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Recent molecular characterization of various microbial genomes has revealed differences in genome size and
coding capacity between obligate symbionts and intracellular pathogens versus free-living organisms. Multiple
symbiotic microorganisms have evolved with tsetse fly, the vector of African trypanosomes, over long evolu-
tionary times. Although these symbionts are indispensable for tsetse fecundity, the biochemical and molecular
basis of their functional significance is unknown. Here, we report on the genomic aspects of the secondary
symbiont Sodalis glossinidius. The genome size of Sodalis is approximately 2 Mb. Its DNA is subject to extensive
methylation and based on some of its conserved gene sequences has an A+T content of only 45%, compared
to the typically AT-rich genomes of endosymbionts. Sodalis also harbors an extrachromosomal plasmid about
134 kb in size. We used a novel approach to gain insight into Sodalis genomic contents, i.e., hybridizing its DNA
to macroarrays developed for Escherichia coli, a closely related enteric bacterium. In this analysis we detected
1,800 orthologous genes, corresponding to about 85% of the Sodalis genome. The Sodalis genome has apparently
retained its genes for DNA replication, transcription, translation, transport, and the biosynthesis of amino
acids, nucleic acids, vitamins, and cofactors. However, many genes involved in energy metabolism and carbon
compound assimilation are apparently missing, which may indicate an adaptation to the energy sources
available in the only nutrient of the tsetse host, blood. We present gene arrays as a rapid tool for comparative
genomics in the absence of whole genome sequence to advance our understanding of closely related bacteria.

Tsetse flies are important insect vectors that transmit Afri-
can trypanosomes, the causative agents of sleeping sickness
disease in humans and nagana in animals. In addition to the
parasites they transmit, tsetses harbor three different symbiotic
microorganisms (2). Two of these organisms are members of
the Enterobacteriaceae family and live in the gut tissue: the
obligate primary symbiont (genus Wigglesworthia) (3, 5) and
the secondary symbiont (genus Sodalis) (5, 12, 14). A third
symbiont, a member of the Rickettsiaceae family, resides mainly
in reproductive tissues and belongs to genus Wolbachia (28).
The primary symbiont Wigglesworthia lives within the special-
ized epithelial cells (bacteriocytes) in the bacteriome tissue in
the anterior midgut. Phylogenetic analysis has shown that
Wigglesworthia displays concordant evolution with its host spe-
cies, and its association with the tsetse ancestor is predicted to
be about 50 to 80 million years old (11). Conversely, Sodalis is
harbored both inter- and intracellularly in the tsetse midgut as
well as in muscle, fat body, hemolymph, milk gland, and sali-
vary gland tissues of certain species (12). While Sodalis is
present in all tsetse species analyzed, its density in somatic
tissues increases with the age of the fly and its prevalence
varies in different species (12). Phylogenetic analysis has shown
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that Sodalis isolates from different tsetse species are almost
identical, indicating either horizontal transfer events between
tsetse species or recent independent acquisition of the bacte-
rium by each species (11). During its intrauterine life, the
tsetse larva receives nutrients along with both gut symbionts
from its mother via milk gland secretions (4, 20), while Wol-
bachia is transmitted transovarially (28).

It has been difficult to study the functional role of the obli-
gate endosymbionts in tsetse, as attempts to eliminate them
have resulted in retarded growth of the insect and a decrease
in egg production, preventing the aposymbiotic host from re-
producing (19, 26, 32). The ability to reproduce, however,
could be partially restored when the aposymbiotic flies were
given a blood meal supplemented with B-complex vitamins
(thiamine, pantothenic acid, pyridoxine, folic acid, and biotin),
suggesting that the endosymbionts may play a role in metabo-
lism that involves these compounds (25). While the functional
significance of Sodalis is unknown, it has been implicated in the
susceptibility of tsetse for trypanosome transmission (34). Un-
like obligate symbionts, it has been possible to culture Sodalis
in vitro and achieve genetic transformation using the broad-
host-range replicon oril” derived from a Pseudomonas aerugi-
nosa plasmid (6, 14, 35). The recombinant Sodalis transformed
with the green fluorescent protein marker gene was acquired
successfully by the intrauterine progeny when microinjected
into the mother’s hemolymph. The symbionts were also trans-
mitted to F, and F, flies, where they expressed the green
fluorescent protein (12). Since Sodalis lives in close proximity
to the pathogenic trypanosomes in the tsetse gut, the consti-
tutive expression of foreign antitrypanosomal gene products in
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Sodalis could provide a unique approach to interfere with
trypanosome viability.

