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ABSTRACT: The natural compound 25,26,27-trisnor-3β-hydroxy-euphan-24-al (1)
was isolated for the first time from the bioactive extract of the leaves of Euphorbia
tanquahuete, together with the known compounds euphol, eupha-8,23-dien-3β,25-
diol, lupeol, cycloeucalenol, β-sitosterol, squalene, and 1-octacosanol. The structure
of the new compound was elucidated based on extensive analysis of spectroscopic
data and by semisynthesis from euphol. The chemical modification of the alcohol at
C3 and the side chain of euphol afforded seven derivatives (6−12). The cytotoxic
activity of the natural and semisynthetic compounds evaluated against a panel of
human cancer cell lines showed selectivity for certain cell lines and indicated that
natural compound 1 and semisynthetic 8 were the most active against leukemia
(K562) cell line.

■ INTRODUCTION
The genus Euphorbia (family Euphorbiaceae, subfamily
Euphorbioideae) is one of the largest groups of the
angiosperms comprising ∼2000 species that are distributed
worldwide.1 Its recognized morphological variety is reflected in
the great diversity of secondary metabolites, including
terpenoids, steroids, glycerols, acetophenones, and flavonoids,
inter alia, displaying a wide array of biological activities2−4

considered relevant in human health.5 Euphorbia is also
recognized as one of the most diverse genera of Mexican
vascular plants.6,7 Following our research on the bioactive
constituents of the spurge family,8,9 here we report (i) the
chemical constituents of the bioactive extract of the aerial parts
of Euphorbia tanquahuete Sesse ́ & Moc. (Euphorbiaceae), a
tree found in the central-southern region of Mexico that is used
in traditional medicine to treat bone fractures10,11 from which
we identify the cytotoxic compounds and (ii) the preparation
and preliminary cytotoxic evaluation of a series of derivatives of
euphol,12,13 the major bioactive metabolite of this plant, which
led to the discovery of selectivity and enhanced cytotoxicity of
the derivatives.

■ RESULTS AND DISCUSSION
Structural Elucidation of Isolated Compounds. The

methylene chloride/methanol extract of the aerial parts of E.
tanquahuete exhibited activity against a panel of human cancer
cells (see Table 2). This extract was subjected to successive
chromatographic procedures affording an undescribed trisnor

triterpene (1) and seven known compounds eupha-8,24-dien-
3β-ol (euphol, 2),14,15 eupha-8,23-dien-3β,25-diol (3),16,17
lupeol (4),18 cycloeucalenol (5),19 β-sitosterol,20 squalene,21
and 1-octacosanol,22,23 whose structures were confirmed by
comparison of spectroscopic data with those reported in the
literature (Figure 1).
The undescribed natural compound 1 was obtained as

colorless needles (n-hexane). Its molecular formula was
determined as C27H44O2 by HRESIMS, which showed a
pseudo-molecular ion peak at m/z 401.34118 [M + H]+ (calcd.
for C27H45O2 401.34195), indicating six unsaturations. The IR
spectrum indicated absorption bands for hydroxyl (3613 cm−1)
and carbonyl (1709 cm−1) groups. A total of 27 carbon signals
were observed in the 13C NMR spectrum (Table 1), consistent
with the found molecular formula; based on DEPT-90 and
DEPT-135 experiments, these carbons were classified as six
methyls, ten methylenes, five methines, and six quaternary
carbons including two vinylic carbons, which indicated the
presence of a tetrasubstituted olefin. The 13C spectrum also
showed a carbonyl signal at δC 203.30, justifying the absorption
band observed in the IR spectrum, and the signal at δH 9.78
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established the presence of an aldehyde. Therefore, this
compound was determined as a tetracyclic compound with a
tetrasubstituted olefin and an aldehyde, in agreement with the
number of unsaturations. The 1H NMR spectrum (Table 1)
showed five methyl singlets at δH 0.77, 0.80, 0.88, 0.95, and
1.00 (each 3H), a secondary methyl signal at δH 0.85 (3H, d, J
= 6.4 Hz), and an oxy-methine proton at δH 3.24 (1H, dd, J =
11.3, 4.4 Hz), which could be assigned, according to the
coupling constants, to a hydrogen geminal to a β-oriented
hydroxyl group at C3 of the tetracyclic triterpenes. Taken
together, this information suggested that compound 1 was a
euphane- or tirucallane-like triterpenoid with three missing
carbons. Comparison of 1H and 13C NMR data of compound 1
with our sample of eupha-8,24-dien-3β-ol (2) showed very
similar chemical shifts with a remarkable absence of the vinylic

