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Overexpression of Golgi membrane protein 1 (GOLM1) is closely associated with hepatocellular carcinoma (HCC) vascular
invasion. How GOLM1 may be involved in angiogenesis in HCC remains unclear. We explored how GOLM1 promotes
angiogenesis in HCC and potential prognostic value. Expression levels of GOLM1 in HCC patients and healthy controls were
obtained from The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) between HCC patients and controls
were compared. GOLM1 was knocked out in the HCC cell line, and RNA sequencing and DEG expression analysis were
performed compared with control cells. Based on TCGA data and cell line RNA sequencing data, DEGs affected by a high
expression of GOLM1 were identified. Subsequently, enrichment analysis was performed to explore the functions and
pathways of the DEGs affected by a high expression of GOLM1. A relevant network analysis was built. Cox regression,
genomic variance analysis scores, minimum absolute shrinkage and selection operator regression, and random forest regression
models were applied to determine the best prognostic model and validated using the GSE54236 dataset from the Gene
Expression Omnibus (GEO). We determined the effect of GOLM1 expression on immune cell infiltration in liver cancer.
GOLM1 was overexpressed in HCC tissues compared with controls, and its level correlated with tumor purity and prognosis.
400 DEGs affected by highly expressed GOLM1 were identified in TCGA and cell line RNA sequencing data. Enrichment
analysis revealed that these DEGs may be related to biological processes of oxidative stress and angiogenesis and involved in
the VEGF signaling pathway and protein processing in endoplasmic reticulum. We predicted a comprehensive regulatory
network in which GOLM1 activated VEGF signaling to promote HCC angiogenesis. GOLM1 may interact with E2F1 and
IGF2BP3 to promote angiogenesis. GOLM1 overexpression was associated with greater immune cell infiltration. A random
forest regression model was the best prognostic model. Our study reveals a potential molecular mechanism of GOLM1 in
promoting HCC. We developed two prognostic models based on DEG associated with GOLM1 overexpression to help stratify
HCC prognosis and improve individualized treatment.

1. Introduction

Liver cancer has the fourth highest mortality among malig-
nant tumors worldwide [1]. Among the three pathological
types of primary liver cancer, hepatocellular carcinoma
(HCC) is the most common, accounting for about 90% of
cases [2]. HCC is a typical vascular tumor, so angiogenesis
plays an important role in its onset and progression [3]. Sev-
eral angiogenesis pathways are abnormally activated in HCC

to support tumor development, including pathways involv-
ing vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), and platelet-derived growth factor
and their receptors, as well as pathways involving angiopoe-
tin and Tie [4]. Targeted antiangiogenesis therapy has
become one of the main strategies for treating HCC.
Although a variety of antiangiogenic drugs are currently
under development, only sorafenib and lenvatinib have been
approved for the first-line treatment of advanced HCC
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[2–4]. Therefore, in-depth studies on the mechanisms of
HCC angiogenesis are needed to identify new targets for
the development of effective antiangiogenic drugs.

We wondered whether Golgi membrane protein 1
(GOLM1), also known as GP73 or GOLPH2, may be a suit-
able therapeutic target in HCC. GOLM1 is expressed pre-
dominantly in epithelial cells [5] and can also be cleaved
by proprotein convertase and secreted into the blood [6].
GOLM1 is overexpressed in a variety of malignancies
including HCC, and its high expression correlates strongly
with poor prognosis [7]. A previous multicenter study com-
paring serum GOLM1 and alpha-fetoprotein (AFP) in 4217
human subjects showed that GOLM1 had a sensitivity and
specificity of 76.4% and 97.4%, respectively, for HCC, while
AFP had a sensitivity and specificity of 58.2% and 85.3%,
respectively [8]. Another meta-analysis involving 11 studies
showed that GOLM1 was superior to AFP as a diagnostic
marker in 5 studies, while the results were opposite or
unclear in the remaining 6 studies [9]. Therefore, GOLM1
may even allow a more sensitive and specific diagnosis of
liver cancer than AFP [8–10].