Recent characterization of intracellular genomes has shown
that they have undergone significant size reductions and pre-
sumably loss of gene function. To date, the only mutualistic
genome that has been completely sequenced is that of Buch-
nera, the symbiont of aphids (31). Its genome is about 640 kb,
significantly smaller than those of the free-living enteric bac-
teria such as Escherichia coli (7). In addition, analysis of the
genome sequences of intracellular organisms has shown a high
A+T bias, with Buchnera being about 65 to 70% A+T rich.
Recently, we have shown that the mutualist Wigglesworthia in
tsetse also has a reduced genome size of less than 740 kb and
a high A+T content (1). Here we report on the genomic
characteristics of Sodalis, in particular on its genome size,
A+T bias, and overall coding capacity. We determined the size
of the Sodalis genome and the large plasmid it harbors by
contour-clamped homogeneous electric field (CHEF) gel elec-
trophoresis analysis and evaluated its DNA methylation status.
Since the free-living bacterium E. coli is a close relative of
Sodalis, we used the gene arrays which contain the 4,290 PCR-
amplified open reading frames (ORFs) identified in the se-
quenced E. coli genome to examine the overall coding capa-
bility of Sodalis. We discuss both the size and the nature of the
contents of Sodalis genome in the light of the symbiotic life it
has established in tsetse and in comparison to those of intra-
cellular obligate bacteria as well as free-living organisms
closely related to Sodalis.

MATERIALS AND METHODS

Maintenance of Sodalis culture in vitro. Sodalis was cultured from tsetse as
described previously (6, 35) and maintained in vitro in Mitsuhashi-Maramorosch
medium (Sigma, St. Louis, Mo.) supplemented with 5% heat-inactivated fetal
bovine serum (American Bioanalytical, Natick, Mass.) at 25°C.

Determination of Sodalis genomic and plasmid DNA size. Genomic DNA was
prepared as described by Charles and Ishikawa (10). Approximately 10° Sodalis
cells/ml were embedded in agarose plugs. The plugs were treated overnight in
EC solution (6 mM Tris-HCI [pH 7.6], 100 mM EDTA, 1 M NaCl, 0.5% Brij 58,
0.2% deoxycholate, and 0.5% N-lauroylsarcosine in the presence of lysozyme [1
mg/ml] and RNase [20 pg/ml]) at 37°C as described for Buchnera (10). The EC
solution was replaced with ESP (0.5 M EDTA [pH 8], 1% N-lauroylsarcosine, 1
mg of proteinase K per ml) and incubated at 50°C for 2 days. These plugs
contained both the genomic and plasmid DNAs. To obtain pure chromosomal
DNA devoid of plasmids, the plugs were subjected to CHEF gel electrophoresis
(Bio-Rad, Hercules, Calif.) using a 150- to 200-s pulse time for 20 h at 200 V.
Under these conditions, the plasmid(s) migrates into the gel while intact genomic
DNA remains in the plug. Subsequently, the plugs were removed from the wells
and incubated overnight with Pmel and Pacl at 37°C and with Swal at 25°C.
CHEEF gel electrophoresis was performed at 200 V at various ramping pulse and
run times, depending on the resolution requirements. Plasmid DNA was pre-
pared by the alkaline extraction protocol (29), further purified on CsCl gradients,
digested overnight with EcoRI, HindIII, and PstI at 37°C, and analyzed by CHEF
gel electrophoresis at 170 V, using a 2-s pulse time for 12 h.

