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Abstract

Despite recent advances in targeted drugs and immunotherapy, cancer remains “the emperor of all 

maladies” due to almost inevitable emergence of resistance. Drug resistance is thought to be driven 

by genetic alterations and/or dynamic plasticity that deregulate pathway activities and regulatory 

programs of a highly heterogeneous tumour. In this study, we propose a modelling framework 

to simulate population dynamics of heterogeneous tumour cells with reversible drug resistance. 

Drug sensitivity of a tumour cell is determined by its internal states, which are demarcated by 

coordinated activities of multiple interconnected oncogenic pathways. Transitions between cellular 

states depend on the effects of targeted drugs and regulatory relations between the pathways. 

Under this framework, we build a simple model to capture drug resistance characteristics of 

BRAF-mutant melanoma, where two cell states are determined by two mutually inhibitory – 

main and alternative – pathways. We assume that cells with an activated main pathway are 

proliferative yet sensitive to the BRAF inhibitor, and cells with an activated alternative pathway 

are quiescent but resistant to the drug. We describe a dynamical process of tumour growth 

under various drug regimens using the explicit solutions of mean-field equations. Based on 

these solutions, we compare efficacy of three treatment strategies from simulated data: static 

treatments with continuous and constant dosages, periodic treatments with regular intermittent 

active phases and drug holidays, and treatments derived from optimal control theory (OCT). 

Periodic treatments outperform static treatments with a considerable margin, while treatments 
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based on OCT outperform the best periodic treatment. Our results provide insights regarding 

optimal cancer treatment modalities for heterogeneous tumours, and may guide the development 

of optimal therapeutic strategies to circumvent plastic drug resistance. They can also be used to 

evaluate the efficacy of suboptimal treatments that may account for side effects of the treatment 

and the cost of its application.
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Introduction

Despite the recent advances of targeted treatments and immunotherapy, complete 

nonsurgical cure of cancer is still rare due to the almost inevitable emergence of resistance 

(Bozic and Nowak, 2017; Garraway and Jänne, 2012; Iwasa et al., 2006; Komarova and 

Wodarz, 2005). Drug resistance arises from a wide range of complex processes at multiple 

levels (Dagogo-Jack and Shaw, 2017; Hu and Zhang, 2016; Sharma et al., 2017). At the 

tumour level, drug response emerges primarily from population dynamics of cancer cells. 

The most well-known mechanism is clonal evolution (Greaves and Maley, 2012; Williams 

et al., 2018). A bulk tumour is often populated by a heterogeneous group of cancer 

cells with diverse mutational landscapes, epigenomic states, pathway activities and gene 

regulatory programs. Treatments induce differential fitness of subclones and consequently 

select for the most resistant ones. Beside clonal evolution, treatments may also induce 

differential plasticity of tumour cells by shifting their pathway activities (Shaffer et al., 
2017) and regulatory programs (Stites, 2012), or by copy number changes (Das Thakur et 
al., 2013). The major difference between these two processes pertains to reversibility of drug 
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resistance. For clonal evolution, drug sensitivity of an individual cell is determined solely 

by its genetic landscape and thus remains invariant during its life span. Drug resistance of 

a subclone is thus an irreversible phenotype as a resistant subclone will rarely revert. For 

differential plasticity, drug sensitivity of an individual cell is in a reversible dynamic state 

rather than a fixed phenotype. Both mechanisms are supported by numerous experimental 

evidence (e.g., for clonal evolution, (Gerlinger et al., 2012); for differential plasticity of 

tumour cells (Hangauer et al., 2017; Shaffer et al., 2017; Sharma et al., 2010; Sun et al., 

2014; Tirosh et al., 2016)). However, the latter process may account for drug resistance that 

can be reverted when the therapy is lifted (Fischer et al., 2015; Kuczynski et al., 2013).

There is a rich literature of mathematical models for tumour clonal evolution that undergoes 

treatments (e.g., (Ashcroft et al., 2015; Beerenwinkel et al., 2015; Dingli et al., 2009; 

Klement, 2016; Michor and Beal, 2015; Sprouffske et al., 2011; You et al., 2017)). In 

contrast, models of cellular plastic responses to treatments are relatively limited and recent 

(e.g., (Bacevic et al., 2017; Chen et al., 2014; Kim et al., 2018; Paudel et al., 2018; 

Taylor–King et al., 2018), see also reviews (Jolly et al., 2018; Kolch et al., 2015; Marusyk 

et al., 2012)). The ultimate purpose of those models is to quantitatively predict tumour’s 

drug responses and employ this information to design effective treatments. Previously, 

we proposed a unified framework encompassing both mathematical models of tumour 

population dynamics and treatment design (Beckman et al., 2012). We considered a simple 

evolution model involved in subclones with differential resistance of two drugs, and tested 

efficacy of six heuristic treatment strategies by simulating population dynamics with a 

large number of parameter combinations informed by literature and clinical experience. We 

further extended the work to a three-drug system and generalized treatment strategies that 

incorporated long-term prediction of tumour population composition (Yeang and Beckman, 

2016).

An important missing piece in this framework is a mathematical model that tackles 

reversible drug responses of cancer cells and also offers an explicit design of optimal 

treatments serving as a golden standard to all other, eventually suboptimal, regimens. To 

fill this gap, we propose a model to explore the population dynamics of cancer cells 

during or after treatment with targeted agents that produce reversible effects. The state 

of each cell is determined by the activities of multiple inter-dependent pathways, whereas 

the fitness of each cell depends on its internal state and the external environment (i.e. 

drug dosage). Treatments alter the cellular state composition of the population by both 

facilitating the single-cell state transitions in certain directions and inhibiting proliferation 

of subpopulations with differential efficiencies. To capture the essence of reversible cellular 

state transitions, we consider a simple scenario in which cell proliferation is driven by two 

mutually antagonistic signalling pathways. The main pathway promotes cell proliferation 

more efficiently but is also sensitive to a therapeutic agent. The alternative pathway 

induces slow proliferation but is also resistant to the agent. Due to reversibility of the 

states, the treatment strategy aims to balance between controlling the tumour load and 

reducing the influence of resistant cells. Similar models were previously proposed (see, 

e.g., (Cunningham et al., 2018)), yet they lacked the exact construction of globally optimal 

treatment regimens and considered only numerical schemes for their design.
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Despite its simplicity, our model captures reasonably well the switching behaviour of 

BRAFV600E mutant melanomas treated with BRAF inhibitor (vemurafenib) (Das Thakur 

et al., 2013; Sosman et al., 2012). Melanoma is a frequently lethal form of skin cancer with 

incidence rates continuing to rise in many countries (Siegel et al., 2018). Approximately half 

of cases harbour a BRAFV600 mutation (Davies et al., 2002). The resulting mutation leads 

to constitutive activation of a down-stream cascade of the mitogen activated protein (MAPK) 

pathway including MEK and ERK that promote proliferation of cancer cells. Treatment 

with a single-agent BRAF inhibitor disrupts MAPK signalling and achieves remission but 

leads to relapse in 6.7 months on average (Sosman et al., 2012). As of 2014, the standard 

of care for BRAFV600 mutant melanoma is the combination of inhibitors of BRAF and 

MEK (Dummer et al., 2018; Larkin et al., 2014). Still, resistance emerges through numerous 

genetic mechanisms (Johannessen et al., 2010; Montagut et al., 2008; Nazarian et al., 2010; 

Poulikakos et al., 2011) or phenotypic changes, such as switching from the suppressed 

MAPK pathway to an alternative pathway involving activation of NFκB (Konieczkowski et 
al., 2014; Lehraiki et al., 2015; Müller et al., 2014; Sun et al., 2014; Tirosh et al., 2016). 

The latter process of switching between two major oncogenic programs is accompanied by 

physiological changes in cancer cells (Kemper et al., 2014).