methyl singlets in 1, indicating the loss of C25, C26, and C27,
and that the aldehyde group is located at C24.24,25 HMBC
cross-peaks of H3 (δH 3.24) with C2/C4/C5/C28/C29, of
H3-19 (δH 0.95) with C1/C5/C10/C9, of H3-18 (δH 0.77)
with C13/C12/C17/C14, and of H3-20 (δH 1.52) with C21/
C22/C17/C13 confirmed the molecular connectivity for
compound 1.
For further identification, compound 1 was semisynthesized

from eupha-8,24-dien-3β-ol (2) via oxidative cleavage of the
olefin by treatment with mCPBA followed by H5IO6, as
described by O’Keeffe et al.26 The properties of semisynthetic
1 were identical to those of the natural compound.
Furthermore, the acetylated form of compound 1 was
previously reported, and its 1H NMR is in agreement with

Figure 1. Chemical structures of natural compounds 1−5.

Table 1. 1H (400 MHz) and 13C NMR (100 MHz) Data, DEPT, and HMBC Correlations of Compound 1 in CDCl3
position δC, type δH (J in Hz) HMBC

1 35.37, CH2 1.19, 1.75, m C19, C10,
2 28.07, CH2 0.82, 1.38, m C1, C3, C4, C10
3 79.00, CH 3.24, dd (11.3, 4.4) C4, C28, C29
4 39.09, C
5 51.10, CH 1.25, dd (12.4, 2.0) C19, C28, C29
6 19.08, CH2 1.42, 1.69, m C4, C5, C10, C8, C7
7 27.80, CH2 1.38, 2.13, m C5, C6, C8, C9, C14
8 133.55, C
9 134.24, C
10 37.42, C
11 21.62, CH2 1.95, 2.07, m C8, C9, C10, C12, C13
12 31.03, CH2 1.61−1.75, m C9, C11, C13, C14, C18
13 44.28, C
14 50.19, C
15 29.86, CH2 1.22, 1.52, m C30, C13, C14, C16, C17
16 28.23, CH2 0.92−1.09, m
17 49.62, CH 1.50, m C13, C18, C20, C21, C16
18 15.68, CH3 0.77, s C12, C13, C14, C17
19 20.29, CH3 0.95, s C1, C5, C9, C10
20 35.61, CH 1.52, m C21, C22, C17, C13
21 18.94, CH3 0.85, d (6.4) C17, C20, C22
22 41.10, CH2 2.32−2.50, m C20, C23, C24
23 27.40, CH2 1.43, 1.99, m
24 203.30, CH 9.78, t (2.0) C22, C23
28 15.80, CH3 0.80, s C4, C5, C3, C29
29 28.20, CH3 1.00, s C3, C4, C5, C28
30 24.59, CH3 0.88, s C8, C13, C14, C15
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the expected chemical shift changes of H3 (δH 4.48 for the
ester and δH 3.24 for the isolated compound).14
Preparation of Semisynthetic Derivatives of Euphol