Sequencing of Sodalis DNA. Two protein-coding genes in Sodalis, groEL and
fisZ, were PCR amplified using E. coli-specific primers (Genosys Biotechnologies
Inc., The Woodlands, Tex.). The amplification products were cloned into
pGEM-T vector (Promega) and sequenced at the Keck Sequencing Center at
Yale University.

Hybridization to E. coli macroarrays. Sodalis genomic DNA was separated
from plasmids as described above, using CHEF electrophoresis. The agarose
plugs were then digested with Fsel, and the digested DNA was purified using a
QIAquick gel extraction kit (Qiagen Inc. Chatsworth, Calif.). DNA was radio-
actively labeled with [a-**P]ATP by using a polymerase I/DNase I nick transla-
tion kit (GIBCO catalog no. 18160-010). Panorama macroarrays (Genosys Bio-
technologies) were prehybridized and hybridized in a 45% formamide-5X
Denhardt’s solution-5X SSC (1X SSC is 0.15 M NaCl plus 0.015 M sodium
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FIG. 1. Sodalis genome size determination. (A) Bacterial DNA
samples embedded in agarose plugs were subjected to CHEF electro-
phoresis using pulse times of 150 to 200 s for 20 h at 200 V and 14°C
to obtain chromosomal DNA devoid of plasmids. Sizes on the left are
indicated in kilobases. (B) Sodalis genomic DNA devoid of its plasmid
was analyzed by CHEF gel electrophoresis. Pmel and Pacl fragments
were resolved at pulse times of 18.3 to 26.3 s over 35 h at 200 V. Three
different pulse times were used to resolve the Swal fragments in dif-
ferent size ranges: 18.3 to 26.3 s for 35 h (a), 6.8 to 12.9 s for 33 h (b),
and 1 to 6 s and 6 to 15 s for 15 h each (c).

citrate)-0.5% sodium dodecyl sulfate (SDS) buffer at 45°C. The arrays were
washed at 42°C in 2X SSC-0.1% SDS and 0.1X SSC-0.1% SDS followed by 0.1X
SSC-0.5% SDS. Arrays were exposed to maximum-resolution films (BMR; East-
man Kodak Company, Rochester, N.Y.), and signals were scored as strong
(53%), medium (44%), or weak (3%). There were no cases where duplicate spots
gave contradictory results.

Analysis of DNA modifications associated with chromosomal and plasmid
DNAs. Total Sodalis DNA was purified according to standard protocols, using
proteinase K (100 pg/ml) and SDS (1%). The plasmid DNA was purified via
ultracentrifugation on CsCl gradients. All purified DNAs were digested over-
night with EcoRII, Sau3Al, and Mbol at 37°C and with BstNI at 60°C, respec-
tively. The digestion products were analyzed by conventional agarose gel elec-
trophoresis.

Nucleotide e accessi bers. The GenBank accession numbers are
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AF326971 for groEL and AY024353 for fisZ.

RESULTS

Size of Sodalis genome and plasmid(s). Since Sodalis con-
tains multicopy extrachromosomal DNAs, agarose plugs con-
taining total bacterial DNA were subjected to an initial CHEF
electrophoresis that allowed the plasmid DNA to enter the gel
while the intact chromosomal DNA remained in the wells (Fig.
1A). Subsequently, the plugs were removed from the wells, and
chromosomal DNA was digested with one of the restriction
enzymes Pmel, Pacl, and Swal. The restriction fragments were
analyzed by CHEF electrophoresis at different pulse times to
achieve resolution of desired size ranges (Fig. 1B). The sizes of
all restriction fragments were determined and compiled to
obtain the total size of Sodalis chromosome, which was found
to be approximately 2.11, 2.07, and 2.02 Mb by Pmel, Pacl, and
Swal digestions, respectively.