These characteristics allow us to abstract the problem and formulate a minimal dynamic 

model. To describe the dynamics of tumour growth and state composition, we derive 

master equations and find their analytic solutions under arbitrary drug regimens. Based 

on these solutions, we compare the performance of three treatment strategies on simulated 

data: i) static treatments with continuous and constant dosages, ii) periodic treatments with 

regular intermittent treatment days and drug holidays, and iii) the treatments that minimize 

the tumour size at a fixed time horizon. Alternative targets for optimization may include 

minimization of the time integral for the tumour size, so that the probability of a genetically 

resistant subclone would be minimized, maximization of the time at which the tumour cell 

count remains below a threshold number (Beckman, Schemmann, and Yeang, 2012) or 

minimization of the total drug application or time to recovery as in (Gluzman et al., 2018). 

We note that our choice to minimize the tumour size at a fixed time provides the lowest 

estimate of tumour size under any possible (suboptimal) treatment. We finalize our work 

with discussion of obtained results and conclusions envisioning possible recommendations 

for treatment of cancer patients whose tumours exhibit reversible mechanism of resistance.

Model and methods

1. Assumptions and concepts

We consider a general and abstract model where each cancer cell is a self-replicating 

entity possessing one of multiple possible internal states. Each internal state has a distinct 

proliferative capacity, sensitivity to treatments, and can transition to other internal states. 

From this more general case, we study a particular instance in detail as outlined below:

i. The mutational landscape of tumour cells does not acquire major driver events 

(“hallmarks of cancer” (Hanahan and Weinberg, 2000)) or new resistance 

mutations during the course of therapy. This assumption alleviates the burden 

of simultaneously modelling both clonal evolution and cellular plasticity, but 
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may not be realistic in a longer time scale (e.g. with an order of one year or 

more).

ii. The dominant subclone of tumour cells, which is the focus here, by default 

possesses elevated activities of the “main” pathway that render it highly 

proliferative.

iii. Proliferation can also be sustained by an “alternative” pathway with lower 

efficiency. The two pathways are mutually inhibitory, thus without external 

intervention the tumour population is dominated by cells with an active main 

pathway over those with an active alternative pathway.

iv. A targeted agent or targeted combination inhibits proliferation of cells with an 

active main pathway and concomitantly facilitates activity transitions from the 

main to the alternative pathway.

Fig 1A illustrates the conceptual framework of the model. This may be seen as an 

archetypical bistable state model that covers a particular class of internal “wirings” of a 

cell.

Activities of the two pathways demarcate three cellular states (Fig 1BC): active main / 

inactive alternative pathway (state “1”), inactive main / active alternative pathway (state 

“2”), and inactive main / inactive alternative pathway (state “0”). Simultaneous activation 

of both pathways is not allowed since they are mutually inhibitory. 0 is a transient state 

between 1 and 2.

Cells expressing the main or alternative pathway may encounter three stochastic events: 

proliferation, death, and state transition (1 → 0 → 2 or 2 → 0 → 1). The population 

dynamics of the birth-death process can be well approximated by ordinary differential 

equations. To determine the population dynamics of cellular states, we adopt a well-known 

approach from statistical physics by treating cells as particles undergoing Brownian motions 

inside a double-well potential (Krapivsky et al., 2010). In this model, each pathway 

possesses a double-well potential. The two equilibria of the system (the two local minima 

of the potential) represent up and down regulation of the pathway activities (Fig 1D). 

Probabilities of staying in each state (and thereby the fraction of cells in each state) are 

determined by the “energy gap” between two local minima. Without external intervention, 

lower wells (more likely states) of the main pathway correspond to up-regulation of the main 

pathway and down-regulation of the alternative pathway.

The drug has a cytostatic effect on a cell. It inhibits both the main pathway activity and 

proliferation of main pathway-active cells, but has no effect on the alternative pathway. 

The former effect also facilitates the state transition 1 → 0 → 2 and thus induces drug 

resistance. Mathematically the drug action lifts the well of the up-regulation state and lowers 

the well of the down-regulation state of the main pathway potential function. However, 

it does not change the shape of the alternative pathway potential function. The extent of 

potential function change depends on administered dosage that we decode by a variable σ, 

the treatment intensity with values constrained between zero and one. Two extremes are σ 
= 0 for no treatment, and σ = 1 for a maximally tolerated dosage (MTD) administered. The 
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latter shuts down the main pathway and turns on the alternative pathway driving emergence 

of drug resistance. Although drug toxicity is an important concern in any cancer treatment, 

it is generally difficult to model toxicity due to the diversity of proper dosage quantities 

related to drug toxicity. Toxicity can be related to the maximum dose, the average dose 

intensity, or the duration of therapy without interruption and recovery periods, depending 

on the types of administered drugs. In the current study, toxicity was taken into account 

by requiring that the dosage at any time could not exceed an upper bound, and hence 

considered the normalized dosage level in the interval [0,1] throughout the entire treatment 

schedule. However, the upper bound can be restricted to a value lower than one due to 

existent toxicity of the applied drug. We do not consider this aspect fully in the paper but 

assume that it can be incorporated once the drug efficacy – profile and maximum tolerated 

dosage are known from Phase 1 clinical studies. We note that many patients will prioritize 

maximizing survival at the maximum tolerated dose, as long as toxicity has a low risk of 

inducing permanent morbidity or mortality. Others will prioritize and value lower toxicity 

and improved quality of life. Individualized optimal therapies may in principle be calculated 

if the efficacy-toxicity tradeoff for any given individual can be determined.

The setting described above makes the disease incurable by continuous administration of 

a single therapeutic agent since the tumour inevitably relapses (Chmielecki et al., 2011). 

However, the patient’s life span can be significantly improved with proper arrangements of 

treatment dosage and schedule even of this single agent. A possible aim is to minimize the 

tumour size at a fixed time horizon. To fulfil this goal, one obliges to maintain a subtle 

balance of proliferative but sensitive cells vs. quiescent but resistant cells, such that the 

tumour remains responsive to the drug but has a limited growth rate.

2. Modelling framework

We start with formulation of a model of two antagonistic pathways for individual tumour 

cells. We consider a stochastic birth-death process and apply the mean-field approximation 

to describe the evolution of tumour size and resistance level at any particular time of the 

treatment.

(a) Modelling pathway activity—A system of two interconnected pathways and an 

up-stream gene is shown in Fig 1A. For simplicity, we denote the main pathway by the 

index “1” and the alternative pathway by the index “2”. We characterize each pathway with 

a normalized activity level yi (0 ≤ yi ≤ 1, i = 1,2), and construct the protein expression model 

with two consistent reactions (Assaf et al., 2013; Roberts et al., 2015). First, the production 

function fi(yi) identifies the rate of protein production. Second, the degradation of proteins 

occurs at rate 1. The dynamics hold the form:

δ−1dyi(t)
dt = fi yi(t) − yi(t) + ηi,

where η1,2 are random noise terms, the constant δ is a relative adjustment rate between 

updates in the pathway activity and the birth-death process of tumour cells. Following the 

experimental evidence that cell fate is guided by Boolean logic (Bernardo-Faura et al., 2014; 
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Olsson et al., 2016), we assign the production function fi(yi) to a step-wise function: it 

equals to one for any yi above threshold θi, and to αi for any yi below it:

fi yi = Ai(σ) ⋅ αi + 1 − αi ⋅ H yi − θi ,
0 ≤ αi < θi ≤ 1, (i = 1, 2)

where H(∘) is the Heaviside function, the function Ai(σ) describes the reduction in 

expression level of the pathway due to the effect of the drug (Fig S1A). As noted above, 

A1(σ) decreases with the treatment intensity σ, while A2(σ) ≡ 1. Overall, we impose the 

restriction: αi < Ai(σ) < θiαi to preserve a bimodality of the potential.

The activation dynamics are described by the Brownian motion in a double-well potential: 

Ui yi = − ∫ fi yi dyi + yi2 − θi
2 /2 or equivalently:

Ui yi = − fi yi ⋅ yi − θi +
yi2 − θi2

2 .

We impose that the potential U1(y1), which is a double well for any treatment intensity σ < 

1 and is unimodal only for σ = 1 (Fig S1B). The potential has two stable equilibria: up and 

down regulation states, that correspond to two minima of the potential (Fig 1D). The state 

yi fluctuating near the attractor y± may eventually jump from one potential well to another. 