Our previous study found that serum GOLM1 levels
were significantly higher in patients with HCC, and its sen-
sitivity and specificity for diagnosing HCC were higher than
those of AFP [11]. Further studies related to GOLM1 and
drug resistance in HCC were conducted, and it was con-
firmed that GOLM1 promoted oxaliplatin resistance in
human HCC cells [12]. In addition, it was also noted during
the collection of clinical case data from HCC patients that
GOLM1 elevated vascular invasion more significantly in
HCC patients [13]. Other studies reported that GOLM1 pro-
motes tumor metastasis by participating in the epithelial-
mesenchymal transformation and recycling of epidermal
growth factor receptor and receptor tyrosine kinases [14,
15]. Moreover, GOLM1 can enhance STAT3 phosphoryla-
tion by upregulating the epidermal growth factor receptor
and then activating programmed death-ligand 1 transcrip-
tional expression to inhibit immune responses [16]. Thus,
evidence suggests that GOLM1 promotes the pathogenesis
and progression of HCC through various mechanisms,
whereas no detailed studies specifically addressing the
GOLM1 gene and HCC angiogenesis have been reported
both nationally and internationally.

To explore this possibility, we combined data from The
Cancer Genome Atlas-Liver Hepatocellular Carcinoma
(TCGA-LIHC) and experimental sequencing data from an
HCC cell line. These findings may reveal new targets and
strategies for targeted antiangiogenic therapy in HCC.

2. Material and Methods

2.1. Data Collection. Gene expression profiles were obtained
from publicly available databases: The Cancer Genome Atlas
(TCGA; https://portal.gdc.cancer.gov), from which data on
371 HCC patients and 50 controls were extracted and Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo), from which the dataset GSE54236 [17] was extracted
for 81 tumor tissues from 78 HCC patients and 80 controls
from 54 consecutive patients with cirrhosis. GEO data were

used as the validation dataset. The current study adheres to
TCGA and GEO data access policies and publication guide-
lines. The Tumor Immune Estimation Resource database
(TIMER, http://timer.cistrome.org/) was to identify the dif-
ferential expression of GOLM1 in tumor and normal tissues
of multiple cancer species.

2.2. Immunohistochemistry (IHC). Tumor and adjacent tis-
sues from three patients with HCC were collected from the
Guangxi Medical University Cancer Hospital, immediately
fixed in 10% formaldehyde for 12 h, dehydrated, transparent,
paraffin-embedded, and sectioned (4μm) for IHC. After
dewaxing the paraffin sections into water, antigen repair
was performed using sodium citrate buffer (pH6.0) for
15min at 95°C and washed 3 times with phosphate buffered
saline (PBS). The slides were then incubated with 3% H2O2
for 30min to block endogenous peroxidase activity and 5%
bovine serum albumin (BSA) for 1 h at room temperature
to block nonspecific binding sites and incubated with pri-
mary antibody GOLM1 (American, Proteintech, Cat No.
15126-1-AP) overnight at 4°C. After three washes with
PBS, the sections were incubated with the corresponding
horseradish peroxidase at 37°C. The sections were incubated
with the corresponding horseradish peroxidase- (HRP-)
coupled secondary antibody (China, Beijing, ZSGB-BIO,
SP-9001) in a wet box for 1 h and washed three times with
PBS. Diaminobenzidine (DAB) was incubated for 10min
for color development, and hematoxylin was incubated for
3min for nuclear restaining. Finally, the gradient was dehy-
drated in ethanol, clear in xylene, and sealed in neutral gum.
IHC images were acquired under a standard light micro-
scope (Olympus, Tokyo, Japan) and analyzed using Image-
Pro Plus software (Media Cybernetics, Rockville, MD,
United States). This study was approved by the Ethics Com-
mittee of the Guangxi Medical University Cancer Hospital.
All procedures involving human participants complied with
the ethical standards of the research committee and its ethi-
cal standards. Informed consent was obtained from partici-
pants for all study procedures and sequencing protocols.

2.3. Cell Cultures. We purchased MHCC97H cells from the
Shanghai Institutes for Biological Sciences of the Chinese
Academy of Sciences (CAS) as an HCC in vitro model. After
being thawed, resuscitated, and passaged, the cells were kept
in RPMI 1640 medium containing 10% fetal bovine serum
and cultured in 37°C, 5% CO2 saturated humidity cell
incubator.

2.4. RNA Sequencing. GOLM1 expression was silenced in
MHCC97H cells using two small interfering RNAs (siR-
NAs). The siRNA sequences were: siRNA 1, 5′-agg-
gaaacgtgcttggtaa-3′ and siRNA 2, 5′-gaatagaagaggtcaccaa-3′
. Lentiviral vectors encoding short hairpin RNA (shRNA)
were designed based on the siRNA sequences to knock down
GOLM1 expression (GOLM1-KD) [12]. These vectors were
constructed by Hanyin Co. (Shanghai, China). The lentivi-
ruses expressing the negative control lentivirus (Vector)
were also constructed by Hanyin Co. (Shanghai, China).
Total RNA was isolated from GOLM1-KD MHCC97H cells
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and control MHCC97H cells using TRIzol (Thermo Scien-
tific, Uppsala, Sweden) and purified using the RNeasy kit
(Qiagen, Valencia, CA). RNA-Seq libraries were constructed
using the TruSeq Stranded mRNA-Seq Library Preparation
Kit (Illumina, San Diego, California, USA). Samples were
sequenced using the Illumina NovaSeq system, generating
paired-end reads of 150 base pairs. Raw sequence reads were
converted into fragments per exon kilobase per million
mapped reads (FPKM) to quantify gene expression.

