
Research Article
ATXN2-Mediated PI3K/AKT Activation Confers Gastric Cancer
Chemoresistance and Attenuates CD8+ T Cell Cytotoxicity

Qi Wang,1 Tianyu Cao,2 Xiaohui Zhang,3 Juan Hui,4 Chen Wang,4 Wenyao Zhang,3

Pei Wang,5 Yun Zhou,4 and Shuang Han 1

1Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2The 928 Hospital of PLA Joint Logistics Support Forces, Haikou, Hainan 570206, China
3State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of
Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi 710038, China
4Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi’an, China
5Department of Gastroenterology, Ningxia Medical University, Yinchuan, Ningxia 750004, China

Correspondence should be addressed to Shuang Han; shuanghamy@163.com

Received 24 June 2022; Revised 26 July 2022; Accepted 22 August 2022; Published 2� September 2022

Academic Editor: Fu Wang

Copyright © 2022 Qi Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As one of the primary therapeutic choices, chemotherapy is widely adopted for progressive gastric cancer (GC), but the
development of chemoresistance has limited chemotherapy efficacy and partly contributes to poor prognosis. Immunotherapy
is increasingly being applied in the clinical treatment of GC and is also benefitting patients. To ascertain whether ATXN2
affects chemotherapy efficacy in GC cells and its role in GC immune escape, we performed high-throughput sequencing to
clarify genes differentially expressed between 5-FU-resistant and 5-FU-sensitive GC cells and then conducted qRT–PCR to
assess ATXN2 expression in GC tissues. Furthermore, the influence of ATXN2 on resistance was studied in vitro and in vivo,
ATXN2 and other protein expression levels were detected using Western blotting and immunohistochemistry (IHC), and the
direct association of SP1 and ATXN2 was confirmed through luciferase reporter gene analysis. We found elevated ATXN2 in
GC tumors and a negative correlation between ATXN2 levels and the prognosis of GC. Furthermore, by activating the PI3K/
AKT pathway, ATXN2 was found to promote chemoresistance in GC, facilitating BCL2L1 expression. In GC cells, ATXN2
further stimulated PD-L1 expression and provided better immunotherapy efficacy. Finally, we demonstrated that SP1
transcriptionally regulated the expression of ATXN2 and prompted GC chemoresistance and immune escape. In conclusion,
our study reveals the important roles of the SP1/ATXN2/PI3K-AKT/BCL2L1 signalling pathway in GC chemoresistance and of
the SP1/ATXN2/PI3K-AKT/PD-L1 signalling pathway in GC immunotherapy. Our findings provide new theories and
experimental references for overcoming chemotherapy resistance in GC and enhancing the efficacy of immunotherapy for GC.

1. Introduction

Gastric cancer (GC), the cells of which compose one of the
most common malignant tumors, ranks fifth in incidence
and fourth in mortality worldwide [1]. The current primary
therapy for GC consists of surgical resection, chemotherapy,
radiotherapy, and targeted therapy. Since GC often develops
asymptomatically, most diagnoses are advanced [2]. Chemo-
therapy is considered a routine treatment for advanced GC
[3]. Unfortunately, its clinical efficacy is limited due to
severe side effects and chemoresistance [4]. Glimelius et al.

confirmed a median overall survival of 8 months with con-
ventional chemotherapy for advanced-stage GC [5].

The development of tumors involves a complex series of
processes, including interactions between cancer cells and
the host immune system. Immunotherapy, defined as target-
ing the immune system to treat disease, has emerged as a
promising therapy with fewer adverse reactions and drug
resistance than current chemotherapies [6]. The immune
checkpoint (IC), which is represented by a group of inhibitory
pathways of immune cells, including cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) and programmed death-1
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(PD-1), can control the persistence of the immune response
while maintaining the body’s self-tolerance [7]. ICs are highly
correlated with the initiation of immune cell signalling path-
ways, through which tumor cells can evade immune surveil-
lance, thus forming a microenvironment conducive to tumor
development [8]. Evidence suggests that tumor cells evade
antigen-specific T cell immune responses by upregulating IC
ligands, such as PD-L1 and PD-L2, on their surfaces [9].
Immune checkpoint inhibitors (ICIs), which block the IC
pathway to reinvigorate the antitumor immune response, have
become an indispensable part of cancer immunotherapy [7,
10, 11]. PD-1/PD-L1 inhibitors have been shown to rehabili-
tate T cell activity, strengthen the body’s immune response,
and effectively recognize and kill tumor cells, thereby achiev-
ing long-term remission of tumor patients [12, 13]. As a classic
PD-1 inhibitor, nivolumab has been applied clinically in an
increasing number of diseases since it was first approved for
treating unresectable or metastatic melanoma in December
2014 [14]. Encouragingly, several clinical studies have shown
that nivolumab has achieved lasting efficacy and significant
clinical benefits in patients with advanced GC [15–17].