The transition rate follows the Van’t Hoff-Arrhenius law (Hänggi et al., 1990) and defines 

the escape rate from one of the equilibria yi
± in the form: λiexp −κiEi

± , where Ei
± are the 

heights of potential barriers: Ei
+(σ) = Ui θi(σ) − Ui Ai(σ)  and Ei

−(σ) = Ui θi(σ) − Ui αiAi(σ) . 

The robustness parameter κi indicates how likely pathway i switches between active and 

inactive states due to internal stochastic effects, and the constant λi depends on the curvature 

of the potential in the proximity of the equilibrium and also at the boundary of the region of 

attraction θi ± ε (ε → 0).

Since the two pathways are mutually inhibitory, the two double potential well systems are 

coupled and hence give rise to dynamics of stochastic state transitions illustrated in Fig 1B. 

Transitions between the two steady states 1 (active main pathway) and 2 (active alternative 

pathway) are mediated by the transient state 0 (both pathways off). We assume that up/down 

regulation of protein expressions and activities in each pathway occurs arbitrarily fast, yet 

transformations of cellular phenotypes (such as proliferation rates and drug sensitivities) 

occur at a much slower rate. To account for these two-tier processes, we encode each 

cellular state by two values ka, where k is the current pathway state and a is the previous 

pathway state (k ≠ a; k, a = {0,1,2}; Fig 1C). The current pathway state index k determines 

the activities of the two pathways according to the previous definition, whereas the prior 

pathway state index a alludes the cellular phenotype. Steady states 10 and 20 denote 

cells with consistent pathway activities and phenotypes (up-regulated main pathway and 

proliferative phenotype for 10 and up-regulated alternative pathway and quiescent phenotype 

for 20). Transient states 01 and 02 denote cells with both pathways down-regulated and 

phenotypes carried from the prior steady states (proliferative for 01 and quiescent for 02). 
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The transition k0 ↔ 0k alters pathway expressions and activities relatively rapidly (rate 

μ ≫ 1), so that the equilibrium in corresponding subsystems (red and grey compartments in 

Fig 1C) is achieved instantaneously. In contrast, the transition 0i, → i0 (i′ = 3 − i, i = {1,2}) 

transforms cellular phenotypes and occurs at a slow scale with rates μi ~ 1.

(b) Tumour growth—We further derive the dynamics of tumour growth at population 

level from the process of aforementioned individual pathway activities. In this sense, the 

number of cells nka in each dynamic compartment ka follows the change according to 

continuous-time equations (Paudel et al., 2018):

dni0(t)
dt = ωini0(t) + μi(n0i(t)e−κiEi−(σ) − ni0(t)e−κiE+(σ)) + μi′e−κiEi−(σ)n0i′(t),

dn0i(t)
dt = ω0ξ0i(t) − μi(n0i(t)e−κiEi−(σ) − ni0(t)e−κiE+(σ)) − μie−κi′Ei′−(σ)n0i(t),

where the variable ωk is the net proliferation rate of a cell with state k (i.e. the difference 

between birth and death rates). The last terms in each equation are factored by the exponent 

due to explicit transition from inactivated to activated state for a new phenotypic state.

The fast-time dynamics requires the term of μi to be zero:

n0i(t) = ni0(t)e−κiΔEi(σ), (1)

so that we have:

dni0(t)
dt = ωini0(t) + μi′e−κiEi−(σ)n0i′(t),

dn0i(t)
dt = ω0n0i(t) − μie−κi′Ei′−(σ)n0i(t) .

(2)

Since both state variables ni0 and n0i describe the same phenotype (proliferative when i = 1 

and quiescent when i = 2), we introduce a new variable ni(t) = ni0(t) + n0i(t) to specify the 

dynamics of phenotype i. We use (1) and (2) to express the dynamics in terms of these new 

variables:

dni(t)
dt = ωieκiΔEi(σ) + ω0

eκiΔEi(σ) + 1
ni(t) − μie−κi′Ei′−(σ)

eκiΔEi(σ) + 1
ni(t)

+ μi′e−κiEi−(σ)

eκi′ΔEi′(σ) + 1
ni′(t) .

(3)

We impose no effect of the treatment on the cells with active alternative pathway that allows 

to write (3) in the form:
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dn1(t)
dt = ω1eκ1ΔE1(σ) + ω0

eκ1ΔE1(σ) + 1
n1(t) − μ1e−κ2E2−

eκ1ΔE1(σ) + 1
n1(t) + μ2e−κ1E1−(σ)

eκ2ΔE2 + 1
n2(t),

dn2(t)
dt = ω2eκ2ΔE2 + ω0

eκ2ΔE2 + 1
n2(t) − μ2e−κ1E1−(σ)

eκ2ΔE2 + 1
n2(t) + μ1e−κ2E2−

eκ1ΔE2 + 1
n1(t),

(4)

Additionally, we stipulate that state 2 cells are less proliferative than state 1 cells with a 

fitness cost c2: ω2 = ω1 − c2. Thus, the following relation holds: ω0 < 0 < ω2 < ω1. The first 

inequality in the chain reflects the fact that the cell becomes nonviable when both pathways 

are shut down. The ωk parameters can be re-parametrized in terms of the birth and death 

rates and fitness cost: ω0 = b(1 − χ) − d, ω1 = b − d, ω2 = b − c2 − d, where b and 

d are default birth and death rates, and χ is the penalty to the birth rate when both main 

and alternative pathways are disabled. This expresses the fitness of the sensitive cells in the 

form:

ω1eκ1ΔE1(σ) + ω0
eκ1ΔE1(σ) + 1

= b 1 − χ
eK1ΔE1(σ) + 1

− d,

of the resistant cells:

ω2eκ2ΔE2 + ω0
eκ2ΔE2 + 1

= b 1 −
c2eκ2ΔE2 + χ

eκ2ΔE2 + 1
− d .

(c) Dynamic equations—The system of differential equations (4) gives rise to our main 

intermediate result: the dynamic equations describing the change in tumour load n(t) = n1(t) 
+ n2(t), and fraction of resistant cells x(t) = n2(t)/n(t) over time:

dn(t)
dt = b 1 − χ(1 − x(t))

eκΔE(σ) + 1
− cx(t) − d n(t), (5)

dx(t)
dt = b χ

eκΔE(σ) + 1
− c x(t)(1 − x(t)) + μ(1 − x(t))

eκΔE(σ) + 1
− μe−κE−(σ)x(t),

(6)

where the subindices were introduced for short hand: κ ≡ κ1, E−(σ) ≡ E1
−(σ), ΔE(σ) ≡ 

ΔE1(σ), as well as few transformations of parameters: c =
c2eκ2ΔE2 + χ

eκ2ΔE2 + 1
, μ =

μ1e−κ2E2−

eκ1ΔE2 + 1
, and 

μ =
μ2

eκ2ΔE2 + 1 .

Fig 1D shows the resulting flow diagram of the dynamics. The main terms of (5)–(6): 

(eκΔE(σ) + 1) and e−κE−(σ), are monotonic decreasing functions of the treatment intensity σ 
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(Fig S2). Hence, the resistant cells overgrow sensitive cells for any value μ and μ only if 

χ/(eκΔE(σ) + 1) > c, which is expected for large values of drug dosages σ.

Despite the complex structure of the derived equations (5)–(6), they represent a rather 

conventional form. The equation (5) rewritten with respect to log n(t) gives a simple first 

order dependence on x(t). The first term of (6) resembles the replicator dynamics (Nowak, 

2006), where the growth rate is equal to the difference between two fitness costs – it 

describes cell competition between different types. The two following terms in (6) indicate 

the transition flows between the sensitive state 1 and the resistant state 2. In population 

genetics, those are known under the names of selection and mutation terms, respectively.

(d) Model simulation and determination of the model parameter values—We 

simulated tumour growth with or without drug administration by solving the aforementioned 

dynamical equations. To make the simulation outcomes comparable to the real data, we 

estimated and extracted model parameters from experimental literature. Below we list the 

source and criteria for determining model parameters.