2.5. Survival Analysis. Expression profiles were normalized
using the “voom” function in the limma package in R [18].
For analyzing survival as a function of GOLM1 expression,
the best cut-off value was determined using the “surv_cut-
point” function in the survminer package in R (http://www
.rstudio.org). According to the best cut-off value, patients
were divided into groups expressing low or high levels of
GOLM1. Then, overall survival (OS) was compared between
the two groups using the log rank test.

2.6. Identification of Differentially Expressed Genes (DEGs).
The limma package in R was used to identify DEGs between
HCC patients and controls in TCGA data, as well as mRNAs
whose expression differed between GOLM1-KD and control
cells. DEGs with expression differences showing P.adjust <
0.05 were considered significant and included in further
analyses. DEGs that were up- or downregulated across both
TCGA and RNA sequencing data were defined as DEGs
affected by GOLM1-KD. DEGs whose expression was oppo-
site to that of DEGs affected by GOLM1-KD were identified
as genes associated with GOLM1 overexpression.

2.7. Functional Enrichment Analysis. To explore the biologi-
cal processes and signaling pathways in which DEG associ-
ated with GOLM1 overexpression may be involved, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed using the clus-
terProfiler package in R [19]. Results associated with P <
0:05 were defined as significant.

2.8. Constructing Regulatory Networks. We used the RNAIn-
ter database (http://www.rna-society.org/rnainter) [20] to
extract DEGs that interacted with GOLM1 (P < 0:05). The
set screening criterion was a score > 0:5. In combination
with KEGG pathway genes, the Pearson correlation test
and the hypergeometric test were utilized using the expres-
sion profiles. Finally, a comprehensive regulatory network
of GOLM1-KEGG correlation was obtained. Results associ-
ated with P < 0:05 were considered significant.

2.9. Molecular Docking. We then explored whether target
proteins may be able to bind GOLM1. We downloaded the
three-dimensional structures of GOLM1 and target proteins
from the Protein Data Bank (http://www.rcsb.org). Molecu-
lar docking was performed using Hex 8.0.0 software [21],
and the results were visualized with PyMol software [22].
For whether two molecules have binding ability between
them, when the docking energy is less than 0KJ/mol, it
means that both have binding potential, and the smaller
the energy, the higher the binding potential.

2.10. Gene Set Variant Analysis (GSVA). We extracted the
mechanism genes for univariate Cox regression analysis to
obtain the meaningful DEGs of univariate Cox regression
and then calculated the GSVA score of these genes for indi-
vidual sample using GSVA package in R [23].

2.11. Least Absolute Shrinkage and Selection Operator
(LASSO) Regression Models. Cox regression was used to iden-
tify DEG associated with OS of HCC patients. The glmnet
package in R [24] was used to integrate potentially prognostic
DEGs into a binomial LASSO regression model. During
LASSO regression, we retained potential predictors with non-
zero coefficients in order to generate candidate DEGs. Areas
under receiver operating characteristic curves (AUCs) were
calculated using the pROC package in R [25]. Cox regression
was used to construct a prognostic nomogram to predict
two- and five-year OS of HCC patients in TCGA.

2.12. Random Forest Algorithm. Genes with prognostic value
in the univariate Cox regression were obtained. Survival data
were dimensionally reduced using a random forest survival
algorithm [26], ranked based on factor importance, and then
filtered for gene signatures. Forest plots were generated
using the forestplot package in R.

2.13. Immune Cell Infiltration. The level of infiltration of dif-
ferent types of immune cells was assessed using CIBERSORT
(https://cibersort.stanford.edu/) and ssGSEA in the GSVA
routine. Immune cells indicated as 0 were excluded from
the analysis. A set of marker genes for the immune cell types
analyzed by ssGSEA was obtained from Bindea et al. [27].
TIMER 2.0 [28] was used to assess the levels of immune cell
infiltration. We also evaluated potential correlations between
candidate genes and immune cell types using Pearson corre-
lation analysis, with significance defined as P < 0:05. jcorj
> 0:2 was considered to indicate that a correlation existed.