ATXN2, an evolutionarily conserved RNA-binding pro-
tein in eukaryotes, is physiologically located in the endoplas-
mic reticulum and Golgi apparatus, regulates mRNA
translation and protein synthesis, and participates in the stress
response [18, 19]. However, when cells are subjected to path-
ological conditions such as damage and energy loss, ATXN2
transcription is enhanced, and ATXN2 mRNAs are translo-
cated to a site referred to as the stress particle, where mRNAs
are protected from translation and degradation [20, 21]. Given
that ATXN2 can regulate nerve excitability and even circadian
rhythm, modulate the endocytosis of trophic receptors and
growth pathways, and exert strong effects on mitochondrial
precursor proteins and metabolic enzymes, most of the related
reports on ATXN2 have been focused on neuro-related and
metabolism-related diseases [22–27]. Overexpression of
ATXN2 correlated with the proliferation and metastasis of
pancreatic cancer [28]. However, to date, the roles and poten-

tial mechanisms of ATXN2 in the progression of GC and che-
moresistance remain poorly understood.

In this work, we show that ATXN2 is strongly expressed
in GC and induces chemoresistance by activating the PI3K/
AKT signalling pathway. In addition, ATXN2 can facilitate
PD-L1 expression, and silencing ATXN2 results in improved
effectiveness of immunotherapy. Our study reveals the dual
role of the ATXN2-PI3K/AKT pathway in chemoresistance
and immunotherapy, which will contribute to a better
understanding of the interaction between chemoresistance
and immunotherapy. Our study suggests that targeting SP1
and ATXN2 can alleviate chemoresistance and promote
immune drug efficacy. Our study provides new ideas and
strategies for clinical chemoresistance and immunotherapy
resistance.

2. Results

2.1. ATXN2 Is Associated with Chemoresistance and
Prognosis of GC. We screened differentially expressed genes
from the high-throughput sequencing data of SGC7901 cells
and three lines of chemoresistant GC cells (Figure 1(a)). In
total, 889 and 1114 genes were upregulated and downregu-
lated, respectively, in the chemoresistant GC cells
(Figures 1(b) and 1(c)). KEGG pathway enrichment analysis
revealed significant changes in signalling pathways such as
“cell cycle” and “apoptosis” (Figures 1(d) and 1(e)). Further-
more, protein–protein interaction (PPI) network analysis
based on the sequencing data consisted of 277 nodes and
603 edges (Figure S1). Fifteen of the central nodes were
screened from 277 nodes according to betweenness
centrality, eccentricity, and stress algorithms (Figure 1(f)).
We then examined the expression and prognosis of the 15
hub genes in GC with the GEPIA database and Kaplan–
Meier Plotter database and discovered upregulated ATXN2
expression in GC with the highest hazard ratio (HR = 1:69)
(Figures 1(g) and 1(h), Figure S2A, B). Furthermore, ATXN2
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Figure 1: Identification of differentially expressed genes between chemoresistant and chemosensitive cell lines. (a) Heatmap of the altered
genes in SGC7901/ADR, SGC7901/VCR, and SGC7901/5-FU cells versus SGC7901 cells. (b, c) The differentially upregulated (b) and
downregulated (c) genes in chemoresistant cells. (e, f) The KEGG pathways for the downregulated (d) and upregulated (e) in
chemoresistant cells. (f) The top 15 hub genes according to betweenness centrality, eccentricity, and stress algorithms. (g) ATXN2
expression in the GEPIA database and UALCAN database. (h) The association of ATXN2 expression with GC prognosis. (i) The
association of ATXN2 expression with GC clinical stage. ∗P < 0:05 and ∗∗P < 0:01.
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expression was closely associated with GC clinical stage
(Figure 1(i)). Therefore, we selected ATXN2 for further study.

