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UBXD8 mediates mitochondria-associated
degradation to restrain apoptosis and mitophagy
Jing Zheng1,2,3, Yu Cao2,3,4, Jun Yang2,3,5 & Hui Jiang1,2,3,6,*

Abstract

The hexameric AAA-ATPase valosin-containing protein (VCP) is
essential for mitochondrial protein quality control. How VCP is
recruited to mammalian mitochondria remains obscure. Here we
report that UBXD8, an ER- and lipid droplet-localized VCP adaptor,
also localizes to mitochondria and locally recruits VCP. UBXD8
associates with mitochondrial and ER ubiquitin E3 ligases and
targets their substrates for degradation. Remarkably, both
mitochondria- and ER-localized UBXD8 can degrade mitochondrial
and ER substrates in cis and in trans. UBXD8 also associates with
the TOM complex but is dispensable for translocation-associated
degradation. UBXD8 knockout impairs the degradation of the pro-
survival protein Mcl1 but surprisingly sensitizes cells to apoptosis
and mitochondrial stresses. UBXD8 knockout also hyperactivates
mitophagy. We identify pro-apoptotic BH3-only proteins Noxa, Bik,
and Bnip3 as novel UBXD8 substrates and determine that UBXD8
inhibits apoptosis via degrading Noxa and restrains mitophagy via
degrading Bnip3. Collectively, our characterizations reveal UBXD8
as the major mitochondrial adaptor of VCP and unveil its role in
apoptosis and mitophagy regulation.
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Introduction

Mitochondria-associated degradation (MAD) ubiquitinates mito-

chondrial outer membrane (MOM) proteins and targets them to

proteasome for degradation (Karbowski & Youle, 2011; Zheng

et al, 2019; Song et al, 2021). MAD critically regulates mitochon-

drial quality control and function. In yeast, Doa1-mediated MAD

regulates ER-mitochondria tethering and antagonizes mitochondrial

oxidative stress and cell death (Wu et al, 2016; Saladi et al, 2020).

In Drosophila, ubiquitin E3 ligases Parkin and MUL1 ubiquitinate

and degrade mitofusin to prevent mitochondrial hyperfusion and

muscle degeneration (Ziviani et al, 2010; Yun et al, 2014). In mam-

malian cells, stress-induced degradation of Mcl1 initiates apoptosis

(Zhong et al, 2005; Inuzuka et al, 2011; Wertz et al, 2011). Parkin-

mediated degradation of mitofusin (Tanaka et al, 2010) and

MARCH5-mediated degradation of FUNDC1 (Chen et al, 2017) regu-

late mitophagy.

A key component of MAD is the hexameric AAA-ATPase VCP

(Cdc48 in yeast), which hydrolyzes ATP to dislocate ubiquitinated

MOM proteins out of membrane and transfers them to the protea-

some (Karbowski & Youle, 2011; Zheng et al, 2019). VCP mutations

cause inclusion body myopathy, Paget’s disease of the bone, and

frontotemporal dementia (IBMPFD) as well as familial amyotrophic

lateral sclerosis (fALS) in human (Watts et al, 2004; Johnson

et al, 2010). Mitochondrial damage and functional impairment are

prominent in VCP-mutant organisms including yeast, drosophila,

mouse, and human (Braun et al, 2006; Custer et al, 2010; Chang

et al, 2011; Yin et al, 2012; Bartolome et al, 2013; Kim et al, 2013;

Ludtmann et al, 2017; Zhang et al, 2017).

VCP is an ATP-dependent unfoldase that has thousands of

clients; it is assisted by an array of cofactors to recruit different sub-

strates (van den Boom & Meyer, 2018). In yeast, Doa1 is a soluble

Cdc48 adaptor that specifically recognizes ubiquitinated MOM pro-

teins and targets them for degradation (Wu et al, 2016; Saladi

et al, 2020). Ubx2 is initially identified as an ER-localized Cdc48

cofactor that mediates ER-associated degradation (ERAD) in yeast

(Neuber et al, 2005; Schuberth & Buchberger, 2005). Recently, it

was reported that Ubx2 also localizes to mitochondria and associ-

ates with the TOM complex. TOM-associated Ubx2 recruits Cdc48 to

remove stalled precursor proteins, a process named translocation-

associated degradation (Martensson et al, 2019).

In contrast to yeast, the mitochondrial VCP adaptor in mam-

malian cells remains poorly characterized. Here we identify UBXD8

as the major mitochondrial adaptor of VCP. We have analyzed the

complex formation and characterized the substrates of UBXD8. Our

study mechanistically links UBXD8 to apoptosis and mitophagy reg-

ulation in mammalian cells.
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Results

UBXD8 dually localizes to mitochondria and the
endoplasmic reticulum

In ongoing projects in the lab, we have purified ubiquitinated proteins

from the mitochondrial fraction and determined protein identity by

mass spectrometry. Interestingly, UBXD8 is enriched in our mass spec-

trometry results (unpublished results). UBXD8 contains an N-terminal

UBA domain to interact with ubiquitinated proteins, a hairpin domain

to associate with membrane, a UAS domain, and a C-terminal UBX

domain to associate with VCP (Fig 1A). UBXD8 is a VCP adaptor that

localizes to the ER and lipid droplets, where it assembles with ubiqui-

tin E3 ligase complexes to mediate ER- and lipid droplet-associated

degradation (Mueller et al, 2008; Lee et al, 2010; Christianson

et al, 2011; Suzuki et al, 2012; Olzmann et al, 2013; Schrul &

Kopito, 2016). We thus decided to examine UBXD8 localization.