The total sizes of the generated plasmid DNA restriction
fragments analyzed by CHEF elecrophoresis indicated the
plasmid size to be about 134 kb (Fig. 2). Based on the intensity
of the DNA fragments after staining with ethidium bromide,
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FIG. 2. Sodalis plasmid size determination. Plasmid DNA frag-
ments were resolved by CHEF gel electrophoresis at 2-s pulse time for
12hat 170 V. Lanes 1 and 5, molecular weight markers (lambda ladder
and lambda/HindIIl, respectively); lanes 2 to 4, purified Sodalis plas-
mid DNA digested with restriction enzymes EcoRI, HindIll, and PstI,
respectively.

two fragments were consistently observed to be less abundant.
Hence, Sodalis may contain at least one additional plasmid
around 10 kb in size that is present in fewer copies (data not
shown).

A+T content of Sodalis genome. We analyzed the coding
sequences for two conserved genes, groEL and ftsZ, to examine
the A+T content of the Sodalis genome. Both gene sequences
have been extensively studied in other bacteria and hence can
be used in comparative analysis with related organisms. Anal-
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ysis of the groEL gene from Sodalis has shown that it is 44%
A+T, while the ftsZ gene was found to be 41% A+T rich. The
same loci characterized from E. coli are 47 and 46% A+T,
respectively. In comparison, the groEL sequences character-
ized from the strict intracellular symbionts Wigglesworthia and
Buchnera are 63% A+T in both organisms (GenBank acces-
sion no. AF321516 and AP001118, respectively). The ftsZ se-
quences from Wigglesworthia and Buchnera were similarly high
in A+T content, i.e., 66% (GenBank accession no. AY024354
and AF012886, respectively).

