Skip to main content
. 2022 Oct 6;46(11):78. doi: 10.1007/s10916-022-01868-2

Table 2.

Comparison of pre-trained DL models and ensemble approach using averaged Precision, Recall, F1-score, and Accuracy over 5 different folds

Methods P (%) R (%) F(%) A (%)
VGG-16 80.18 79.17 79.01 82.22
VGG-19 81.84 81.90 81.03 82.94
ResNet-50 82.81 82.94 82.82 84.87
ResNet-101 82.69 81.88 82.02 84.98
IncepResNetv2 83.90 83.44 83.62 85.43
MobileNetV2 82.85 81.17 80.98 84.87
InceptionV3 82.51 82.30 82.16 84.53
Xception 85.01 85.14 85.02 86.51
EfficientNet-B0 81.60 81.34 81.40 83.96
EfficientNet-B1 83.69 84.03 83.61 85.09
EfficientNet-B2 82.06 82.67 82.07 83.51
DenseNet-121 83.12 83.00 82.25 84.24
DenseNet-169 84.07 83.74 83.83 86.06
Ensemble approach 85.44 85.47 85.40 87.13

Bold values denotes the highest performance