(6−12). Taking into account the functional groups of euphol
(2), we decided to modify the A ring and the side chain and to
identify the changes in the cytotoxicity of the derivatives.
Compound 2 was used as starting material for the preparation
of the semisynthetic derivatives 6−12 (Figure 2). Ring A
modifications consisted in varying the C3 functional group (as
in 6−10), and compounds 11 and 12 carried modifications at
the side chain. As mentioned previously, the oxidative cleavage
of eupha-8,24-dien-3β-ol (2) allowed the chemical correlation
to obtain a new natural compound (1).
Esters 6 and 7 were synthesized by reacting euphol (2) with

benzoyl chloride and acetic anhydride, respectively. Euphone
(8) was obtained by reaction of 2 with Jones reagent, and
ketone 8 in turn served as the starting material for the
preparation of the oxime 9. The preparation of methyl ether 10
was achieved by reaction with methyl iodide in the presence of

NaH. Allylic oxidation of euphol (2) with SeO2 afforded α,β-
unsaturated aldehyde 11. Derivative 12 was prepared by
reaction of compound 2 with mCPBA. Epoxide 12 was used in
turn for the preparation of compound 1 through oxidative
cleavage with H5IO6. Semisynthetic compounds 6−12 were
characterized by their physical and spectroscopic character-
istics. It is noteworthy that although derivatives 6−9 were
previously prepared, here we report the complete character-
ization for these compounds. Furthermore, this is the first
report for semisynthetic derivatives 10−12.
X-ray Structure Analysis. Ketone 8 and methyl ether 10

afforded appropriate crystals for X-ray diffraction by recrystal-
lization from iPrOH and MeOH, respectively. X-ray crystal
diffraction analysis confirmed the absolute configuration of
these compounds [Flack parameter: 0.09(6) and 0.09(4),
respectively], and therefore, the starting material and the other
derivatives have the connectivity and stereochemistry of an
euphane core. Inspection of the crystalline structure (Figure 3)
shows that the asymmetric unit for the crystal of derivative 8 is

Figure 2. Reaction scheme for the preparation of derivatives of euphol (2). (a) BzCl, py; (b) Ac2O, py; (c) Jones reagent; (d) NH2OH·HCl,
NaOAc; (e) CH3I, NaH; (f) SeO2; (g) mCPBA; and (h) H5IO6.

Figure 3. ORTEP drawing of X-ray structure of euphone (8) and 3-O-methyl euphol (10).
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composed of two stacked molecules, each one with a different
orientation and conformation. For both derivatives, the side
chain orientation in the crystalline structure is defined by the R
configuration of C20, which favors an anti-periplanar arrange-
ment of the hydrogens at the C17−C20 bond. This is
consistent with the conformation found in the crystalline
structure of acetyl derivative 7 reported in the literature.27

Parameters on the crystallographic information file (CIF)
format of compounds 8 and 10 were deposited at the
Cambridge Crystallographic Data Centre [CCDC2178145 (8)
and CCDC2181277 (10)] (details in the Supporting
Information).
Cytotoxic Activity. The cytotoxic activity was evaluated

for the extract, natural products 1, 2, and 5, and derivatives 6−
8, 10, and 12 as percentages of inhibition of proliferation
against the following tumor cell lines (see Table 2):
glioblastoma (U251), prostate (PC-3), leukemia (K562),
colon (HCT-15), breast (MCF-7), and lung (SKLU-1). The
cytotoxic evaluation indicated that compound 1 was the most
active among the natural products, in agreement with the
observed activity of the extract. Complementarily, the most
abundant secondary metabolites of the extract of E.
tanquahuete, euphol (2) and lupeol (5), showed activity in
some cell lines. The results also indicated remarkable
selectivity of euphol (2) and its derivatives since they did
not display activity in two cell lines (U251 and PC-3) and in
the noncancerous cell line (COS7). The IC50 values are
determined for compounds 1 and 8 and are shown in Table 3,
indicating that ketone 8 displayed better activity than the
natural product 1 in the leukemia cell line.