Bozic et al. (Bozic et al., 2013) reported the average daily net growth rate of a melanoma 

cell line with BRAF mutation at 0.01. They set the death rate to 0.13 per day, while the 

birth rate was set to 0.14 per day to ensure the cells to divide every 7 days on average. The 

treatment with BRAF inhibitor vemurafenib led to the observed tumour shrinkage at average 

rate of 0.03 per day.

If the drug has a weak cytotoxic effect, there is no change in the death rate, while there is 

an apparent disruption of the internal cellular machinery that makes a cell unable to divide. 

If we assume that Bozic et al. used the drug intensity close to maximally tolerated dosage 

(MTD), the following conditions for particular cases of the dynamics (1) are implemented:

b 1 − χ
eKΔE(σ = 0) + 1

− d = 0.01day−1, b 1 − χ
eκΔE(σ = 1) + 1

− d = − 0.03day−1,

where d = 0.13 day−1. This leads to the following:

b = 0.1(eκΔE(σ = 1) + 1) − 0.14(eκΔE(σ = 0) + 1)
eκΔE(σ = 1) − eκΔE(σ = 0) ,

χ = 1 −
0.14 eκΔE(σ = 0) + 1 − beκΔE(σ = 0)

b .

From the fixed parameters characterizing the dynamics of the main pathway activity, 

we set the low level and the threshold of the production function to α = 0.3 and θ = 

0.45 respectively, and robustness parameter κ = 40.0. Substituting these values into the 

aforementioned formulas we obtain b = 0.14 day−1 and χ = 0.326.
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The characteristic time of switching from the main to the alternative pathway μ−1 is set to 

be 10.5 days, and of the reversed switch μ−1 to be 14 days. The former number is chosen 

by assuming that the direct switch is faster than the reversed (Konieczkowski et al., 2014) 

and that rewiring of cellular machinery requires at least one or two cell divisions. The latter 

number is based on the data in the experimental study of melanoma growth with a resistance 

mechanism identical to our model (Lehraiki et al., 2015). Lehraiki et al. indicated that the 

acquired resistance can be reversed in two weeks.

We set the cost of resistance relative to the fitness of sensitive cells under no treatment to be 

crelative = 10% (Akhmetzhanov and Hochberg, 2015). This imposed the following condition 

to the cost c used in our model:

b(1 − c) − d = b 1 − χ
eκΔE(σ = 0) + 1

− d 1 − crelative = 0.009 day−1,

that led to:

c = b − d
b crelative + χ

eκΔE(σ = 0) + 1
1 − crelative = 0.008.

Table 1 summarizes our choice of model parameters values. Since the proposed model 

parameter values are often obtained from either educated guesses or similar theoretical 

studies (Bozic and Nowak, 2017; Garraway and Jänne, 2012; Tirosh et al., 2016), especially 

regarding the choice of values for μ and μ, we have conducted sensitivity analysis on 

simulation outcomes.

3. Design of the optimal treatment

We examine the efficacy of three treatment strategies in the aforementioned tumour 

population dynamics model: static treatments by administering a constant dosage through 

the entire episode, periodic treatments with regular active phases interleaved with drug 

holidays, and treatments derived from the optimal control theory. The first two strategies 

are self-explanatory and will be described in the presentation of simulation results. The 

last strategy is much more mathematically involved and is thus separately elaborated in 

this section. At a conceptual level, an optimal regimen proposes the drug intensity as a 

time-varying function σ(t) that also depends on the current tumour size and composition 

to optimize a pre-defined payoff function under the constraint of the tumour population 

dynamics (5)–(6). In optimal control theory, this problem is translated into solving an 

associated Hamilton-Jacobi-Bellman (HJB) equation (Bellman, 1957; Melikyan, 1998).

Here we provide a closed-form (exact) solution of the optimal control problem respectively 

to our modelling framework of two competing pathways. According to the optimal control 

theory, the designed optimal treatment guarantees that there is no other strategy of the 

treatment regimen that would possess a better outcome than this optimal solution. In this 

perspective, the optimal regimen does not only provide the best-possible strategy, but can be 
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also used to evaluate performance of any other suboptimal strategy, such as periodic or any 

other state-dependent adaptive treatments (Fischer et al., 2015; Yoon et al., 2018).

(a) Formulation of the optimal control problem—The design of the optimal 

regimen is aimed to minimize the tumour size after a fixed time length T. As guided by 

the optimal control theory, we first introduce the target function as the logarithm of the 

tumour fold change by the time T relative to the initial tumour size:

ln n(T)
n(0) = ∫0

T
b 1 − χ(1 − x(t))

eκΔE(σ) + 1
− cx(t) − d dt min

σ ∈ [0, 1]
.

Equivalently, after omitting the constants from the integral and changing the sign in front of 

the integral, it writes as follows:

∫0
T χ(1 − x(t))

eκΔE(σ) + 1
+ cx(t) dt max

σ ∈ [0, 1]
.

We notice that the optimal regimen can be completely identified only by two variables t 
and x, whereas the tumour size n has already been accounted in the formula for the payoff 

function by itself. Hence, we restrict the resulting time-state space only to two dimensions (t, 
x).

The HJB equation: max
σ ∈ [0, 1]

ℋ x, σ, ϕ0, ϕ = 0, is defined with the Hamiltonian ℋ of the 

form:

ℋ x, σ, ϕ0, ϕ ≐ − ϕ0
+ ϕ b χ

eκΔE(σ) + 1
− c x(1 − x) + μ(1 − x)

eκΔE(σ) + 1
− μe−κE−

x

+ χ(1 − x)
eκΔE(σ) + 1

+ cx,

where two co-state variables ϕ0 and ϕ are the components of the gradient of a so-called 

value function V(t, x) (ϕ0 = −∂V/∂t and ϕ = ∂V/∂x). Following the optimal control theory, 

the function V(t, x) by itself is an expected outcome of the tumour management from given 

intermediate state at (t, x):

V (t, x) = ∫t
T χ(1 − x(t))

eκΔE(σ) + 1
+ cx(t) dt .

As we can directly see from the form of the integral: ϕ(T) = 0. Because of this terminal 

condition, we will construct the solution of the optimal control problem in backward time 

with new time variable: τ = T − t.

The field of optimal trajectories can be obtained by applying the method of characteristics 

for HJB equation (Melikyan, 1998). In this case, each characteristic represents a solution of 

a system of two ordinary differential equations:
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dx(τ)
dτ = − ∂ ℋ

∂ϕ = − b χ
eκΔE(σ) + 1

− c x(τ)(1 − x(τ)) + μ(1 − x(τ))
eκΔE(σ) + 1

− μe−κE−(σ)x(τ),

dϕ(τ)
dτ = ∂ ℋ

∂x = ϕ(τ) b χ
eκΔE(σ) + 1

− c (1 − 2x(τ)) − μ
eκΔE(σ) + 1

− μe−κE−(σ)

− χ
eκΔE(σ) + 1

+ c .

Each characteristic stipulates the optimal backward time trajectory of (x(τ), ϕ(τ)) with a 

specific initial condition at τ = 0 (t = T, the terminal time point). The optimal dosage 

sequence σ*(t) drives the system to follow the characteristic trajectory with a specific initial 

condition. Precisely, the optimal control of a tumour is expressed by using the first order 

optimality condition:

σ*(t) = arg max
σ ∈ [0, 1]

ℋ x, σ, ϕ0, ϕ

= arg max
σ ∈ [0, 1]

ϕ(bχx + μ) + χ
eκΔE(σ) + 1

(1 − x) − μϕe−κE−(σ)x .
(7)

σ* equals to zero or one if the maximum of the Hamiltonian is reached at one of the 

boundaries of the segment [0,1]. Otherwise, it has an intermediate value between zero and 

one, such that ∂ ℋ / ∂σ = 0 at that point.

We obtain that the optimal drug dosage is MTD at the terminal time moment T:

σ*(T) = arg max
σ ∈ [0, 1]

χ(1 − x(T))
eκΔE(σ) + 1

= 1,

At all other t < T, to define the value of σ*(t) one needs to know the exact values 

of both state and costate variables (x(t), ϕ(t)). Consequently, finding the optimal dosage 

sequences σ*(t) for all possible combinations of time lengths and initial conditions amounts 

to finding the characteristic trajectories to cover the entire state space (x(t), ϕ(t)). We name 

the collection of these trajectories the field of optimal trajectories.