2.2. High ATXN2 Expression Promotes Chemoresistance in
GC. The effects of ATXN2 on GC chemoresistance were
examined using gain/loss-of-function models in vitro
(Figures 2(a) and 2(b)). The results of the cell apoptosis
assay indicated that upregulation of ATXN2 reduced apo-
ptosis induced by 5-FU in SGC7901 cells, while downregula-
tion of ATXN2 promoted apoptosis (Figure 2(c)). Moreover,
when ATXN2 was upregulated, the IC50 (for 5-FU) of

SGC7901 cells increased; when ATXN2 was downregulated,
the IC50 (for 5-FU) of drug-resistant GC cells decreased
(Figure 2(d)). The results of animal models showed that
knocking down ATXN2 decreased the tumor weight and
volume of nude mice treated with 5-FU (Figure 2(e)).
Immunohistochemical staining of nude mouse tumor tissues
showed that knockdown of ATXN2 inhibited ki67 expres-
sion and promoted cleaved caspase-3 expression
(Figure 2(f)). In summary, these results suggest that ATXN2
exhibits remarkable antiapoptotic and chemoresistance
abilities.
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Figure 2: High ATXN2 expression promoted chemoresistance in GC. (a, b) ATXN2 upregulation in SGC7901 cells and ATXN2
downregulation in SGC7901/5-FU cells were verified at the protein (a) and mRNA (b) levels. (c) SGC7901 cells overexpressing ATXN2
and SGC7901/5-FU cells with downregulated ATXN2 were treated with 5-FU (10 μg/mL). The apoptosis rate of the two cell lines was
detected. (d) The IC50 of SGC7901 cells overexpressing ATXN2 and SGC7901/5-FU cells with downregulated ATXN2. (e) SGC7901/5-
FU cells with downregulated ATXN2 or vector control were transplanted into nude mice, and the weight and volume of tumors were
measured. (f) IHC analysis of Ki67 and cleaved caspase-3 expression. ∗P < 0:05 and ∗∗P < 0:01.
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2.3. ATXN2 Promotes Drug Resistance through Activation of
the PI3K/AKT/BCL2L1 Pathway. High-throughput sequenc-
ing was performed on SGC7901/5-FU and downregulated
ATXN2 cells, and differentially expressed genes were identi-
fied (Figure 3(a)). ATXN2-silenced SGC7901/5-FU cells
showed pathway expression profiles that differed from those
of the control cells, in which the PI3K-AKT pathway was
among the strongly downregulated pathways (Figure 3(b)).
Next, we verified that the phosphorylation of PI3K and AKT
significantly increased when ATXN2 was upregulated and
decreased when ATXN2 was downregulated (Figure 3(c)).
We then found that an AKT inhibitor (AKT-IN-1) was capa-
ble of counteracting the reduced cell apoptosis induced by 5-
FU resulting from upregulation of ATXN2 (Figures 3(d) and
3(e)). Furthermore, we analysed the genes enriched in the
PI3K/AKT signalling pathway and identified BCL2L1 as the
gene with the greatest variation (Figure 3(f)). The protein
encoded by BCL2L1 belongs to the BCL-2 family, of which
the family members form dimers and are involved in various
cellular activities as antiapoptotic regulators. ATXN2 regu-
lated the expression of BCL2L1 (Figure 3(g)), and downregu-
lation of BCL2L1 blocked the increase in cell apoptosis caused
by ATXN elevation (Figures 3(h) and 3(i)). Finally, analysis of
the contents of the TCIA and GEPIA databases showed that
ATXN2 expression positively correlated with BCL2L1 and
AKT in GC (Figure 3(j)).

2.4. ATXN2 Increases PD-L1 Expression in GC Cells. By ana-
lysing the TIMER database, we found that ATXN2 was
closely associated with the infiltration of immune cells in

GC (Figure 4(a)). Since PD-L1 is a well-known IC and PD-
L1 is regulated by PI3K/AKT [29], we explored the interac-
tion between ATXN2 and PD-L1. ATXN2 overexpression
promoted PD-L1 expression, and ATXN2 knockdown
inhibited PD-L1 expression (Figures 4(b) and 4(c)). Applica-
tion of an AKT inhibitor largely offsets the increase in PD-
L1 expression caused by ATXN2 overexpression
(Figures 4(d) and 4(e)). We then cocultured CD8+ T cells
with GC cells and added an AKT inhibitor and nivolumab
as treatments (Figure 4(f)). Upregulation of ATXN2 reduced
CD8+ T cell killing capacity, which was reversed by supple-
mentation with an AKT inhibitor (Figure 4(g)). Moreover,
in CD8+ T cells, both AKT inhibitors and nivolumab
enhanced the killing capacity, and the drug combination
enabled the strongest killing capacity (Figure 4(h)). In sum-
mary, the above findings indicated that ATXN2 leads to PD-
L1 elevation by activating the PI3K/AKT pathway, subse-
quently modulating immunotherapy efficacy.

