC gene activity, we deduced a metric that combines the relative enrichment of TF motifs

among DORCs and the correlation of TF RNA expression with DORC accessibility. First, for each of our defined DORC genes, we

determine a reference pool of expression-correlated chromatin accessibility peaks associated with its k-nearest neighbor DORC

genes (default k = 30). Then, for each DORC, we use its pooled peak set to perform an enrichment Z-test of the observed TF

motif-to-peak match frequency with respect to each TF in our curated TF motif list described earlier, relative to the expected fre-

quency based on matches to a permuted background peak set matched for GC content and overall accessibility (default n = 50 per-

mutations). We then correlate across all paired cells (n = 62,219) the smoothed DORC accessibility score with the smoothed paired

RNA expression levels of all tested TFs (smoothed using k = 30 nearest cell neighbors based on first 30 LSI components), and use the

standardized Spearman correlation levels to perform a Z-test to establish significance of correlation. Lastly, we combine the two sig-

nificance levels (correlation and peak enrichment) and define a ‘‘regulation score’’ in log space as follows:

Regulationscore = signðCorrelationÞ� � log10�½1 � ð1 � PEnrichmentÞ�ð1 � PCorrelationÞ�:
All regulation scores corresponding to negative TF enrichments (TF enrichment Z score < 0) were set to 0.

For the stimulation GRN, putative regulators of DORCs were defined as TFs that have an absolute regulation score R1. SNP-

DORC regulatory associations were visualized by taking the list of DORCs whose associated peaks overlap any disease GWAS

variant (n = 77 DORCs) and clustering DORC-TF associations with absolute regulation score R1.5 (n = 73 DORCs and n = 89

TFs). Network plots for a subset of DORCs (e.g. SLE-specific DORCs) were drawn for the associated filtered edge-node associations

using the ggnet R package, and can be further visualized through the R Shiny App. For the murine skin GRN, previously published

SHARE-seq data and the corresponding DORC calls were used,28 along with the mouse cisBP TF motif database (n = 797 motifs),

with k = 20 DORC kNNs for peak pooling. For the human brain GRN, previously described SNARE-Seq2 human primary motor cortex

data45 was used to determine DORCs as detailed above (see Peak-gene cis-regulatory correlation analysis). DORC kNN k = 10 was

used for peak pooling while determining peak enrichments against human TF motifs, and the corresponding GRN regulation scores

were computed as described earlier.
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Comparison of FigR with SCENIC
The SCENIC R-package (v1.2.4) was used with the normalized stimulation scRNA-seq data as input (n = 23,754 cells), following

the recommended workflow as outlined in the application vignette, without modification. This resulted in a table of TF-target gene

associations, keeping positive associations with Spearman correlation R0.03 (default). For comparisons with FigR, FigR TF-DORC

associations filtered to for (-log10 scale) regulation score R1 (n = 6,070 total TF-DORC associations). SCENIC hits were filtered for

the following criteria to allow comparisons with FigR hits: i) only DORC genes (n = 1,128) that were also tested using FigR were

considered; ii) only significant TF-target associations passing the ‘‘w0.001’’ co-expression module threshold category were kept iii)

top SCENIC TF-target hits after ranking by decreasing co-expression weight (n = 6,070 hits) were retained to match FigR iv) only

TFs that were tested across both methods were kept (n = 91 TFs) to account for different underlying motif databases used by the

two methods. After these filters, the total number of target genes were determined for each TF and plotted for either method. For

ChIP-seq validation, GM12878 ChIP-seq data was obtained from the ENCODE database. Then, for each TF for which we had

ChIP-seq data (n = 84 TFs), we computed the overlap of ChIP-seq narrow peaks (GRCh38-aligned) with our PBMC stimulation

scATAC-seq peak ranges (hg19-aligned and lifted over to GRCh38 to allow overlap comparisons using the rtracklayer R package).

With this, for each TF we computed the proportion of ChIP-seq peaks that overlap cis-regulatory elements that are either in pro-

moter regions (1 kb upstream and 300 bp downstream of any gene TSS) versus distal enhancer elements (all other regions). Then,

the top 10 TFs for either FigR or SCENIC (based on the number of associated targets) were taken, and the corresponding differ-

ence in promoter versus enhancer ratios was determined based on the ChIP-seq overlap. The expected difference in promoter

versus distal enhancer binding ratio was determined by taking the mean difference in promoter - enhancer ratios across all avail-

able GM12878 ChIP-seq TFs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details of statistical tests performed, and the number of observations (e.g. number of cells compared, number of features tested etc.)

are included under the corresponding sections under the Method details section, and specified in the corresponding Result section

where mentioned, as well as in the figure legends where applicable.
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