■ CONCLUSIONS
Squalene, 1-octacosanol, β-sitosterol, and compounds 1−5
have been reported for the first time from the aerial parts of E.
tanquahuete, compound 1 being identified as a new natural

product displaying high toxicity against some cancer cell lines.
Derivatives 6−12 were prepared from the majoritarian
constituent, euphol (2). The cytotoxic evaluation of euphol
(2) and its derivatives (6−8, 10, and 12) showed that they
were inactive against U251 and PC-3 cell lines. Nevertheless,
all of the semisynthetic derivatives showed higher cytotoxicity
than the parent natural compound against the K562 and
SKLU-1 cell lines, displaying significant selectivity. Derivative 8
showed the best activity in the leukemia cell line (K562).
Therefore, compound 1 and the semisynthetic derivatives of
the natural compound euphol (2) represent compounds of
interest for further investigation as selective antiproliferative
agents for certain types of cancer.

■ MATERIALS AND METHODS
General Experimental Procedure. Melting points were

determined in a Cole−Palmer apparatus and are uncorrected.
TLC was performed on Merck aluminum-backed plates coated
with 0.2 mm thick silica gel 60 F254. Column chromatography
was carried out on silica gel 70−230 or 230−400 mesh from
Sigma-Aldrich, eluting with mixtures of increasing polarity of n-
hexane/methylene chloride or n-hexane/ethyl acetate. Elec-
tronic impact mass spectra (EIMS) were obtained in a JEOL
JMS-AX505HA spectrometer with an ionization potential of
70 eV. DART and high-resolution electro-spray ionization
mass spectra (HRESIMS) were obtained in an AccuTOF JMS-
T100LC spectrometer. IR spectra were recorded using a
Bruker Tensor 750 FT-IR spectrophotometer. The specific
rotation was determined on a PerkinElmer 343 polarimeter
using chloroform as the solvent and sodium D line as the
source of light. 1H, 13C, and bidimensional NMR spectra were
recorded in Bruker Avance III (400/100 MHz), Bruker Fourier
(300/75 MHz), and Jeol Eclipse (300/75 MHz). HPLC was
carried out in a Thermo Scientific Ultimate 3000 chromatog-
rapher using analytical C18 (5 μm, 100 Å, 15 × 4.6 mm, 5
μm). The HPLC-grade solvents employed (iPrOH, MeOH,
MeCN) were from the brand Fermont. The X-ray data were
collected on a Bruker APEX II Duo diffractometer.
Plant Material. The aerial parts of E. tanquahuete were

collected in October 2014 at the State Park “El Texcal” in the
municipality of Jiutepec, Morelos, Mexico. The plant was
identified as E. tanquahuete (synonym: E. fulva) by Prof. Clara
H. Ramos (Instituto de Biologiá, UNAM) and a voucher
specimen was deposited in the Herbario Nacional de Mex́ico
(MEXU) with registry number 1394140.

Table 2. Cytotoxic Activities (% of Inhibition) of the Extract, Natural Products, and Derivativesa

sample U251 PC-3 K562 HCT-15 MCF-7 SKLU-1 COS7

CH2Cl2/CH3OH 1:1 (leaves extract) 52.31 43.6 74.63 34.5 62.45 58.35 NP
(1) 59.8 87.2 100 74.6 61.4 88.4 22.0
euphol (2) NA NA 26.9 2.18 36.62 4.9 NA
lupeol (5) 27.3 50.7 48.8 10.4 22.3 13.0 NP
(6) NA NA 33.1 15.6 1.3 10.9 NA
(7) NA NA 39.8 39.4 20.1 40.0 NA
(8) NA NA 95.0 12.2 1.5 31.3 17.2
(10) NA NA 57.8 4.3 4.3 21.6 NA
(12) NA NA 34.1 16.4 NA 4.6 NA
etoposideb 91.1c 51.4d 60.2d 80.8d 56.8d 81.7d NP

NA: no activity; ND: not determined. Human tumor cell lines: U251 (glioblastoma), PC-3 (prostate), K562 (leukemia), HCT-15 (colon), MCF-7
(breast), and SKLU-1 (lung). COS7: noncancerous cell line of monkey kidney. aConcentrations: 50 μg/mL for the extract, 50 μM for pure
compounds, DMSO vehicle. bPositive control. cConcentration at 10 μM. dConcentration at 31 μM.