2.14. Data Analysis and Statistics. All bioinformatics analy-
ses in this study were performed based on the Bioinforcloud
platform (http://www.bioinforcloud.org.cn).

3. Results

3.1. GOLM1 Is Overexpressed in HCC and Strongly
Associated with Poor Patient Prognosis. The study flowchart
is shown in Figure 1. We identified a total of 12040 DEGs
between HCC and controls in TCGA data (Figure 2(a)). In
TCGA specimens (371 HCC tissues and 50 healthy con-
trols), we found that GOLM1 was abundantly expressed at
different stages of HCC but weakly expressed in controls
(Figures 2(b) and 2(c)). Similarly, immunohistochemistry
analysis showed a higher expression of GOLM1 in tumor
than in adjacent tissue (Figure 2(d)). Interestingly, HCC
patients with high expression of GOLM1 had poorer OS
than those with low expression (Figure 2(e)).

Furthermore, analysis of the TIMER database showed
GOLM1 to be upregulated in several types of tumors
(Figure 2(f)). The above results show that GOLM1 is highly
expressed in HCC. In addition, GOLM1 expression is closely
related to the poor prognosis of HCC.
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3.2. Biological Functions of DEG Associated with GOLM1
Overexpression in HCC. To identify DEG associated with
GOLM1 overexpression, we performed differential expres-
sion analysis of the RNA sequencing data from our cell cul-
tures. A total of 1363 DEGs between the GOLM1-KD
MHCC97H cells and control MHCC97H cells groups were
identified, comprising 744 upregulated and 619 downregu-
lated genes (Figure 3(a)). Then, we analyzed overlapping
DEGs found in 1363 DEGs cell cultures and the 14787 DEGs
identified in TCGA. We found 737 overlapping genes, which
were defined as DEGs affected by GOLM1-KD. In addition,
400 DEGs opposite to the DEGs affected by GOLM1-KD
expression were identified as the specific DEGs associated
with GOLM1 overexpression (Supplementary Table 1,
Figure 3(b)).

These specific DEGs associated with GOLM1 overex-
pression were enriched for GO biological processes related
to oxidative stress and angiogenesis: cellular response to oxi-
dative stress, intrinsic apoptotic signaling pathway in
response to oxidative stress, oxidative phosphorylation, and
positive regulation of angiogenesis (Figure 3(c)). KEGG
pathway analysis showed that these DEGs were involved
mostly in protein processing in the endoplasmic reticulum,
oxidative phosphorylation, apoptosis, and the VEGF signal-
ing pathway (Figure 3(d)). Among them, the VEGF signal-
ing pathway is activated in HCC and promotes
angiogenesis [29], which attracted our attention
(Figure 3(e)).

3.3. GOLM1 Activates the VEGF Signaling Pathway to
Promote Angiogenesis in HCC. To identify the regulatory
network associated with GOLM1, pivot analysis was per-
formed based on the RNAInter database (http://www.rna-
society.org/rnainter) to find the genes interacting with
GOLM1. The results identified 37 GOLM1 pivot genes with
statistical significance, which indirectly regulated 12 KEGG
pathways (Figure 4(a)). In particular, we identified six pivot
genes in the VEGF signaling pathway: PTBP1, AR, CELF2,
E2F4, DICER1, and CSTF2T. We also identified four path-
way genes: HRAS, PTK2, PRKCB, and RAC2 (Figure 4(b)).

Thus, a comprehensive regulatory network of GOLM1, pivot
genes, pathway genes, and the VEGF signaling pathway was
constructed (Figure 4(c)). To further explore the regulation
of target genes by GOLM1, we performed molecular docking
analyses. The results showed that GOLM1 has the potential
to bind E2F4 and PTBP1 (Figure 4(d)). Therefore, we postu-
late that GOLM1 targets E2F4 and PTBP1 to activate the
VEGF signaling pathway, thereby promoting angiogenesis
in HCC (Figure 4(e)).

3.4. Construction of a Prognostic Model for HCC. In order to
screen prognosis-related genes, mechanism genes in
Figure 4(c) and 400 specific DEGs were extracted for univar-
iate Cox regression analysis, and 52 DEGs associated with
prognosis were obtained. To obtain the best prognostic
model, 52 DEGs and GOLM1 were combined to construct
four models based on GSVA, multifactor Cox regression,
LASSO, or random forest regression. First, the GSVA scores
of 53 prognostic genes were obtained by the GSVA model
(Figure 5(a)). Then, 53 DEGs were subjected to multivariate
Cox regression analysis to screen for independent prognostic
factors and construct prognostic models, and finally, three
prognostic genes were identified: HAVCR1, ETFDH, and
MMP7 (Figure 5(b)). Similarly, LASSO regression analysis
was performed on 53 DEGs to further remove redundant
variables, and 14 genes were identified and used to construct
prognostic models (Figure 5(c)). Finally, we used random
forest regression models to identify 35 characteristic genes
as the most relevant regulators of prognosis and constructed
the corresponding models (Figure 5(d)).

