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Abstract

In triple negative breast cancer (TNBC) treatment, early prediction of pathological complete 

response (PCR) from chemotherapy before surgical operations is crucial for optimal treatment 

planning. We propose a novel deep learning-based system to predict PCR to neoadjuvant 

chemotherapy for TNBC patients with multi-stained histopathology images of serial tissue 

sections. By first performing tumor cell detection and recognition in a cell detection module, 

we produce a set of feature maps that capture cell type, shape, and location information. Next, 

a newly designed spatial attention module integrates such feature maps with original pathology 

images in multiple stains for enhanced PCR prediction in a dedicated prediction module. We 

compare it with baseline models that either use a single-stained slide or have no spatial attention 

module in place. Our proposed system yields 78.3% and 87.5% of accuracy for patch-, and 

patient-level PCR prediction, respectively, outperforming all other baseline models. Additionally, 

the heatmaps generated from the spatial attention module can help pathologists in targeting tissue 

regions important for disease assessment. Our system presents high efficiency and effectiveness 

and improves interpretability, making it highly promising for immediate clinical and translational 

impact.
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1 Introduction

In triple negative breast cancer (TNBC) treatment, pathological complete response (PCR) to 

neoadjuvant chemotherapy (NAC) is defined as the lack of all signs of cancer, especially the 

absence of cancer cells in pathology images of tissue samples dissected during surgery. It 
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plays an important role in treatment planning and assessment [1,2]. Patients with negative 

PCR tend to have longer event-free survival and overall survival [1]. Therefore, the accurate 

prediction of patient PCR to neoadjuvant chemotherapy can significantly help enhance 

clinical treatment planning by avoiding unnecessary chemotherapy treatment for some 

patient cohorts. Accurate PCR prediction has a significant clinical impact as it not only 

reduces adverse chemotherapy effects on patient life quality but also makes it possible to 

go for other alternative regimes in this treatment window before surgery. However, a precise 

PCR prediction remains a challenging and unsolved problem.

Early studies have been conducted to predict PCR with ultrasound [3], CT/PET [4], or 

MRI [5,6]. However, they all have limited accuracy, thus not feasible to be deployed into 

clinical settings. To our best knowledge, only one study has utilized pathology images for 

this prediction task, which has limited success [7]. The development of a PCR prediction 

system using patient histopathology images is indeed conceptually rationale and promising, 

as histopathology images are the direct imaging source for PCR review. Furthermore, two 

important biomarkers, Ki-67 and phosphohistone-H3 (PHH3) characterizing tumor cell 

proliferation circle, are known to have a strong relationship with PCR [8,9]. However, 

these essential biomarkers from immunohistochemistry (IHC) images have not been jointly 

studied with spatially aligned tumor phenotypic information from adjacent Hematoxylin 

and Eosin (H&E) stained slides. Due to the absence of necessary technology development, 

integrated use of pathophysiological biomarkers with pathology structure features for PCR 

prediction remains unexplored by far. Recently, deep learning has been rapidly developed 

in the machine learning research field [10]. This technology has achieved groundbreaking 

milestones not only in conventional computer science problems [10,11], but also in a 

large variety of biomedical studies [12–14]. However, deep learning based studies on PCR 

prediction in breast cancer so far only used radiology images [15,16], limiting the system 

prediction accuracy and interpretability. Overall, a robust, effective, and interpretable deep 

learning system for PCR prediction using histopathology images is still in its primitive stage.

To address this unmet clinical need, we have developed a deep learning system that predicts 

PCR to neoadjuvant chemotherapy in TNBC patients with integrated use of histopathology 

images of serial tissue sections in multiple stains. The novelty and contribution of this 

work are threefold. 1) Biomarkers and pathology features integration: Instead of 

using single stained histopathology images, pathology images of serial tissue sections 

in three PCR relevant stains, including H&E, Ki-67, and PHH3, are jointly utilized in 

our proposed system, providing complementary molecular and pathology information. 

2) Multi-task: Our proposed system detects and classifies cells before PCR prediction. 