(b) Primary field of optimal trajectories—To proceed further, we study the function 

in the brackets of (7) that is key to define the optimal regimen σ*(t). Specifically, the 

evolution of that function is considered along particular characteristics (τ, x(τ), ϕ(τ)), each 

emitted from a given terminal point x(T). If we denote the function in the brackets as ρ(σ; 

τ, x, ϕ), so that σ*(τ) = arg max
σ ∈ [0, 1]

ρ(σ; τ, x, ϕ), we first represent it by the sum of two other 

functions:

ρ(σ; τ, x, ϕ) = ρ1(σ; τ, x, ϕ) + ρ2(σ; τ, x, ϕ),

where the first function:
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ρ1(σ; τ, x, ϕ) = (ϕ(bχx + μ) + χ)(1 − x)/ eκΔE(σ) + 1

is monotonically increasing with σ for any τ ≥ 0; and the second function:

ρ2(σ; τ, x, ϕ) = − μϕe−κE−(σ)x

is monotonically decreasing with σ for any τ > 0, and exact zero at τ = 0.

As we could expect, the terminal time yields the global maximum of ρ(σ; τ = 0, x(T),0) 

at σ* = 1 (Fig 2A). However, at τ > 0, the function ρ2(σ; τ, x(τ), ϕ(τ)) starts to elevate 

above zero, and the global maximum σ* drifts away from the extreme value σ = 1. At first, 

the elevation resolves in appearance of the intermediate global maximum 0 < σ* < 1 (Fig 

2B), but then some trajectories ρ2(σ; τ, x(τ), ϕ(τ)) continues going even higher, so that an 

abrupt switch to σ* = 0 occurs (Fig 2C). These trajectories are emitted with x(T) above 

some threshold x(x(T) > x). Whereas all other trajectories with x(T) < x do not exhibit such 

continued elevation of the function ρ2(σ; τ, x(τ), ϕ(τ)) and the situation remains as shown in 

Fig 2B, so that ρ2(σ = 0; τ, x(τ), ϕ(τ)) stays always lower than the intermediate maximum at 

0 < σ* < 1. The switching points form the switching curve S1 in the space (τ, x) shown as a 

dashed line in Fig 3. Whereas the primary field of trajectories is shown in blue.

(c) Construction of the singular trajectory—A part of the state space still remains 

uncovered by the optimal trajectories. Indeed, monotonic behaviour of x (τ), that is emitted 

from a terminal point slightly above the threshold x(x(T) = x + ε, where ε → +0) changes 

from decreasing to increasing at the moment of switch on S1. In contrast, the trajectory 

emitted from a terminal point slightly below x(x(T) = x − ε) does not exhibit such change. As 

it is shown in Fig 3, the final solution consists of trajectories in orange. Their construction 

finalizes the solution of the optimal control problem, allowing all state space (τ, x) to be 

covered by optimal trajectories. Hence, our next aim is to identify the method on how to 

construct the trajectories in orange and a special curve S2.

To cover the whole state space with optimal trajectories, we emit a special (singular) 

trajectory S2 from the ending point of the switching curve S1. This represents a usual 

resolution admitted in optimal control theory. Such a curve is called a singular arc in the 

theory of linear control (Melikyan, 1998), or a universal singular characteristic in the theory 

of non-linear control (Melikyan and Ovseevich, 1984, 2011).

The trajectory S2 is characterized by non-smoothness of the value function, and the control 

σ* used along it is of the chattering type, consisting of on’n’off phases with vanishingly 

short time lengths. Intuitively, such curve corresponds to a situation when two local maxima 

of the function ρ(σ; τ, x(τ), ϕ(τ)) remain on the same level that provide two different values 

for σ (Fig 2D). This gives an ambiguity in the argmax.
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To construct the trajectory S2, we use the method of singular characteristics (Melikyan, 

1998). Specifically, we consider a so-called singular Hamiltonian that is written as follows:

v ℋsing ≐ ℋ1 , ℋ0 ℋ−1 + ℋ0 , ℋ−1 ℋ1 + ℋ−1 , ℋ1 ℋ0 ,

where three necessary conditions are held on the curve yield ℋ1 = 0, ℋ0 = 0, and 

ℋ−1 = 0, and ν represents a scaling parameter. The curly brackets denote the Poisson 

brackets, e.g., for two particular Hamiltonians ℱ x, ϕ0, ϕ  and G x, ϕ0, ϕ :

{ ℱ , G } ≐ ∂ ℱ
∂x ⋅ ∂ G

∂ϕ − ∂ ℱ
∂ϕ ⋅ ∂ G

∂x .

Then the singular trajectory is given by the solution of the characteristic system similar to 

the system of characteristics for regular trajectories but with only one difference: instead of 

ordinary Hamiltonian ℋ, we have a singular Hamiltonian ℋsing, i.e.:

dx(τ)
dτ = − v∂ ℋsing

∂ϕ , dϕ(τ)
dτ = v∂ ℋsing

∂x .

In our case: ℋ1 x, ϕ0, ϕ = ℋ x, σ+, ϕ0, ϕ , where σ+ possesses an 

intermediate local maximum in ℋ 0 < σ+ ≤ 1 , ℋ0 x, ϕ0, ϕ = ℋ x, 0, ϕ0, ϕ , and 

ℋ−1 x, ϕ0, ϕ = ℋ1 , ℋ0 . These three conditions guarantee that there are two local 

maxima to determine σ* from (7): at σ = 0 and also at some 0 < σ+ ≤ 1, both are located 

at the same level of the Hamiltonian ℋ (i.e. ℋ x, 0, ϕ0, ϕ = ℋ x, σ+, ϕ0, ϕ , or equivalently 

with respect to function ρ as in Fig 2D).

(Melikyan and Ovseevich, 1984) sets the scaling parameter ν to the form of two: ν = γ0 + 

γ1, where γ0 = ℋ , ℋ0 , ℋ  and γ1 = ℋ0 , ℋ , ℋ0 . Then the singular trajectory is 

given by solving the following system of two ordinary differential equations:

dx(τ)
dτ = − 1

γ0 + γ1
γ0

∂ ℋ0
∂x + γ1

∂ ℋ
∂x , dϕ(τ)

dτ = 1
γ0 + γ1

γ0
∂ ℋ0

∂x + γ1
∂ ℋ
∂x ,

complemented with boundary conditions at the end of the switching curve S1. We solved the 

obtained system numerically to construct the trajectory S2 shown as a solid black line in Fig 

3.

At our finalizing step, we emit two other fields of trajectories: one goes above the singular 

curve characterized by the control σ*(τ) > 0, another one goes below the singular curve 

characterized by zero control σ*(τ) = 0. Fig 3 shows the resulting field of optimal 

trajectories covering the whole state space (τ, x). This constitutes a closed-form solution 

of the optimal control problem.
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Last, we validate that the constructed field of optimal trajectories satisfies two conditions: (i) 

the consistency condition that any initial condition determines a unique optimal trajectory; 

(ii) the viscosity condition that applied to a solution of the HJB equation (Crandall et al., 
1992). Both statements can be routinely verified. The condition (i) is obviously satisfied for 

our solution. The viscosity property (ii) is easily checked for any point of a regular field 

of characteristics and for the switching curve S1, but it requires an additional analysis for 

the trajectory S2. As Theorem 1 in (Melikyan and Ovseevich, 2011) states, the sufficiency 

conditions are consolidated in the form:

ℋ0 , ℋ , ℋ0 < 0, ℋ , ℋ0 , ℋ < 0,
∂ ℋ
∂ϕ ≠ 0,

∂ ℋ0
∂ϕ ℋ , ℋ0 , ℋ + ∂ ℋ

∂ϕ ℋ0 , ℋ , ℋ0 ≠ 0.

We explicitly checked their correctness for any point of the trajectory S2.