Genome contents of Sodalis inferred from E. coli macroarray
hybridizations. Hybridization of Sodalis genomic DNA devoid
of plasmids to E. coli macroarrays revealed the presence of
1,800 orthologs (Fig. 3) which represent about 85% of the
Sodalis genome, assuming an average size of 1 kb per gene
(31). There are 4,290 ORFs represented on the E. coli array,
and functional roles have been assigned to 1,938 of these. Of
the 1,800 genes detected from Sodalis, 1,158 had functional
roles assigned in E. coli, while the remaining 642 genes de-
tected corresponded to genes with hypothetical functions (Fig.
4). Orthologs were grouped according to their known func-
tions, and the number of genes in each group was compared to
those present in the E. coli genome (Fig. 5). Although the
Sodalis genome is about half the size of that of E. coli, this
comparative analysis has revealed that it contains a high pro-
portion of the genes for amino acid biosynthesis, regulatory
functions, translation, transcription, and nucleic acid biosyn-
thesis. Almost all of the genes necessary to synthesize each
amino acid and for the de novo synthesis of nucleic acids could
be detected in Sodalis via array hybridization. We were able to
detect a complete set of genes involved in many metabolic
pathways such as those associated with amino acid biosynthesis
(e.g., trpABCDE for tryptophan, hisABCDFGHI for histidine,
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FIG. 3. E. coli gene array hybridization analysis of Sodalis DNA. The autoradiogram shows the 1,800 signals detected by hybridization of Sodalis
chromosomal DNA to Panorama macroarrays containing 4,290 E. coli ORFs. Each gene is spotted in duplicate over three panels.
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1392 b3052 f477 b3356 yhfA b3685 yidE b4141 yjeH
gcpE b3055 ygiM  b3364 yhfC b3691 yidT b4146 yjeK
yfgB b3070 f254 b3369 yhfL b3693  yidV b4155 yjeA
f162 b3073 ygjG b3370 yhfM  b3695 yidW  b4156 yjeM
246 b3080 ygjK b3371 yhfN b3705 yidC b4161  yjeQ
0400 b3081 ygjL b3376 yhfS b3714  yieG b4162 yjeR
f364 b3087 ygjR b3381  yhfX b3720 yieC b4166 yjeS
1332 b3088 ygiT b3395 yrfD b3746 yieN b4167 yjeF
yfD b3089 ygjU b3397 yrfE b3754  yieO b4176 yjeT
yfhC b3109 yhaN  b3398 yrfF b3792  yiff b4179 vacB
0886 b3111  yhaP b3399 yrfG b3795 yifK b4180 yjfH
sfhB b3114 yhaS b3400 yrfH b3810 yigA b4188 yjfN
0245 b3124 yhaD  b3402 yhgE b3812 yigB b4190 yjfP
yfiA b3125 yhaE b3407 yhgF b3819  rarD b4218  yifL
0288 b3126 yhaF b3414 yhgl b3843  yigC b4220  yifM
0196 b3128 yhaG  b3420 yhgK  b3859 yihE b4221  yifN
yfiD b3146 yral b3469 zntA b3865 yihA b4227 yifQ
yfjB b3153 yhbO  b3470 yhhP  b3874 yihN  b4228 yifR
smpB  b3159 yhbV  b3471 yhhQ  b3876 yihO b4230 ytfT
0305 b3160 yhbW  b3473 yhhS b3877  yihP b4231  yjfF
ygaG b3170 yhbC b3483 yhhH  b3882 yihl b4243  yjgF
ygbD  b3183 yhbZ b3488  yhi] b3883 yihV b4247  yjgG
ygbB b3184 yhbE b3490 yhil b3885 yihX b4261 yjgP
f469 b3190 yrbA b3492 yhiN b3886 yihY b4262  yjgQ
223 b3192 yrbC b3494  yhiO b3888 yiiD b4266 yjgU
mazG ~ b3194 yrbE b3499 yhiR b3915  yiiP b4279 yjhB
260 b3195 yrbF b3508 yhdY  b3925 glpX b4358 yjjiN
ygdE b3196 yrbG b3523  yhjE b3928 yiill b4371 yjjT
0401  b3197 ybH  b3524 yijG  b3937 yiX  ba377 yju
f268 b3201 yhbG  b3527 yibO b3943  yijE b4378  yjjVv
0237 b3205 yhb] b3533  yhjO b3962 udhA  b4397 creA
072 b3211  yheC b3539 yhjv b3963  yijC

0346 b3222  yhcl b3546 yhjW  b3964 yijD

0485 b3227 yhcL b3552  yiaD b3975 f51

fo44 b3232 yhcM  b3553 yiaE b3996 yjaD

0326 b3241 yhcQ  b3575 yiaK b3998  yjaF

219 b3244 tldD b3589  yiaY b4020 yjbB

FIG. 4. List of genes detected in Sodalis by E. coli array hybridization analysis. A.A.B.&M., amino acid biosynthesis and metabolism;
B.C.P.&C., biosynthesis of cofactors, prosthetic groups, and carriers; C.C.C., carbon compound catabolism; C.I.M., central intermediary metab-
olism; C.P., cell processes; C.S., cell structure; D.R.R.M.&R., DNA replication, recombination, modification, and repair; E.M., energy metabolism;
F.A.&P.M,, fatty acid and phospholipid metabolism; M.P., membrane proteins; N.B.&M., nucleotide biosynthesis and metabolism; T.&P.T.M.,
translation and posttranslational modification; T.R.P.&D., transcription, RNA processing, and degradation; T.&B.P., transport and binding
proteins, R.F., regulatory function; P.R.P., putative regulatory proteins; P.T./P., phage, transposon, or plasmid; H.U.U., hypothetical, unclassified,

unknown.