Therefore, key information, such as cell type, shape, spatial organization, and the cell 

proliferation cycle status is provided to the PCR prediction module. This process emulates 

the reviewing process pathologists follow in clinical settings, making the system more 

rationale and interpretable. 3) Spatial attention mechanism: We have designed a novel 

spatial attention module that informs the PCR prediction module of tissue spatial importance 

map. Additionally, the spatial attention module produces heatmaps that make pathologists 

more informed about the machine-based PCR prediction process, significantly improving 

the system’s interpretability.
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2 Methodology

2.1 Image Registration

To enable a joint use of serial histopathology images in multiple stains, we follow a two-step 

process for pathology image registration [17]. First, the global structure transformations are 

estimated with low-resolution image representations that can readily fit machine memory 

for processing. Each whole slide image is scaled down by 16 times. The serial Ki-67 and 

PHH3 IHC slides are matched to the corresponding reference H&E slide by both rigid and 

non-rigid registration sequentially. These two registration steps at the low image resolution 

result in transformations that restore global tissue rotation, translation, scale, and local tissue 

deformation. Second, low-resolution transformations are mapped to and aggregated at the 

high image resolution level. Each reference H&E slide is partitioned into a set of 8, 000 × 

8, 000 image regions of interest at the high image resolution. The mapped and aggregated 

transformations are applied to H&E image regions. After mapping and interpolation, the 

registered image regions are extracted from the serial Ki-67 and PHH3 slides at the high 

resolution. Additionally, these initial registered Ki-67 and PHH3 images are subject to a 

second round of rigid registration for final matched image triplets. We present the schema of 

the registration working pipeline in Fig. 1.

2.2 System Architecture

Presented in Fig. 2, our proposed spatial attention-based deep learning PCR prediction 

system consists of three primary modules: Cell Detection Module (CDM), Spatial Attention 

Module (SAM), and Prediction Module (PM).

Cell Detection Module: CDM is designed to recognize cell locations and types in 

H&E stained histopathology images. The high-level feature maps produced by CDM 

capture information on cell location, spatial organization, intensity, and types. Such critical 

information is provided to the next module to form spatial attention. We choose YOLO 

version 4 as the CDM backbone [18]. YOLO, as the first one-stage detection system, 

compared with two-stage detection systems, is more efficient in the global feature map 

generation [19]. With numerous modifications to the architecture, especially the feature-

pyramid-like detector header for enhanced spatial feature extractions from different scales, 

YOLOv4 is improved to accommodate object variations in size [20]. Thus, we use YOLO 

version 4 for cell detection and classification in CDM.

Spatial Attention Module: SAM consists of three blocks. In each block, there are 

sequentially two convolutional layers and one deconvolutional layer for upsampling the 

input feature maps. Informed of such information on cell location, spatial organization, 

intensity, and class label derived from the detection module, SAM generates spatial 

attention maps with each pixel value ranging from 0 to 1. These attention maps highlight 

tissue areas which the system is guided to pay special attention to. SAM includes three 

blocks, each producing a spatial attention map. The resulting spatial attention maps are 

respectively multiplied with the original pathology images and the intermediate results from 

the prediction module in a pixel-wise manner. The essence of the SAM is that it produces a 
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spatial attention map that guides the following prediction module to dynamically emphasize 

important tissue areas essential to the final PCR prediction.

Prediction Module: PM is used for making the final prediction from spatial attention-

guided serial histopathology images in multiple stains. Three different pathology images 

(H&E, Ki-67, and PHH3) multiplied with spatial attention maps are set as the input of 

the prediction module. Taking into account the effectiveness and model complexity, we use 

VGG-16 as the backbone of the prediction module because of its simplicity and efficiency 

[21]. While the final prediction target in this study is PCR, it is natural to extend this 

architecture to predict other clinical outcomes, such as residual cancer burden or overall 

survival.

2.3 Dataset and Training

Our data are pre-NAC biopsies, which were collected before neoadjuvant therapy. We define 

PCR as having no evidence of residual invasive carcinoma in both the breast tissue and 

regional lymph nodes with the Residual Cancer Burden (RCB) value being zero. Non-PCR 

covers varying levels in response with evidence of residual invasive carcinoma. Note that 

RCB value is calculated based on the lymph nodes and Primary Tumor Bed. A total of 75 

NAC treated TNBC cases are collected before neoadjuvant therapy from Dekalb Medical 

Center in Emory University Healthcare. Of these patients, 43 had PCR and 32 patients had 

residual disease (i.e. non-PCR). Formalin-fixed paraffin-embedded serial section samples for 

this study are obtained with information on clinical outcomes. The serial sections are H&E 

stained and immunohistochemically stained for Ki-67 and PHH3.