Results

We compare the outcomes of three treatment strategies in simulated data: (1) static 

treatments with a constant dosage over the entire episode, (2) periodic treatments with 

regular active phases interleaved with drug holidays, (3) treatments derived from the optimal 

control theory with time-varying dosage sequences. The outcome is measured by the tumour 

size in six months. This short time horizon is chosen because we focus on the reversible 

drug resistance mechanism due to cellular plasticity. At a longer time scale other irreversible 

mechanisms such as somatic mutations will play more important roles and are beyond the 

scope of our study.

1. Static treatment.

First, we report in Fig 4A the dynamics of tumour size of static treatments where the drug is 

administered at a constant dosage. Treatments with low intensities (e.g. σ = 0.2, green curve) 

yield exponential tumour growth. Treatments with intermediate or high intensities (e.g. σ ≥ 

0.4, pink and brown curves) cause initial shrinkage of a tumour due to elimination of the 

proliferative cells but later relapse due to survival and continued growth of the remaining 

resistant cells.

To compare the outcomes of different treatment regimens, we report in Fig 4C the fold 

change in tumour size after six months. For static treatments with varying intensities (red 

curve), the best outcome is reached at an intermediate level of applied treatment intensity 

(1.48-fold increase at σ = 0.57). Treatment intensities higher or lower than the minimizer 

will lead to larger tumour sizes, yet the level of increase is highly skewed towards the left. 

For example, the treatment of σ = 0.1 gives a rather large 5.60-fold final increase in tumour 

size, while the treatment of a MTD (σ = 1.0) leads to a 2.13-fold final increase in tumour 

size.

Treatment outcomes can also be quantified by the time until the tumour regains its 

initial size. We confirm again that the optimal setting for static treatments is to apply an 

intermediate treatment intensity. The maximal relapse time of 2.3 months is achieved at σ = 
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0.64 (Fig S3A). The MTD yields a relapse time of 1.8 months, despite the fact that it reduces 

the tumour size by the maximal amount of 22% during the initial remission period compared 

to all other regimens (Fig S3B). The MTD is thus beneficial only in a short-term. The static 

treatment of low intensity (e.g. σ = 0.1) only slows down tumour growth and does not lead 

to a remission. This confirms that therapy of adequate intensity is required and beneficial. 

Tumour shrinkage may not predict subsequent outcomes when dynamics of heterogeneous 

populations are considered.

2. Periodic treatment.

Tumour relapse is driven by emergence of resistant cells. This process is reversible in 

our model (Fig S3C), so we may expect improvement in the therapeutic outcomes by 

leveraging treatment and non-treatment to create a subtle balance of proliferative and 

resistant cells. The simplest strategy of this kind is a periodic treatment with an equal length 

of active phases and drug holidays. Preliminary analysis reveals a better outcome of periodic 

treatments over constant treatment regimens (cf Fig 4AB).

For a fixed time horizon T, we characterize each periodic treatment by three parameters: the 

applied treatment intensity σ, the number of periods of active treatments K (K = 1,2, …), 

and the length of each period Δ. There are two scenarios in terms of the phases of the period 

(Fig 5A). First, the time horizon T ends with a drug holiday (T − (2K − 1)Δ > 0, terminal 

phase angle π ≤ θT < 2π), then there are K full active phases, and the average treatment 

intensity is given by σ = σ(KΔ)/T . Second, the time horizon T ends with an active phase (T − 

(2K − 1) Δ < 0, terminal phase angle 0 ≤ θT < π), then there are (K − 1) full drug holidays. 

The total time of drug administration is T − (K − 1) Δ, and the average treatment intensity 

is given by σ = σ(T − (K − 1)Δ)/T . Consequently, the range of all possible average treatment 

intensities for a given K is: σK ∈ σmin, σK, max , where σmin = σ/2 (total period T consists of 

K full active phases and drug holidays, θT = 0), and σK, max = σK/(2K − 1) (total period T 

consists of K full active phases and (K − 1) full drug holidays, θT = π), see Fig 5B.

To assess the influence of treatment schedules on final outcomes, we fix the average dosage 

intensity and compare tumour size changes in six months with varying period lengths Δ. 

Dosages of all periodic treatments are adjusted to equalize their cumulative dosages. We 

first consider treatments of a relatively low intensity σ = 0.4 (Fig 5C). The local maxima of 

the tumour size are achieved with the terminal phase angle θT = 0 (e.g., the red dot in Fig 

5CD and the red waveform in Fig 5B). In contrast, the schedules with the terminal phase 

angle θT = π (e.g., the blue dot in Fig 5CD and the blue waveform in Fig 5B) yield the 

local minima in tumour size. All treatment schedules under σ = 0.4 lead to a low terminal 

level of resistance (Fig 5C bottom panel), indicating they are incapable of eliminating the 

proliferative (sensitive) part of the tumour.

We further find the values of σ and Δ that jointly optimize the treatment outcome (Fig S4A). 

Low treatment intensities with σ < 0.4 are incapable of controlling tumour growth regardless 

of treatment schedules. The gradient along Δ is drastically heightened around σ = 0.6. The 

global minimum of the tumour size change 1.30 is reached at σ = 0.88 and Δ = 4 days (the 

red star in Fig S4A and S4B).
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Another free parameter of periodic treatments is the duty cycle a (length of the active phase 

of one cycle / length of one cycle). We fix the length of each treatment period to Δc = 2 ⋅ 
Δ = 8 days and vary a and σ (Fig S5C). Fig S5 indicates the best outcome is achieved at 

approximately the same treatment as before: a = 0.57, σ = 0.82, and the fold increase is 1.30 

compared to 1.48 for static treatment.

3. Optimal treatment.

Both static and periodic treatments are straightforward to implement but often not optimal 

in terms of the outcome. Here we define optimality as minimizing the tumour size at a fixed 

terminal time (or time horizon) T. To solve this problem, we apply optimal control theory 

to update treatment intensities at each moment depending on the tumour state (tumour size 

and level of resistance). This requires a constant monitoring of the patient, see (Fischer et al., 
2015) for discussion. In brief, treatment design is translated into the problem of controlling 

the temporal function of treatment intensity σ(t) to minimize the log ratio of final to initial 

tumour sizes ln(n(T)/n(0)), subjected to the tumour population dynamics (equations 5–6). 

Solution of the optimal control problem is obtained in a closed form based on the method 

of generalized characteristics (Melikyan, 1998; Melikyan and Ovseevich, 1984, 2011), see 

Methods section.

The optimal σ(t) is determined by both the initial proportion of resistant cells and the length 

of the time horizon. Fig 6 illustrates optimal trajectories of three initial conditions. (i) The 

time horizon T is shorter than a threshold: T = T− < T0, and initially the proportion of 

resistant cells is zero. The optimal treatment applies a dosage close to MTD for the whole 

period. Proportion of resistance cells increases over time and reaches a level of about 70% 

for given baseline parameters at the terminal point. (ii) T is longer than the same threshold: 

T = T+ > T0, and initially the proportion of resistant cells is zero. The optimal treatment 

comprises three stages. It starts with a high intensity close MTD for about one month, 

then sharply lowers the dose to a moderate level till about one month before the terminal 

point, and finally resumes the high dosage till the end. Proportion of resistance cells climbs 

up and reaches about 70% in the first stage, maintains at this level in the second stage, 

and further increases again in the third stage. (iii) T is the same as (ii) and initially the 

proportion of resistant cells is one. The optimal treatment also consists of three stages. In 

the first stage the drug is not administered. Proportion of resistant cells thus decreases to 

70%. Treatment intensities and resistance trajectories in the second and third stages coincide 

with (ii). Importantly, a dose-sparing regimen in the middle of (ii) and (iii) concurs with the 

periodic treatment in its efficiency by keeping the balance between sensitive and resistant 

parts of the tumour. This prepares the patient for the final stage of the treatment when the 

sensitive part of the tumour is eradicated with greater efficiency. Overall, optimal treatments 

aim for establishing and maintaining a fixed balance between proliferative and resistant cells 

as long as possible until near the terminal point, and then switch to the maximal dosage 

throughout the remaining time to eradicate as many proliferative cells as possible (curves 

(ii) and (iii) in Fig 6; Fig 7B). Yet when the time horizon is short, the long-term benefit 

of a balanced population is no longer relevant, and the optimal treatment is to reduce the 

current tumour size by administering the maximal dosage (curve (i) in Fig 6; Fig 7B). 