2.5. SP1 Transcriptionally Activates ATXN2 in GC. To
explore the cause of elevated ATXN2 expression, we ana-
lysed the contents of the JASPAR database and PROMO
database and identified three transcription factors, namely,
SP1, GATA3, and TCF4 (Figure 5(a)). We then conducted
a correlation analysis and found that the strongest correla-
tion occurred between SP1 and ATXN2 in both the TCIA
database (Figure 5(b)) and the GEPIA database
(Figure 5(c)). The elevated SP1 of GC was shown in the
GEPIA database and was related to a poor GC prognosis
(Figures 5(d) and 5(e)). The results from SGC7901 cells
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Figure 3: ATXN2 activated the PI3K/AKT pathway. (a) Heatmap of altered genes when ATXN2 was downregulated in SGC7901/5-FU cells.
(b) KEGG pathway analysis of changed pathways when ATXN2 was downregulated in SGC7901/5-FU cells. (c) Phosphorylation levels of
PI3K and AKT were measured by Western blot. (d) Protein levels of p-AKT and AKT in SGC7901 cells overexpressing ATXN2 or
treated with an AKT inhibitor. (e) Apoptosis rates of SGC7901 cells overexpressing ATXN2 or treated with an AKT inhibitor were
detected after treatment with 5-FU (10 μg/mL). (f) Downregulated genes enriched in the PI3K/AKT pathway. (g) Protein level of
BCL2L1 in SGC7901 cells and SGC7901/5-FU cells. (h) Protein level of BCL2L1 in SGC7901 cells overexpressing ATXN2 and/or
silencing BCL2L1. (i) Apoptosis rates of SGC7901 cells overexpressing ATXN2 or (and) silencing BCL2L1 were detected after treatment
with 5-FU (10 μg/mL). (j) The correlation between ATXN2, AKT, and BCL2L1 expression in the TCIA and GEPIA databases. ∗∗P < 0:01.
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showed that upregulating SP1 promoted ATXN2 expression.
Furthermore, SP1 silencing inhibited ATXN2 expression in
SGC7901/5FU cells (Figures 5(f) and 5(g)). In addition, a
dual-luciferase reporter assay demonstrated the binding of
SP1 to the ATXN2 promoter region (Figures 5(h) and
5(i)). Furthermore, we analysed the correlation between
SP1, BCL2L1, and PD-L1 in the GEPIA and TCIA databases
and found that SP1 was positively related to BCL2L1 and
PD-L1 (Figure 6(a)). We cotransfected SP1-expressing plas-
mids and ATXN2-targeting siRNA into SGC7901 cells and

discovered that SP1 overexpression increased BLC2L1 and
PD-L1 expression, which could be blocked by ATXN2
silencing (Figure 6(b)). In addition, we cotransfected SP1-
targeting siRNA and ATXN2-expressing plasmids into
SGC7901/5-FU cells and found that SP1 silencing decreased
BLC2L1 and PD-L1 expression, which could be offset by
ATXN2 overexpression (Figure 6(c)). The apoptosis assay
showed that SP1 upregulation reduced the cell apoptosis rate
in response to 5-FU, which was reversed by ATXN2 silenc-
ing or BCL2L1 silencing (Figure 6(d)). Finally, we
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transfected SP1-expressing plasmids and added an AKT
inhibitor or nivolumab into SGC7901 cells, which were then
cocultured with CD8+ T cells. The cell survival assay indi-
cated that overexpression of SP1 decreased the response
towards CD8+ T cell killing, whereas an AKT inhibitor and
nivolumab increased the response (Figure 6(e)). The combi-
nation of an AKT inhibitor and nivolumab showed the
strongest response to CD8+ T cell killing. In conclusion,
these results suggest that SP1 transcriptionally regulates
ATXN2 expression, which activates the PI3K-AKT/BCL2L1
and PI3K-AKT/PD-L1 pathways to influence chemoresis-
tance and immunotherapy (Figure 6(f)).

3. Materials and Methods

3.1. Cell Culture. The GC cell line SGC7901 was purchased
from the American Type Culture Collection (ATCC).
SGC7901/5-FU, SGC7901/ADR, and SGC7901/VCR cells
were obtained through stepwise screening with VCR, ADR,
and 5-FU in our laboratory. All cells were cultured in Dul-
becco’s modified Eagle’s medium (Gibco, USA) containing
10% foetal bovine serum (Gibco, USA).