Our model training process has two steps. First, we train the Cell Detection Module 

with 868 40x H&E pathology image regions for tumor cell and TIL (Tumor-infiltrating 

lymphocytes) detection. Bounding boxes for cells of interest (53,314 tumor cells and 20,966 

TILs) are labeled and classified by expert pathologists. Non-overlapped 416 × 416 image 

patches are cropped from these image regions for training. With the optimizer stochastic 

gradient descent (SGD) and the loss function for YOLOv4 [18], CDM is trained for 200 

epochs with the learning rate of 0.001 using one NVIDIA V100 GPU. When the CDM is 

fully trained, the CDM is frozen in the later training process to avoid the overwhelming 

computation burden. For PCR prediction training, we use 1, 038 40x registered H&E, Ki-67, 

and PHH3 pathology image regions of size 8, 000 × 8, 000 in pixel. Note this data set is 

independent from the detection dataset for the CDM training. Typical registered pathology 

image triplets are presented in Fig. 3. The training set includes 455 regional images from 

35 randomly selected patients, while 583 regional images from the remaining 40 patients 

are allocated for the testing dataset. To facilitate model training, we further partition these 

registered pathology image regions into non-overlapped image patches of 416 × 416 in 

size, generating 41,157 image patches in the training set and 46,029 in the testing set, 

respectively. With trained CDM fixed, SGD as the optimizer, learning rate as 0.001 for 100 

epochs, SAM and PM are further trained with the cross-entropy loss for the PCR prediction.
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3 Experiments and Results

Our two main contributions to the PCR prediction system architecture are 1) the integrative 

use of H&E and IHC biomarker images of adjacent tissue sections and 2) spatial attention-

based prediction. To evaluate the effectiveness of these new modules, we have designed 

three other baseline systems for comparison. The first baseline system only takes H&E 

histopathology images as input and has only a prediction module. With the first system 

serving as the building block, the second model upgrades its input and processes the multi-

stained input images. By contrast, the third system for comparison takes H&E images, but 

it is equipped with the spatial attention mechanism that leverages information from the 

detection model to guide the prediction module. In other words, “single stain” systems 

are only provided with H&E stained pathology images without adjacent Ki-67 and PHH3 

images. “Prediction only” systems only have a prediction module without the cell detection 

module and spatial attention module. Finally, “spatial attention” systems retain the same 

pre-trained detection module for fair comparisons. All models are fully trained to their best 

performance with the same training and testing configuration.

In Table 1, we present detailed performance comparisons between our proposed system 

and other baseline models based on prediction accuracy, area under the curve (AUC), 

sensitivity, specificity, and balanced accuracy (BA). The baseline system taking only H&E 

stained images and including only the prediction module performs the worst, with 0.507 

and 0.622 for accuracy and AUC respectively at the image patch level. Information from 

images of adjacent tissue sections in multiple stains can improve the prediction performance 

of the baseline system to 0.635 and 0.644 for accuracy and AUC respectively. When the 

baseline system includes the spatial attention module integrating the detection with the 

prediction module, the resulting system performance is significantly improved with accuracy 

higher than 70%. Our best proposed model, by including both the multi-stain and spatial 

attention modules, achieves the best accuracy of 0.783 and AUC of 0.803, respectively. 

Although our proposed model is not the best by sensitivity, it outperforms others by BA. 

BA is considered as a more general metric as it is the arithmetic average of sensitivity 

and specificity. With the progressively improved performance demonstrated in Table 1, it 

is manifested that our proposed two innovative modules help improve the PCR prediction 

performance significantly.

Additionally, we present in Table 2 PCR prediction performance at different levels. As 

described in the dataset section, our testing image patches in 416×416 pixels are cropped 

from 583 8, 000 × 8, 000 image regions of 40 TNBC patients. The PCR prediction at the 

image region level is determined by the max voting of the patch level results from the 

region, while the prediction at the patient level is determined by the max voting of the 

region level results from that patient. As shown in Table 2, the prediction performance of our 

proposed model is superior to that of other baseline models at all levels, achieving 78.3%, 

83.7%, and 87.5% accuracy for patch, region, and patient-level prediction, respectively.
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4 Discussion

To our best knowledge, only one study so far aims at predicting PCR to neoadjuvant 

chemotherapy with histopathology images [7]. By univariate and multivariate analysis with 

15 manually designed image features, the best performance achieved by this method was 

4.46 by the metric of odds ratio [7]. By comparison, our proposed multi-stain and multi-task 

deep learning system achieves an odds ratio of 13.3 and 51 at the patch and patient-level, 

respectively.