The clinically relevant time horizon may depend on other factors such as the emergence of 
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genetically distinct subclones with different properties. However, the adoption of longer time 

horizons based on already calculated shorter periods would require only partial recalculation 

of the treatment schedule (Fig S6). We varied time horizons from one to forty months 

and demonstrated that the final tumour size under the OCT treatment could reach 20-fold 

enlargement in 40 months (Fig S6B). In a more realistic range, the final tumour size reached 

1.5-fold enlargement for the time horizon of 8 months (Fig S6A). Equivalently, the OCT 

treatment strategy can control the tumour size within 1.5-fold of the initial size in 8 months.

4. Comparison of different treatments.

The performances of the three aforementioned treatment strategies conform with the 

following order: the best static treatment ≤ the best periodic treatment ≤ the optimal 

treatment. Superiority of periodic over static treatments is illustrated in Fig 4. The treatment 

derived from the optimal control theory is superior to all dynamic treatments including 

periodic treatments. To quantitatively compare their performances, we fix the time horizon 

to six months, set the best static treatment intensity to σ = 0.57, the best periodic treatment 

intensity to σ = 0.88 and period to 4 days according to Fig S4A, and find the optimal 

dynamic treatment by solving the optimal control problem. Fig 7 shows the comparison 

outcomes of those three treatments. The terminal tumour sizes (relative the initial tumour 

size) are consistent with the aforementioned order. The static treatment yields a relatively 

poor outcome (1.48-fold increase of tumour size after six months). The periodic treatment 

gives a better result (1.30-fold increase after six months), which is just marginally inferior 

to the minimally achievable estimate obtained from the optimal treatment (1.24-fold change 

after six months). The optimal treatment provides a balance between the sensitive and 

resistant cells and allows more efficient reduction of the tumour size at the final stage. The 

population composition trajectories of the three treatments are shown in Fig 7B. Proportion 

of resistant cells steadily increases to a fixed value and maintains onward in the static 

treatment due to the constant administration of the drug. Proportion of resistant cells in the 

periodic treatment rises rapidly at an initial transient stage and oscillates around a fixed 

value, synchronous with the period of the treatment. Proportion of resistant cells in the 

optimal treatment sharply reaches a fixed level, remains invariant most of the time, and 

suddenly increases in the last stage.

5. Sensitivity analysis.

The baseline parameter values in the model (Table 1) are not guaranteed to be accurate and 

unique. To investigate the influence of parameter values in optimal treatment outcomes, we 

assess the fold change in tumour size after six months by varying parameter values. Fig 

8A shows the effect of variation in characteristic switching times between the main and 

alternative pathways with the relative cost of resistance crelative = 10%. The tumour does 

not shrink if the inverse switch from the alternative to the main pathway is slower than 

the direct switch from the main to the alternative pathway (the red-yellow region above 

the solid black line), while remission can be achieved if the reciprocal relation between the 

two switching times holds (the blue region below the solid black line). However, the result 

depends on the cost of resistance: a higher cost induces slower proliferation of resistant cells 

and thus accommodates a wider range of switching times leading to tumour reduction (Fig 

8C), while a lower cost has the opposite effect (Fig 8B). We further investigate how the 
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optimal proportion of resistant and sensitive cells depends on aforementioned parameters 

(Fig S7). The optimal proportion of resistant cells is positively correlated with 1/μ (Fig S7B) 

and negatively correlated with 1/μ (Fig S7A). We also notice that the optimal proportion 

is below 50% only when μ is approximately four times slower than μ (area below dashed 

line in Fig S7C). Fig S8 shows the variation of tumour size with respect to other model 

parameters.

Discussion

Treatments determined from optimal control theory are superior to static and periodic 

treatments. The increase in tumour size after six months of optimal, periodic, and static 

treatment is 1.24, 1.30, and 1.48, respectively. While the relative improvement with periodic 

treatment is small in this instance, the principle is clear. Further, this approach for reversible 

resistance may be synergistic when combined with consideration of irreversible genetic 

resistance in a multi-level model. Efficacy of periodic treatments was discussed in prior 

studies (Fischer et al., 2015; Foo and Michor, 2009). Drug addiction is one possible cause 

(Das Thakur et al., 2013): resistant subclones not only tolerate the administered drug 

but also depend on it. Drug holidays in these cases deplete the “nutrient” supply and 

reduce the resistant subclone population. Gatenby et al. (Gatenby et al., 2009) considered 

a more general “adaptive therapy” as a means to maintain proper balance of genetically 

distinct sensitive and resistant subclone populations undergoing competition. Our simulation 

outcomes corroborate the superiority of periodic treatments and concur with the prior 

discussions about their benefits, albeit the proposed mechanisms causing the benefits are 

different. Those mechanisms may co-exist and can be all tackled by periodic treatments, at 

least in the setting of a single therapy as modelled here. In spite of a good approximation 

to the global optimum and simplicity of implementation, the best periodic treatment is still 

marginally inferior to the optimal treatment strategy. In principle, one should always adopt 

the treatment strategy that yields the best outcome. In practice, physicians have to consider 

multiple factors when deciding the treatment, including cost-effectiveness, the higher risk 

of medical errors when implementing complex recommendations, and the feasibility of 

repeated tumour sampling or liquid biopsy to provide accurate input data to correctly 

design and execute an optimal control algorithm. Both periodic and optimal treatments 

likely require substantial modifications of current clinical practice. In clinical studies the 

treatment aborts when there is a 20% increase in the sum of the longest linear dimension 

of large measurable lesions, corresponding to a 73% increase in volume (Eisenhauer et al., 
2009). Such a practice does not allow for periodic treatments. Also, the optimal treatment 

in our model requires continuous monitoring of the tumour population composition. If 

such monitoring is either costly or infeasible, then a properly designed periodic treatment 

is a reasonable surrogate for the optimal treatment. Dynamic treatments of cancer require 

biomarkers for functional states that can be continuously and non-invasively monitored. 

This may be a greater challenge for complex gene expression changes and their associated 

physiological changes than it is for mutations for which highly sensitive polymerase chain 

reaction techniques are available.

Intriguingly, the best treatment plans of all three strategies attempt to establish and maintain 

an optimal proportion of sensitive and resistant cells (fraction of sensitive cells is about 
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70% in our simulations) throughout the entire period (Fig 7B). The best static treatment 

drives the population toward a value above such optimal composition. The best periodic 

treatment quickly leads the population to the optimal composition and then makes it oscillate 

around this value. The global optimal treatment quickly forces the population toward the 

optimal composition, alters the dosage to maintain it, and finally maximizes the dosage 

for final most efficient curbing of the tumour at the very end. The outcome of a treatment 

strategy seems to depend critically on its controllability to reach this composition as quickly 

as possible and stay there as long as possible. In this sense, the static treatment is a poor 

controller, because it cannot reach that target. Both periodic and optimal treatments are good 

controllers as they quickly reach the target value and maintain it onward. Curiously, while 

the total population under the best periodic treatment increases with small ripples, the total 

population under the optimal treatment steadily grows and finally plunges to a much lower 

value (Fig 7A). This is because the higher growth rate allowed by the optimal treatment 

leads to a more optimal balance of sensitive and resistant cells for efficient final curbing 

of the tumour. This also identifies a possible hurdle in implementing an optimal treatment 

regimen into clinical practice because its performance at the initial state is even worse than 

that of a static treatment, and this is likely to result in earlier termination of the therapy per 

current paradigms (Fig 7A). Nevertheless, despite its implementation difficulty the optimal 

treatment may serve as a high-end benchmark and a yardstick to assess the performance 

of other suboptimal treatments such as periodic or adaptive regimens. Since the optimal 

treatment gives a theoretical upper bound for all possible treatment outcomes, by comparing 

the performance of a realistic (yet suboptimal) treatment strategy with this benchmark we 

can assess its efficacy and margin for improvement.