To determine the best prognostic model, temporal ROC
curves for median survival and survival at 1, 3, 5, and 8 years
were plotted based on the risk scores of the four models
(Figure 5(e)). The results showed that the random forest
regression model had the optimal scoring efficacy. Subse-
quently, combined with the clinical characteristics of
patients, we incorporated tumor distant metastasis, TNM
stage, and random forest score models to construct 2-year
and 5-year column line graph prediction models. The results
showed that distant tumor metastasis, TNM stage, and
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Differential expression
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Differential expression
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Figure 1: Study flowchart. The flow diagram of this study. DEGs: differentially expressed genes; HCC: hepatocellular carcinoma; KD:
knocked down; TCGA: The Cancer Genome Atlas; VEFG: vascular endothelial growth factor.
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random forest score were independent prognostic factors for
patients with HCC (Figure 5(f)). To validate the predictive
value of the model, survival curves were used to demonstrate
the OS and RFS curves of the clinical prognostic score model
between samples of the high- and low-risk groups, and the
results showed that patients in the high-risk group had sig-
nificantly lower OS (P < 0:0001) and RFS (P < 0:0001) than
those in the low-risk group, indicating that this clinical prog-
nostic score model could effectively discriminate between

the high- and low-risk groups (Figure 5(g)). We confirmed
this result in the validation dataset GSE54236 (additional
Figures 1(a) and 1(b)).

3.5. Role of Protein Processing in the Endoplasmic Reticulum
in HCC. We previously showed that DEGs associated with
GOLM1 overexpression are predicted to participate in pro-
tein processing in the endoplasmic reticulum (Figure 3(d))
[30]. Multiple pathways, such as the endoplasmic
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Figure 2: GOLM1 is overexpressed in hepatocellular carcinoma (HCC) and strongly associated with poor patient prognosis. (a)
Differentially expressed genes (DEGs) between HCC patients and healthy controls from The Cancer Genome Atlas (TCGA). (b) GOLM1
expression level in 371 HCCs (green circle) and 50 adjacent normal tissues (red circle) from the TCGA. (c) GOLM1 expression at
different HCC stages compare to the control group. (d) Immunohistochemistry against GOLM1 in tumor and adjacent tissues. (e)
Kaplan-Meier curves of overall survival of patients in the high and low GOLM1 groups in TCGA. (f) GOLM1 expression in the Tumor
Immune Estimation Resource database. DEGs: differentially expressed genes.
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Figure 3: Identification and enrichment analysis of genes associated with high GOLM1 expression. (a) DEGs in GOLM1-knocked down
(KD) MHCC97H cells and control MHCC97H cells. (b) DEGs between TCGA and RNA sequencing data. (c, d) GO and KEGG
enrichment analyses of 400 specific DEGs associated with GOLM1 overexpression in HCC. (e) KEGG pathway annotations of the VEGF
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Ontology; VEGF: vascular endothelial growth factor.
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reticulum-associated degradation pathway and the endo-
plasmic reticulum stress pathway are involved in protein
processing in this organelle [30, 31]. Therefore, to explore
the potential relevance of protein processing in the endo-
plasmic reticulum in HCC, we first constructed a compre-
hensive regulatory network including GOLM1, pivot genes,
and pathway genes (Figure 6(a)). We then explored the
potential of GOLM1 to bind other molecules in this net-
work. The results predicted that GOLM1 could stably bind
E2F1 and IGF2BP3 (Figure 6(b)).

Next, we extracted relevant genes from the compre-
hensive regulatory network for univariate Cox regression
analysis, and 12 genes significantly associated with prog-
nosis were identified. The 12 DEGs plus GOLM1 were
combined to construct four models based on GSVA

(Figure 6(c)), multifactorial Cox regression (Figure 6(d)),
LASSO (Figure 6(e)), and random forest (Figure 6(f)).
The random forest regression model with 11 characteristic
genes was the best prognostic model (Figure 6(g)). To val-
idate its predictive value, we performed survival analysis
according to the random forest risk score: patients with
high scores had much worse OS and recurrence-free sur-
vival than those with low scores (Figure 6(h)). We con-
firmed this result in the validation dataset GSE54236
(additional Figures 2(a) and 2(b)).