and thrtABC, metL, lysC, and asd for threonine biosynthesis)
and the tricarboxylic acid cycle (sdhABCD, sucABCD, fum-
ABC, acnAB, gltA, icdA, and mdh) in addition to all of the
genes coding for ribosomal subunit proteins, further validating
the results of the orthologous array analysis (Fig. 4). Many
genes involved in the biosynthesis of cofactors, replication, and
transport functions were also found to be present. Most of the
DNA repair and recombinase orthologs of E. coli involved in
direct damage reversal, base excision repair, mismatch repair,
recombinase pathways, and nucleotide excision repair were
found to be retained. However, genes involved in carbon com-
pound catabolism, central intermediary metabolism, fatty acid
phospholipid metabolism, cell processes, and cell structure
were fewer in numbers in comparison to the E. coli genome.
Based on hybridization analysis, Sodalis appears to have respi-

ratory oxidases, NADH dehydrogenase complex enzymes and
a complete tricarboxylic acid cycle. It has the capability to grow
on several sugars including galactose, fructose, and raffinose as
well as the amino sugars N-acetyl-D-glucosamine, the methyl-
pentoses L-fucose, L-thamnose, L-arabinose, and xylose. Soda-
lis appears to have the ability to convert fatty acids to acetyl
coenzyme A using the glyoxylate cycle enzymes. Twenty-six
genes detected in Sodalis were grouped as phage/transposon or
plasmid-like sequences in E. coli.

The array analysis was also repeated with purified Sodalis
plasmid DNA (data not shown). Thirty-six genes were de-
tected, with none corresponding to the genes detected with
Sodalis chromosomal DNA, indicating that the genes reported
in Fig. 4 are indeed of chromosomal origin. Among the genes
detected were those coding for a membrane usher protein
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FIG. 5. Numbers of genes in different functional categories in the known genome of E. coli compared to the numbers of putative genes detected

in Sodalis on the basis of gene array analysis.

(yraJ) and an RNA helicase (dbpA). The remaining genes ei-
ther were hypothetical with no known functions in E. coli or
corresponded to phage/transposon-like sequences.

DNA methylation in Sodalis. Of interest were two genes
detected by array hybridization analysis, coding for DNA ad-
enine (Dam) and cytosine (Dcm) methylase. DNA methylation
in bacteria is thought to be involved in protection against
foreign DNA in addition to regulatory functions for gene ex-
pression and replication. The functional presence of these
genes was investigated by DNA restriction analysis using isos-
chizomers with different methylation requirements. Two pairs
of isoschizomers that are diagnostic for Dem (Bs/NI and EcoRII)
and Dam (Sau3AI and Mbol) methylation status of DNA were
used to digest total chromosomal and plasmid DNA prepara-
tions (Fig. 6). Neither the plasmid nor the chromosomal DNA
could be digested with Dam-sensitive restriction enzyme Mbol
(Fig. 6, lanes 5), while the same DNAs were cleaved with its
isoschizomer Sau3Al (Fig. 6, lanes 4), indicating that Sodalis
genomic as well as plasmid DNAs are extensively methylated
at the adenine residues. Under the same digestion conditions,
Wigglesworthia DNA could be completely digested with Mbol
(data not shown). Although both total and plasmid DNAs
could be digested with BstNI (Fig. 6, lanes 2) and EcoRII (Fig.
6, lanes 3), we observed a difference in the plasmid digestion
fragments, suggesting that this DNA may be hemimethylated
at cytosine residues (Fig. 6B, lane 2 versus lane 3).

DISCUSSION

Symbiotic associations with microorganisms are common in
insects and form a continuum from obligate relationships re-

quired for host nutrition and fecundity to parasitic infections
with selfish organisms which manipulate host physiology for
their own benefit. The genome analysis of mutualists and in-
tracellular pathogens has shown several hallmarks such as re-
duced genome size, increased A+T bias in coding sequences,
and faster polypeptide evolution (21). We studied the genomic
aspects of the secondary symbiont of tsetse, Sodalis, to better
understand the functional nature of its symbiotic association
with tsetse.