Estimation of most parameters in the model such as the characteristic time of switching 

between two genetic programs is still subjected to uncertainty. Despite the impressive 

progress, recent studies (Shaffer et al., 2017; Tirosh et al., 2016) indicated that the 

technology of single-cell transcriptomics still does not allow rigorous measurements of the 

kinetic shifts of sensitive and resistant cells due to epigenetic reprogramming. Laboratory 

studies in cell lines may not reflect net growth rates of tumours in vivo (cf reported 

proliferation rates in (Sun et al., 2014) and (Bozic et al., 2013)). Therefore, any model-based 

approach for cancer treatments has to take parameter uncertainty and imprecision into 

account. Sensitivity analysis – such as Fig 8 and Figs S7, S8 in our study – can help 

assessing the robustness of treatment outcomes with respect to fluctuations of parameter 

values.

We assume that cancer cells reprogram themselves to resist treatments by both altering their 

pathway activities at a shorter time scale and shifting their physiology at a longer time 

scale (Taylor–King et al., 2018). This model is consistent with a recent study (Shaffer et 
al., 2017) about a special “meta-resistant state” that becomes reversible upon changes of 

the tumour environment. By integrating with our prior work concerning irreversible genetic 

processes of drug resistance (Beckman et al., 2012; Yeang and Beckman, 2016), we plan 

to build a relatively complete model capturing both reversible and irreversible processes 

and design the treatment strategies accordingly. Outgrowth of rare subclonal resistance 

mutations or acquisition of new resistance mutation may occur at a longer time scale than 

the phenomena discussed herein. Further extensions of the model would be desirable in 
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principle, such as incorporating the activities of the major cancer pathways in the cellular 

internal states, expanding the drugs and treatment options, and including molecular-level 

resistance mechanisms. However, such extensions will also substantially increase the model 

complexity and data requirements, a particular problem for clinical translation. A principled 

method to balance the required features of the model and their associated data requirements, 

as well as specific methods for dealing with uncertainty and incomplete information, remain 

critical tasks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Tumour growth model with reversible (non-genetic) mechanism of resistance 

is developed

• Melanoma response to the treatment of a single (BRAF) inhibitor is chosen 

for a basal model system

• Optimal control theory is applied to construct treatment regimen minimizing a 

tumour size at given time horizon

• Other treatment regimens such as with constant drug dosage, periodic with 

intermittent drug holidays are optimized and compared with the optimal 

treatment
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Fig 1: Mathematical modelling framework.
(A) Schematic diagram of the pathway interaction within tumour cells. Activity of the main 

pathway is induced by an upstream gene, e.g. a driver oncogene, that can be blocked by 

the drug action. The regulation of the alternative resistant pathway remains unaffected. 

Both pathways are antagonistic to each other. (B) Original framework to model the switch 

between activated pathways “1” and “2” occurring through a transient state “0” where 

both pathways are shut down. (C) Flow diagram for a modified model with two states 

used to derive main equations. (D) Characteristics of a system without and with treatment. 
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Each pathway activity is modelled by a stochastically moving particle in a potential well. 

The treatment changes the potential for the main pathway but does not affect that for the 

alternative pathway.
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Fig 2: Behaviour of the function (σ; τ, x, ϕ) depending on the point within the extended phase 
space (τ, x, ϕ).
Each caption shows different states: (A) on the terminal surface with x(T) = 0.9; (B) within 

the primary field of optimal trajectories before the switch with τ = 3.06, x = 0.78, ϕ = 

−0.10; (C) within the primary field of optimal trajectories after the switch with τ = 12.6, x 
= 0.70, ϕ = −0.20; (D) along the singular trajectory with τ = 81.15, x = 0.62, ϕ = −0.23. 

The sub-functions ρ1(σ; τ, x, ϕ) and ρ2(σ; τ, x, ϕ) are shown in dashed green and dashed 

blue respectively. Red dots indicate the location of the global maxima and correspond to the 

optimal control σ*. Baseline parameter values are as Table 1.
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Fig 3: Pattern of optimal trajectories characterized by a switching curve S1 (black dashed) and 

a singular trajectory S2 (black solid).

Primary field of optimal trajectories is shown in blue. Whereas, the rest of the field of 

optimal trajectories is shown in orange and was constructed by using the conditions on S2. 

The threshold x distinguishes optimal trajectories with and without a switch on S1. Baseline 

model parameters are as in Table 1.
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Fig 4: Comparison of static and periodic treatments.
(A) Change in tumour size in two years of static treatments. Responses of treatments with 

six drug intensities are shown in different colours. (B) Tumour dynamics in six months of 

periodic treatments. Each period consists of 14 days of active phases interleaved with 14 

days of drug holidays. To equalize the cumulative drug effect of the two strategies over 

the entire treatment duration, two treatments are comparable when the drug intensity of the 

periodic treatment is two-fold as that of the corresponding static treatment. Static treatments 

with intensities >0.5 (not shown in A) may perform better than periodic regimens due to 

higher cumulative drug dosage. (C) Change in tumour size after two years of treatment for 

static (red) and periodic (blue) regimens. The dashed orange line indicates the best outcome 

for the tumour management obtained by solving an optimal control problem.
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Fig 5: Analysis of periodic treatments.
(A) Two scenarios of periodic treatment phases. Average treatment intensity equals 

σ = σKΔ/T  (Scenario 1), and σ = σ(T − (K − 1)Δ)/T  (Scenario 2). K = 3 for both scenarios 

shown in A. (B) Two possible periodic regimens with maximal (red) and minimal (blue) 

numbers of drug holidays respectively. (C) and (D) shows the outcome of periodic 

treatments for intermediate and high treatment intensities respectively. Horizontal axes 

indicate the length of drug holidays per period. Vertical axes indicate the fold change of 

tumour size after six months. The outcomes of the equivalent static treatments (applied 

treatment σ/2) are shown as dashed orange lines. Blue and red dots in panels C and D 

correspond to two periodic schedules shown in panel B.

Akhmetzhanov et al. Page 32

J Theor Biol. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 6: Optimal treatment intensity is determined by the current level of resistance and the total 
time span of treatment.
The temporal axis marks the direction from the start of a treatment (a positive number) to 

the terminal point of treatment. The threshold value T0 separates the trajectories with and 

without a dose-sparing regimen whose trajectory is marked by the dashed line. Trajectories 

of three regimens are illustrated (see description in the text). Trajectory colours indicate the 

applied treatment intensity (legend).

Akhmetzhanov et al. Page 33

J Theor Biol. Author manuscript; available in PMC 2022 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 7: Comparison of three different treatment schedules in terms of fold-change in tumour size 
(A) and dynamics of intratumoral resistance (B).
The dashed horizon indicates the fold-change equal to one. Line colours indicate the applied 

treatment intensity.
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Fig 8: Sensitivity of tumour size after six months of optimally designed treatment.
The varied parameters are characteristic switching times 1/μ and 1/μ (horizontal and vertical 

axis respectively). Three panels refer to different values of relative resistance cost: 10% 

(baseline, A), 5% (B), 40% (C). Other parameters are fixed according to Table 1. The 

contour line for the fold change equal to one is indicated by solid black, three other contours 

are shown in grey and correspond to the fold change in the panel to each line. Diagonal for 

μ = μ is shown in dashed black. The location of the baseline parameters is indicated by the 

green point in A.
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Table 1.

Baseline parameter values used in this study.

Parameter Variable Value Ref.

Birth rate b 0.14 day−1 fitted, (Bozic et al., 2010)

Death rate d 0.13 day−1 (Bozic et al., 2010)

Relative cost of resistance c relative 10% (Akhmetzhanov and Hochberg, 2015)

Cost of inactivation of both pathways χ 32.6% fitted

Switching rate from the main to the alternative pathway μ 0.095 day−1 -

Switching rate from the alternative to the main pathway μ 0.071 day−1 (Lehraiki et al., 2015)

Expression of the main pathway at down state α 0.3 (Miyamoto et al., 2015)

Threshold level for the production function of the main pathway θ 0.45 (Miyamoto et al., 2015)

Robustness parameter for the main pathway κ 40.0 -

Initial level of resistance ε 1% (Iwasa et al., 2006)
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