3.6. Immune Infiltration in HCC. Studies have pointed out
that protein processing in the endoplasmic reticulum plays
a crucial role in immune responses [32, 33]. Using the
TIMER 2.0 database, we showed that the 11 characteristic

GOLM1 Etotal: –657.85 kj/mol PTBP1

GOLM1 Etotal: –544.67 kj/mol E2F4

(d)

E2F4 PTBP1

VEGF signaling pathway

Cytoplasm

Angiogenesis

Blood vessel

GOLM1

(e)

Figure 4: GOLM1 activates the vascular endothelial growth factor (VEGF) signaling pathway to promote angiogenesis in hepatocellular
carcinoma. (a) Gene expression correlation network based on GOLM1 as well as pivot and target genes identified in the RNAInter
database. (b) Pathway map interrelating GOLM1, pivot genes, pathway genes, and the VEGF signaling pathway. (c) Network view of
GOLM1, pivot genes, target genes, and the VEGF pathway. Red represents upregulated gene expression, blue represents downregulated
gene expression. (d) Molecular docking studies of PTBP1 and E2F4 with GOLM1. (e) Schematic of a potential mechanism by which
GOLM1 promotes angiogenesis in HCC. VEFG: vascular endothelial growth factor.
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genes correlated significantly with the abundance of neutro-
phils, endothelial cells, M2 macrophages, uncharacterized
cells, and myeloid dendritic cells (Figures 7(a) and 7(b)).
In addition, we analyzed the correlation between random
forest risk score and immune checkpoints PDCD1, CD274,
and CTLA4: the risk score correlated positively with expres-
sion of PDCD1 and CTLA4, but not with expression of
CD274 (Figure 7(c)).

Based on the above results, we propose that GOLM1
may regulate protein processing in the endoplasmic reticu-
lum by binding to E2F1 and IGF2BP3, thereby promoting
the infiltration of endothelial cells and angiogenesis in
HCC (Figure 7(d)).

4. Discussion

HCC is one of the cancers with higher incidence andmortality
in the world [34]. Exploring how HCC occurs and progresses
may help identify tumor markers, formulate effective treat-
ment plans, and improve prognosis. HCC is a typical vascular
tumor, and angiogenesis plays a key role in its growth [4].
However, vascular-related signaling pathways in HCC are still
unclear, and new research is urgently needed to find new ther-
apeutic targets. Our study shows that GOLM1 overexpression
is closely related to vascular invasion of HCC. Therefore,
exploring the relationship between GOLM1 and angiogenesis
may help to identify new therapeutic targets in HCC.
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Figure 5: Establishment of the prognostic model for hepatocellular carcinoma (HCC) patients. (a) GSVA score of 53 prognostic genes. (b)
Multivariate Cox regression analysis. (c) Establishment of the LASSO regression model. (d) Results of the random forest regression model
for selecting prognostic characteristic genes. Thirty-five signature genes were selected by the random forest regression model. (e) The
timeROC curve analysis of median survival and survival rates at one, three, five, and eight years for the above four models in TCGA. (f)
Nomogram for predicting two- and five-year overall survival rates of HCC patients. The nomogram includes three variables: metastasis,
N (presence or absence of lymphatic metastasis), and random forest risk score. (g) Performance validation of clinical prognostic models
in the TCGA training sets. AUC: area under the receiver operating characteristic curve; GSVA: gene set enrichment analysis; LASSO:
least absolute shrinkage and selection operator regression; RandomForestSRC: fast unified random forests for survival, regression, and
classification.
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First, we used the TCGA database to explore GOLM1
expression in HCC. Consistent with previous studies, we
found that GOLM1 was overexpressed in HCC compared
with healthy controls and was closely associated with poor
prognosis [35].

By analyzing sequencing data in both MHCC97H cells
and TCGA database, we identified 400 specific DEGs associ-
ated with GOLM1 overexpression. GO analysis revealed that
these genes are mainly involved in oxidative stress-related
biological processes. KEGG pathway enrichment analysis
showed that those genes were involved mainly in key path-
ways, such as the VEGF signaling pathway and protein pro-
cessing in the endoplasmic reticulum. In view of the