3.2. Reagents. 5-Fluorouracil was obtained from MicroCode
Engineering (MCE, USA). The AKT inhibitor (AKT-IN-1)

and nivolumab were purchased from MCE (USA). All
reagents were added according to the manufacturer’s
recommendation.

3.3. RNA Extraction and qPCR. RNA extraction was per-
formed in accordance with the recommendation from Qia-
gen (Germany). The PCR primers were as follows: ATXN2,
forward 5′-TTGATGCCGCACATGAGAAAA-3′ and back-
ward 5′-CGCCATTCACTTTAGCACTGAT-3′; SP1, for-
ward 5′-AGTTCCAGACCGTTGATGGG-3′ and backward
5′-GTTTGCACCTGGTATGATCTGT-3′. Reverse tran-
scription and qPCR were conducted using kits from TaKaRa
(Japan). Gene expression was measured with a LightCycler
480 system (Roche, Switzerland). Each experiment was
repeated independently at least three times.

3.4. Protein Extraction and Western Blots. Protein extraction
from cells was performed using RIPA lysis buffer. The pro-
tein concentration was determined, and protein denatur-
ation was conducted by boiling for 10 minutes. Thirty
micrograms of protein was used for electrophoresis. After
blocking with 10% skim milk, the protein membranes were
immersed in primary antibody (4°C, overnight) followed
by incubation with secondary antibody for 1 hour. The pro-
tein membranes were subjected to chemiluminescence. The
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antibodies used were as follows: anti-ATXN2 from Santa
Cruz (USA) and anti-β-actin, anti-PI3K, anti-p-PI3K, anti-
AKT, anti-p-AKT, anti-BCL2L1, and anti-PD-L1 from
CST (USA).

3.5. Immunohistochemistry (IHC). Immunohistochemical
staining was performed using anti-Ki67 and anti-Cleaved
caspase 3(CST, USA) antibodies according to the manufac-
turer’s recommendation. The ratio (positive cell number to
total cell number) was calculated to indicate the expression
score.

3.6. Dual-Luciferase Reporter Assays. Bioinformatics
methods were used to predict and analyse the possible tran-
scription factor-binding sites of ATXN2. Then, the DNA
fragment containing the ATXN2 promoter in the human
genome was amplified according to the primer sequence
and plugged into the reporter vector. The reporter gene plas-
mid and SP1-expression plasmid were cotransfected into
SGC7901 cells. Finally, the luciferase activity was deter-
mined, and the relative fluorescence intensity was calculated.

3.7. IC50 Assay. After the plating and attachment of 3000
cells, PBS or 5-FU was added to every well of 96-well plates.
CCK-8 (Abcam, USA) was diluted and added to 96-well
plates for 2 h of incubation. The absorbance value was mea-
sured with a Multimode Reader (Bio-Rad, USA). The IC50

value was then calculated according to the number of viable
cells in the PBS or 5-FU groups.

3.8. Apoptosis Detection. Cells were trypsinized, aspirated,
centrifuged, and then evenly mixed in PBS. Cells (100μL)
were transferred into a flow tube with Annexin V and 7-
AAD reagents, and incubation was maintained for 30
minutes under dark conditions. The cell suspension was
examined via flow cytometry after being washed with PBS.

3.9. In Vivo Tumorigenicity. Subcutaneous transplantation of
target cells (1 × 106 cells) into the backs of Balb/c nude mice
was performed to observe in vivo tumorigenicity. After the
tumor volume reached 100mm3, PBS or 5-FU was injected
into the abdominal cavity of the mice. After the mice were
euthanized, xenograft tumors were isolated for further
analysis.

3.10. CD8+ T Cell Activation and Coculture. CD8+ T cells
from STEMCELL (USA) were activated using a specialized
T cell activator (Catalogue # 10971) as recommended, col-
lected, cocultured with GC cells for 24 h, and washed off.
The survival rate of GC cells was measured with CCK-8.