Total DNA Plasmid DNA

FIG. 6. Methylation status of Sodalis DNA. Two pairs of isoschi-
zomers that are diagnostic for Dem (BstNI and EcoRII) and Dam
(Sau3Al and Mbol) methylation status of DNA were used to digest
total (A) and plasmid (B) DNA preparations. (A) M, lambda/HindIII
molecular weight marker; lane 1, Sodalis total DNA uncut; lanes 2 to
5, Sodalis total DNA digested with BstNI, EcoRII, Sau3Al, and Mbol,
respectively. (B) Lane 1, Sodalis plasmid DNA uncut; lanes 2 to 5,
Sodalis plasmid DNA digested with BstNI, EcoRIl, Sau3Al, and Mbol,
respectively.
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Genome size reductions have been observed for intracellular
pathogens such as Chlamydia trachomatis (1.04 Mb), Trepo-
nema pallidum (1.14 Mb), Mycoplasma genitalium (0.58 kb),
and Rickettsia prowazekii (1.1 Mb) (22). Recently, the genome
of the obligate endosymbiont Buchnera from aphids has been
characterized as 640 kb (10, 31), and the genome of the obli-
gate Wigglesworthia from tsetse is found to be smaller than 750
kb (1), both apparently approaching the size of that of M.
genitalium, the smallest bacterial genome reported thus far.
Both Buchnera and Wigglesworthia are intracellular and live
within specialized insect cells (bacteriocytes) which make up a
defined organ (bacteriome). It has not been possible to culture
either organism in vitro. The genome reductions imply genetic
and presumably functional loss and may reflect the increased
exploitation and dependence of these organisms on their host
cells, unlike free-living organisms. In contrast, free-living bac-
teria such as E. coli and Salmonella have been found to have
significantly larger genomes, around 4.5 Mb. The genome size
of Sodalis is shown here to be about 2 Mb, significantly larger
than those of the intracellular pathogens and obligate symbi-
onts but smaller than those of the closely related free-living
enterics. Genome-wide sequence analysis is necessary to un-
derstand the full spectrum of genes that have been lost from
the enteric ancestor during symbiosis or to identify genes that
may have been since acquired to mediate its symbiotic associ-
ation. In the absence of this information, however, hybridiza-
tion of its DNA to macroarrays of a closely related microor-
ganism, E. coli, has provided rapid insight into its genome
composition. While E. coli arrays have been useful for docu-
menting gene inventories in different strains (27), data pre-
sented here show a different application which can provide a
cost-effective and fast alternative to genome sequencing for
broad comparative analysis of closely related organisms. The
future availability of gene arrays from distant organisms and
similar applications stand to improve the efficacy of this ap-
proach.

Based on its genomic composition revealed by array analysis,
Sodalis has many of the capabilities of free-living bacteria. In
fact, establishment of an in vitro culture for this organism
supports the notion that it can synthesize all of the metabolites
it needs for survival outside of host insect cells (6, 35). It
appears to have retained many genes involved in transcription,
translation, regulation, and nucleic acid and amino acid bio-
synthetic pathways. Meanwhile, Sodalis might have lost genes
in carbon compound catabolism, central intermediary metab-
olism, and fatty acid phospholipid metabolism. While the ab-
sence of certain genes and pathways will need to be confirmed
by complete genome sequencing, our findings represent an
adaptation by Sodalis to its energy-rich environment, the single
diet of tsetse, blood. Under in vitro conditions, Sodalis has
been found to assimilate N-acetyl-p-glucosamine and raffinose
(14). The symbionts of blood-feeding insects are thought to
provide cofactors and vitamin metabolites to supplement the
restricted diets of their host insects (8). Many genes involved in
the biosynthesis of cofactors and vitamins were detected in
Sodalis. Thus, Sodalis might indeed benefit its tsetse host via
the synthesis of compounds such as biotin and lipoic acid,
molybdenum cofactor, thiamine, riboflavin, and folic acid. In a
similar study with Wigglesworthia, we have applied the E. coli
arrays to understand the general aspects of its much reduced
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genome contents and found that it too has maintained many of
the biosynthetic pathways for vitamin and cofactor synthesis,
possibly indicating their significance for host tsetse biology (1).
While this study provides a general understanding of the
genomic coding capacity of Sodalis, it lacks information on loci
not represented in the E. coli genome. There are at least two
such examples; the first is a chitinase gene characterized from
Sodalis that is absent in the E. coli genome (34), and the
second is the recently described pathogenicity island genes,
which may help Sodalis invade insect cells (15).