Our model is the first work on predicting PCR with multi-stained histopathology images 

of serial tissue sections. The existing systems use only pathology images of tissue biopsies 

stained by a single stain, leading to limited accuracy. They also lack full automation for 

the prediction. As tissue-derived molecular data do not preserve high resolution spatial 

information in most cases, it has always been a challenge to integrate such information with 

histopathology features within the same tissue space. As a result, it is ideal to spatially 

map multiple molecular signatures to the same histology space, enabling multi-modal 

microscopy integrative analysis for better clinical prediction power. When it comes to PCR 

prediction, both conventional H&E and IHC biomarker pathology images play an important 

role. It has been reported that aggressive TNBCs promote cell proliferation with a faster 

cell cycling kinetics and enhances cell cycle progression [22]. This enhanced cell cycle 

kinetics can be captured by Ki67 and PHH3 stains in adjacent tissue sections. As a result, 

we design a PCR prediction system that combines multi-stained serial slides to improve 

both prediction accuracy and robustness. The superior performance of our novel multi-stain 

spatial attention system indicates that an integrated analysis of multi-stained serial tissue 

sections can substantially improve the PCR prediction for NAC TNBC patients.

Our system is also the first work on predicting PCR from pathology images using deep 

learning techniques. Specifically, we develop the spatial attention module for guided PCR 

prediction with knowledge from cell detection. Representative spatial attention maps from 

the spatial attention module are presented in Fig. 4. After the spatial attention module, 

important areas suggested for spatial attention are highlighted in red. Such attention 

guidance mechanism effectively directs the following prediction module for enhanced PCR 

prediction. In the meanwhile, human pathologists may benefit from such interpretable 

information for treatment planning in clinical practice too.

For future work, first, we will explore incorporating non-imaging features to the PCR 

prediction system, as several non-imaging clinical variables are proven to be correlated 

with the PCR. Second, since our current system requires images in three stains to be 

well registered, we will study improving the reliability of the system for unregistered 

multi-stained images. Last, besides PCR, we will expand the prediction to additional clinical 

outcomes such as recurrence and overall survival.

5 Conclusion

In this paper, we present a novel deep learning-based system for the prediction of PCR 

to neoadjuvant chemotherapy for TNBC patients. By integrating detection and prediction 
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tasks with a new spatial attention mechanism, our proposed system can capture and jointly 

use information from histopathology images of adjacent tissue sections in three stains (i.e. 

H&E, Ki-67, and PHH3). Our comparative study with three baseline models demonstrates 

progressively improved prediction performance of our system. The prediction effectiveness 

and high interpretability enabled by the spatial attention mechanism suggest its promising 

clinical potential for enhancing treatment planning in clinical settings.
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Fig. 1. 
Schema of registration working pipeline.
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Fig. 2. 
Architecture schema of our proposed multi-task deep learning system leveraging multi-

stained histopathology images of serial tissue sections.
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Fig. 3. 
Four sample cases of registered pathology images in (Top) H&E, (Middle) Ki67, and 

(Bottom) PHH3 stain.
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Fig. 4. 
Typical spatial attention maps from the spatial attention module.
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Table 1.

Comparison of PCR prediction performance of progressively improved deep learning models at the image 

patch level by metrics of accuracy, AUC, sensitivity, specificity, and balanced accuracy (BA).

Single stain + Prediction 
only

Multi-stain + Prediction 
only

Single stain + SAM 
prediction

Multi-stain + SAM 
prediction

Accuracy 0.507 0.635 0.709 0.783

AUC 0.622 0.644 0.762 0.803

Sensitivity 0.726 0.625 0.765 0.701

Specificity 0.467 0.612 0.664 0.829

BA 0.596 0.619 0.715 0.765
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Table 2.

Prediction performance comparison at patch, region, and patient-level with the number of corrected 

predictions, total cases, and accuracy.

Single stain + Prediction 
only

Multi-stain + Prediction 
only

Single stain + SAM 
prediction

Multi-stain + SAM 
prediction

Patient level 18/40 (45.0%) 27/40 (67.5%) 32/40 (80.0%) 35/40 (87.5%)

Region level 289/583 (49.6%) 387/583 (66.4%) 446/583 (76.5%) 488/583 (83.7%)

Patch level 23325/46029 (50.7%) 29248/46029 (63.5%) 32674/46029 (70.9%) 36059/46029 (78.3%)
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