importance of angiogenesis in HCC, it is reasonable to
hypothesize that GOLM1 promotes angiogenesis by activat-
ing VEGF signaling. The involvement of protein processing
in the endoplasmic reticulum is also plausible, because endo-
plasmic reticulum stress has been implicated in HCC
through its ability to promote tumor growth, metastasis,
angiogenesis, and drug resistance [36]. In addition, increased
oxidative stress is thought to be a recognized mechanism
contributing to HCC [37]. Reactive oxygen species (ROS)
are a source of oxidative stress generated in various organ-
elles and stress pathways, such as mitochondria, peroxi-
somes, and endoplasmic reticulum [38]. Excessive ROS
disrupts the integrity of proteins and lipids and may cause
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Figure 6: Role of GOLM1 in protein processing in the endoplasmic reticulum in hepatocellular carcinoma (HCC). (a) Regulatory network
view of GOLM1, pivot genes, pathway genes, and the protein processing in the endoplasmic reticulum pathway. Red represents upregulated
gene expression, and blue represents downregulated gene expression. (b) Molecular docking studies of E2F1 and IGF2BP3 with GOLM1. (c)
GSVA score of the 13 prognostic genes. (d) Multivariate Cox regression analysis. (e) Establishment of the LASSO regression model. (f) The
random forest regression model identified 11 signature genes associated with survival. (g) The timeROC curve analysis of median survival
and survival rates at one, three, five, and eight years for the above four models in TCGA. (h) Performance validation of the optimal random
forest regression model in the TCGA training set. AUC: area under the receiver operating characteristic curve; GSVA: gene set enrichment
analysis; LASSO: least absolute shrinkage and selection operator regression; RandomForestSRC: fast unified random forests for survival,
regression, and classification.
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genetic mutations inducing carcinogenesis [39]. The endo-
plasmic reticulum generates oxidative stress associated with
endoplasmic reticulum stress when it contains endoplasmic
reticulum redox protein 1 alpha and protein disulfide bond
isomerase [40]. The endoplasmic reticulum oxidative stress
triggers the release of hydrogen peroxide and calcium ions
into the cytosol, further leading to increased mitochondrial
oxidative stress and increased ROS. Hepatic oxidative stress
leads to T cell tyrosine phosphatase (TCTPT) inactivation
and promotes STAT3 signaling to drive HCC develop-
ment [41].

Our results showed that GOLM1 might activate the
VEGF pathway by binding to E2F4 and PTBP1. E2F4 is a
novel tumor marker and well-established transcription fac-
tor that has been associated with HCC prognosis [42]. It is
involved in the cell cycle, cell proliferation, resistance to apo-
ptosis, and tumor progression [43, 44]. Recent studies
reported that E2F4 overexpression is able to promote HCC
cell proliferation by upregulating CDCA3 [45]. PTBP1 is
an RNA binding protein that regulates RNA splicing and is
involved in cellular processes such as the cell cycle, apopto-
sis, and immune activation [46]. PTBP1 regulates the alter-
native splicing of exon 10 in the Axl gene, allowing it to
promote HCC cell invasion and metastasis [47]. E2F4 and
PTBP1 have not previously been linked to HCC angiogene-
sis, so our results suggest that future studies should explore
this possible link in detail.

Our results also suggest that GOLM1 may be involved in
protein processing in the endoplasmic reticulum by binding
to E2F1 and IGF2BP3, promoting endothelial cell infiltra-

tion. Endothelial cells are indispensably linked to angiogen-
esis, a complex, highly ordered process that is dependent on
endothelial cells [48]. Our immunoinfiltration analysis
found that endothelial cells were significantly infiltrated;
however, the link between GOLM1 and endothelial cells is
not known. E2F1 is a transcription factor involved mainly
in the regulation of the cell cycle, cell proliferation, and apo-
ptosis [49], and it is a key determinant of the survival of cells
under endoplasmic reticulum stress [50]. IGF2BP3 is highly
expressed in a variety of tumors including HCC, lung, and
prostate cancers, and it helps maintain tumor cell growth,
proliferation, invasion, and drug resistance through several
oncogenic pathways [51]. IGF2BP3 can inhibit ZO-1 expres-
sion, enhancing the ability of HCC cells to invade [52]. Few
studies have examined E2F1 and IGF2BP3 in HCC, so our
results justify more detailed experiments into how they
may contribute to disease onset and progression.

Based on the RNAInter database and VEGF signaling
pathway, we identified 11 mechanism genes and then ana-
lyzed and verified these genes and 400 specific DEGs in
TCGA and GEO databases. Finally, a new HCC prognostic
model was constructed based on a random forest approach.
Most of the 35 characteristic genes in the model have previ-
ously been linked to HCC. For example, low expression of
UGP2 is associated with HCC progression [53]; RAN pro-
motes the growth, migration, and invasion of HCC cells
[54]; ITGAV is up-regulated in HCC and promotes tumor
metastasis [55]; ETFDH is underexpressed in HCC and
associated with poor OS [56]; and SERPINA3 mediates the
upregulation of HNRNP-K transcriptional activity and
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promotes the survival and proliferation of HCC cells [57].
Several genes in our model may be related to HCC but the
potential connection requires further study. These genes
include NDC1, TTBK1, PSMD11, FANCE, TRPM8, GSAP,
SEPSECS, VMA21, PLA2G12A, SORD, UBTF, MCEE, and
GOLM1.