The overall A+T contents of the genomes of intracellular
pathogens R. prowazekii and M. genitalium are 71 and 68%,
respectively. Similarly, the genomes of mutualists are also
A+T rich; for example, that of Buchnera was found to be 75%
A+T (31). Genome analysis of intracellular pathogens and
obligates indicate that loci encoding for DNA repair and re-
combination functions have been lost or limited in many of
these organisms (22), and this loss of the repair functions may
have led to their high A+T bias. In contrast, the genome of the
free-living bacterium E. coli does not exhibit such a bias, and its
overall A+T content is about 50%. The A+T content of So-
dalis groEL and ftsZ gene sequences is less than 45%, another
hallmark of free-living organisms. Unlike genomes of obligate
intracellular bacteria, the Sodalis genome appears to have re-
tained almost all of the genes involved in DNA repair and
recombination functions.

Phylogenetic characterization of the obligate symbionts
from various insects has shown that they display concordance
with their host phylogenies including the symbionts from tsetse
(5), aphids (23), whiteflies (13), mealybugs (24), and carpenter
ants (30). Unlike these obligates, the phylogenetic analysis of
the secondary symbionts such as Sodalis from tsetse and the
symbionts of psyllids and aphids has shown them to be iden-
tical among distant species of each insect taxa (11, 16, 33).
Based on 16S rRNA gene analysis, Sodalis forms a distinct
lineage with the primary symbiont of the rice weevil Sitophilus
oryzae, SOPE (4). Comparative analysis of their groEL se-
quences indicates 98% identity, indicating that they are close
members of one bacterial taxon. The genome size of SOPE is
3 Mb, significantly larger than those of the intracellular obli-
gates (9), and the A+T content of its groEL gene is about 45%,
similar to that of Sodalis (17). Like Sodalis, it harbors large
extracellular plasmids (17). In contrast to their shared evolu-
tionary and molecular characteristics, the biology of SOPE in
its weevil host is different from that of Sodalis. SOPE has been
shown to reside within bacteriocytes in the weevil (18), similar
to Wigglesworthia in tsetse. Its symbiosis in the weevil host is
thought to be obligate in nature, and its elimination has been
found to impair many physiological traits of its host, including
fecundity (18). In tsetse, it has been difficult to disassociate the
functional significance of Wigglesworthia from that of Sodalis
since antibiotic treatment of flies eliminates both organisms.
However, since the prevalence of Sodalis varies extensively in
different tsetse species, its association may be considered com-
mensal in nature (12). The transmission modes of Sodalis and
SOPE are also different. SOPE is transovarially transmitted to
insect progeny (18), while Sodalis is absent in reproductive
tissues but is transmitted vertically to the intrauterine larva
through the mother’s milk (12, 20). It appears that upon asso-
ciation with the hosts, the common ancestor of SOPE and
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Sodalis adapted to the distinct functional biologies of the host
insects. While SOPE is restricted to an intracellular association
in the weevil, Sodalis can replicate in various tissues of tsetse
and can replicate outside the host insect cells. It remains to be
seen whether the different functional roles they display in their
hosts result from host-derived factors or from variations in
their genotypes. One precedent for such an association is Wol-
bachia, a parasitic Rickettsiaceae which has been shown to
invade a wide range of insects where it displays many different
phenotypes, ranging from reproductive incompatibilities to
age-shortening effects. Further genome-wide comparative
analysis between the closely related Sodalis and SOPE will
undoubtedly shed light on the mechanistic as well as the func-
tional basis of symbiosis in their hosts.
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