3.11. Bioinformatics Analysis. Protein–protein interaction
(PPI) network analysis was used to analyse the interaction
between proteins. The GEPIA database, KM plotter data-
base, UALCAN database, and TCIA database were used to
analyse the expression and clinical prognosis of genes. The
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Figure 6: SP1 affected chemoresistance and immunotherapy. (a) Correlation analysis of SP1, BCL2L1, and PD-L1 in the GEPIA and TCIA
databases. (b, c) The expression of BLC2L1 and PD-L1 in SGC7901 cells (b) and SGC7901/5-FU cells (c). (d) The apoptosis rate of SGC7901
cells with SP1 overexpression, ATXN2 silencing, and BCL2L1 silencing. (e) SGC7901 cells overexpressing SP1 were treated with an AKT
inhibitor or nivolumab and cocultured with CD8+ T cells. The survival rate of SGC7901 cells was measured. (f) Schematic of the model
for the SP1/ATXN2/PI3K-Akt/BCL2L1 and SP1/ATXN2/PI3K-Akt/PD-L1 pathways. The schematic was created with http://biorender
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TIMER database was used to analyse the relationship
between ATXN2 and immune cell infiltration. The JASPAR
database and PROMO database were used to predict the
transcription factors of ATXN2.

3.12. Statistical Analyses. The SPSS software (version 23.0)
was employed for data analysis. Means ± standard
deviations (SDs) were used to represent continuous data.
Student’s unpaired t-test or one-way ANOVA was per-
formed to statistically analyse the difference between two
groups or one-way multigroups. P < 0:05 was regarded as
statistically significant.

4. Discussion

With approximately 480,000 new cases in 2020, GC has
become the third most prevalent malignancy in China [1].
As chemotherapy remains the primary treatment choice
for progressive GC, chemoresistance has a more prominent
impact on GC treatment compared with other cancers and
is the most problematic issue in our clinical work, which
greatly affects patient survival [3]. The Ataxin-2 protein
encoded by ATXN2 is a protein involved in RNA metabo-
lism and metabolic homeostasis [30]. In our study, we
revealed that ATXN2 has proliferative and antiapoptotic
effects and that a high ATXN2 level was related to an
adverse prognosis. Elevated ATXN2 expression facilitated
5-FU resistance in GC cells, which was decreased by down-
regulating ATXN2. Additionally, ATXN2 enhanced BCL2L1
expression (an antiapoptotic factor) by activating PI3K/AKT
signalling, ultimately resulting in 5-FU resistance.

Immune cells within the tumor microenvironment
(TME) are involved in tumorigenesis development [31].
Immune cells, especially infiltrating T cells, can recognize
tumor antigens and participate in killing tumor cells [32].
However, clinically detected cancers often evade the antitu-
mor immune response of immune cells. The ability of
immune evasion is emerging as a new hallmark of cancer,
unexpectedly providing an opportunity for a new strategy
in cancer therapy, namely, the use of immune cells against
cancer cells. Recently, IC modulators have shown unex-
pected antitumor effects in a variety of cancers, opening a
new era in cancer therapy. PD-L1 is critical in physiological
immune homeostasis and tumor immune escape [33]. The
PI3K/AKT signalling pathway regulates PD-L1 expression
in tumor cells [29, 34, 35]. Our results confirmed a close
connection between ATXN2 and immune cell infiltration
in GC and proved that elevated ATXN2 promoted PD-L1
expression. Furthermore, our results revealed that ATXN2
promotes PD-L1 expression by activating the PI3K/AKT
pathway and that ATXN2 knockdown promoted the efficacy
of immunotherapy.

The abundance of SP1, an important transcription fac-
tor, is typically increased in most tumors, and SP1 partici-
pates in tumor cell proliferation, differentiation, DNA
damage response, apoptosis, senescence, and angiogenesis
[36, 37]. Our work confirmed the binding between SP1
and the ATXN2 promoter region and the promotion of
ATXN2 mRNA and protein expression by SP1. We also

found that SP1 transcriptionally activated ATXN2, allowing
this protein to participate in chemoresistance and escape
from immune surveillance in GC. In summary, our study
revealed that the SP1/ATXN2/PI3K-AKT/BCL2L1 pathway
promotes GC chemoresistance and that the SP1/ATXN2/
PI3K-AKT/PD-L1 pathway promotes GC immune escape.
The correlation between tumor chemoresistance and immu-
nity is not very clear. Our study linked chemoresistance to
tumor immunotherapy and found that the key hub is the
PI3K-Akt pathway. Inhibition of the PI3K-Akt pathway
can significantly reduce chemoresistance and enhance the
efficacy of immunotherapy. Our study will provide a refer-
ence for inhibitors of the PI3K-AKT pathway to address
chemoresistance and improve the efficacy of immunother-
apy. Our findings provide a potential therapeutic approach
to address GC chemoresistance, as well as a new theoretical
and experimental basis for immunotherapy of GC.
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analysis of genes altered in GC chemoresistant cells accord-
ing to STRING.

Supplementary 2. Supplementary Figure 2: the expression of
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