We provide evidence that the random forest model is an
independent prognostic factor for HCC, can be used to pre-
dict OS and recurrence-free survival, and can evaluate the
prognosis of HCC patients. In order to improve the accuracy
of the prognostic prediction, a nomogram was developed
based on the random forest model as well as patient clinical
characteristics. The OS nomogram also included the risk
scores of metastasis, N (presence or absence of lymphatic
metastasis), and random forest score.

We also identified the optimal random forest regression
model based on protein processing in the endoplasmic retic-
ulum. The results of the Kaplan-Meier curve showed that the
model can help identify the high-risk and low-risk HCC
patients. Among the 11 characteristic genes identified,
HNRNPC emerged as an independent prognostic factor for
OS and disease-free survival in HCC patients, and it may
be related to sorafenib treatment and anti-PD-1 immuno-
therapy response [58]. A recent study [59] suggested that
the splicing regulator hnRNPU is a new transcriptional tar-
get of c-Myc in HCC. In that work, c-Myc upregulated
hnRNPU, while hnRNPUSSR3 stabilized the c-Myc mRNA,
thereby promoting c-Myc-driven HCC development.
CPSF6, as an alternative polyadenylation factor, is an activa-
tor of pre-mRNA cleavage and polyadenylation processing
[60]. CPSF6 is able to upregulate NQO1 to regulate HCC cell
metabolism and thereby promote tumor development [61].
EWSR1 is strongly expressed in HCC, it is associated with
histological grade and pathological T stage, and it is consid-
ered a novel tumor prognostic marker [62]. HSP90AB1 is
also associated with HCC, and it may be involved in the pro-
gression from cirrhosis to HCC [63]. SSR3 is highly
expressed in HCC and is associated with tumor size, TNM
stage, differentiation grade, and poor prognosis [64].
CAPRIN1 is upregulated in HCC and can partially reverse
the downregulation of c-MYC and CCND2 caused by
miR-621 dysregulation, thereby promoting cell proliferation
[65]. At present, the roles of EIF2AK4, U2AF2, and CSTF2
in HCC remain unclear. In this way, our results identify
novel genes associated with HCC, and future investigation
of these genes may provide new insights into the disease
and its treatment.

In addition, various types of infiltrating immune cells
have been described in the pathogenesis of HCC, and the
potential role is not yet clear. To date, the main focus of can-
cer immunotherapy has been to interrupt immune check-
points that inhibit antitumor lymphocytes. In addition to
lymphocytes, the HCC milieu includes many other immune
cell types, of which neutrophils are emerging as important
contributors to the pathogenesis of hepatocellular carci-
noma. A growing body of evidence supports neutrophils as
key mediators of the immunosuppressive environment in
which certain cancers develop and as drivers of tumor pro-
gression [66]. Little is known about the impact of endothelial

cells on tumor cell behavior. In HCC patients, endothelial
cells act as promoters of molecular crosstalk, enhancing
HCC cell survival, migration, and invasion [67]. Recently,
information about M2 macrophages promoting hepatocellu-
lar carcinoma metastasis revealed the mechanism of metas-
tasis in HCC [68]. However the role of bone marrow
dendritic cells in HCC is not known for the time being.

Although our study identified potential molecular mech-
anisms through which GOLM1 promotes HCC angiogene-
sis, it still has several limitations. First, our work was based
mainly on bioinformatics predictions using previously pub-
lished data from TCGA. Nevertheless, we validated our in
silico findings using a GEO dataset and explored the role
of GOLM1 in HCC using cell culture and RNA sequencing
together. Second, the established nomogram model needs
external validation. Since our prognostic model was con-
structed and validated using retrospective analysis of public
databases, it should be confirmed in prospective studies.
Future work should investigate, in vivo and in vitro, how
GOLM1 promotes HCC angiogenesis.

5. Conclusions

Our study constructed HCC prognostic models based on
DEG associated with GOLM1 overexpression, which may
help to stratify HCC patients according to prognosis and
to guide individualized treatment. Functional enrichment
analysis of these genes led us to propose a mechanism by
which GOLM1 promotes HCC angiogenesis. This may help
develop effective treatments.
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