Table 3. IC50 (μM) for Compounds 1 and 8

cancerous cell lines

sample U251 K562 HCT-15 SKLU-1

(1) 30.9 ± 1.3 18.8 ± 0.5 39.0 ± 2.9 39.9 ± 1.6
(8) ND 13.6 ± 0.7 ND ND
etoposide 2.4 ± 0.2 2.2 ± 0.7 4.8 ± 0.5 2.6 ± 0.3

ND: not determined. Human tumor cell lines: U251 (glioblastoma),
K562 (leukemia), HCT-15 (colon), and SKLU-1 (lung).
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Extraction and Isolation. The air-dried powdered leaves
(0.65 kg) of E. tanquahuete were extracted by maceration with
a mixture of methylene chloride/methanol (DCM/MeOH)
1:1 (r.t., three times, 24 h each), affording a polar extract
(328.5 g).
The methylene chloride/methanol extract was fractionated

by open-column chromatography using a gradient with a
mixture of n-hexane/EtOAc from 100:0 to 0:100 and washing
the column with MeOH, affording eight major fractions (A−
H). Fraction B (which was eluted with n-hexane/EtOAc 19:1)
was further fractionated by column chromatography (CC)
with a mixture of n-hexane/CHCl3 of increasing polarity to
afford squalene as a colorless oil (175 mg).21 From fraction D
precipitated a white solid that after filtration and recrystalliza-
tion from n-hexane/EtOAc afforded 1-octacosanol (1.15
g).22,23 The mother liquors of fraction D were concentrated
and subjected to further CC to yield six subfractions (D1−
D6). Subsequent CC of subfraction D2 afforded euphol (2,
1.35 g) as the majoritarian constituent. Subfraction D3
contained a mixture of 2 and a second component that was
identified as lupeol (5, 234 mg).18 Subfraction D4 contained a
mixture of euphol, lupeol, and a third component that after
successive column chromatography was identified as cyclo-
eucalenol (4, 10 mg).19 Subfraction D5 contained two major
components that were isolated by preparative TLC using a
mixture of n-hexane/DCM/EtOAc/EtOH 70:20:9:1. These
compounds were identified as 25,26,27-trisnor-3β-hydroxy-
eupha-24-al (1, 7 mg) and eupha-8,23-dien-3β,25-diol (3, 6
mg) according to the extensive spectroscopic analysis and
comparison with data reported in the literature.16,17 The purity
of the compounds (>96%) was determined by HPLC.
Evaluation of Cytotoxic Activity. The cytotoxicity of the

extract and the pure compounds was tested in six human
tumor cell lines as percent inhibition of proliferation using the
colorimetric method of sulforhodamine B (SRB, protein
binding dye).28 Human tumor cell lines tested were central
nervous system (U251), prostate (PC-3), leukemia (K562),
colon (HCT-15), breast (MCF-7), and lung (SKLU),
provided by the National Cancer Institute (NCI). Colored
solutions were extracted, and optical densities were read on an
Ultra Reader of Microplate (Elx 808, Bio-Tek Instruments,
Inc.) at a wavelength of 515 nm.
Single-Crystal X-ray Diffraction Analysis. Crystallo-

graphic data for compounds 8 and 10 were collected on a
Bruker SMART APEX DUO three-circle diffractometer
equipped with an Apex II CCD detector using Cu Kα
radiation (λ = 1.54178 Å, Incoatec Iμ microsource and Helios
optic monochromator) for the correct estimation of the
anomalous dispersion and an adequate determination of the
absolute structure parameter due to the nature of the sample
(only carbon, oxygen, and hydrogen atoms), at −173 °C.
Suitable crystals were coated with Paratone hydrocarbon oil,
picked up with a nylon cryoloop, and mounted on the
diffractometer.
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