Three VCP adaptors contain a hairpin domain or a transmembrane

segment to associate with membranes: UBXD8, UBXD2 (Liang

et al, 2006), and UBXD6 (Madsen et al, 2011; Fig 1A). These proteins

were N-terminally tagged with a FLAG tag and overexpressed in U2OS

cells. FLAG-UBXD8 localized strongly to mitochondria and weakly to

the ER as shown by immunofluorescence analysis (Fig 1B). In contrast,

FLAG-UBXD2 and FLAG-UBXD6 exclusively localized to the ER

(Fig 1B). We further generated a FLAG-UBXD8 knockin clone in U2OS

cells. Immunofluorescence analysis showed that endogenously tagged

UBXD8 also dominantly localizes to mitochondria (Fig 1C). Previously,

the dominant ER and lipid droplet localization of UBXD8 was deter-

mined by immunofluorescence staining with a home-made polyclonal

antibody (Mueller et al, 2008; Olzmann et al, 2013) or with commer-

cial polyclonal antibodies (16251-AP, Proteintech, (Schrul &

Kopito, 2016); Goat anti-ETEA/UBXD8, Santa Cruz, (Suzuki

et al, 2012)). The staining patterns of these antibodies were not verified

by UBXD8 knockout. We obtained a monoclonal UBXD8 antibody

(#34945, CST) for immunofluorescence staining. Endogenous UBXD8

had strong mitochondrial localization in both U2OS and HeLa cells

(Fig 1D and E). UBXD8 localized to the ER more apparently in

HeLa cells than in U2OS cells (Fig 1D and E). Importantly, the speci-

ficity of the antibody was confirmed by UBXD8 knockout (DUBXD8) in
HeLa cells (Fig 1E). Therefore, endogenous UBXD8 does localize to

mitochondria.

UBXD8 associates with the TOM complex but is dispensable for
translocation-associated degradation

While this work was ongoing, a paper reported that Ubx2, the yeast

homolog of UBXD8, associates with the TOM complex to mediate

translocation-associated degradation (Martensson et al, 2019). We

purified mitochondrial fractions from HeLa cells and lysed them

with buffer containing 1% digitonin to preserve membrane protein

complexes. Under this condition, FLAG-UBXD8 pulled down VCP

and the TOM complex components Tom40, Tom70, and Tom22

(Fig EV1A). FLAG-UBXD8-UBX*, which carries four point mutations

(K367A, F407A, P408G, R409A) in the UBX domain to disrupt the

UBXD8–VCP interaction (Dreveny et al, 2004), did not pull down

VCP but still immunoprecipitated the TOM complex (Fig EV1A),

suggesting the interaction is independent of VCP binding.

To examine if UBXD8 facilitates translocation-associated degra-

dation, we treated WT and DUBXD8 cells with carbonyl cyanide m-

chlorophenylhydrazone (CCCP) to depolarize mitochondria and

arrest precursor import. We identified four mitochondrial proteins

with clear precursor accumulation on CCCP treatment: AIF, Smac,

and exogenously expressed Cox5A-FLAG and Oxa1-FLAG (Fig

EV1B). The precursors of these proteins accumulated to similar

levels in both WT and DUBXD8 cells on 4 h of CCCP treatment and

were degraded in similar kinetics upon CCCP plus CHX treatment

(Fig EV1B).

In case acute CCCP treatment is too harsh and has caused the

rapid overaccumulation of precursors that are beyond the capacity

of UBXD8 to remove, we gradually depolarized mitochondria by

depleting mtDNA with ethidium bromide (EB). Ubiquitin signals sig-

nificantly accumulated in mitochondrial fractions after 12 days of

EB treatment, but no difference was observed between WT and

DUBXD8 cells (Fig EV1C). Therefore, UBXD8 seems not essential for

translocation-associated degradation in mammalian cells.

UBXD8 forms complexes with mitochondrial and endoplasmic
reticulum ubiquitin E3 ligases and recruits valosin-containing
protein to mitochondria and the endoplasmic reticulum

To examine the protein complex formation of UBXD8, we purified

mitochondrial fraction from HeLa cells and performed a blue native

gel analysis. The specificity of UBXD8 signal was confirmed by

UBXD8 knockout (Fig 2A). UBXD8 distributed in a wide molecular

range from 200 to 1,236 KD (Fig 2A), indicating UBXD8 may form

complex with diverse machineries. To examined if UBXD8 associ-

ates with mitochondrial and ER ubiquitin E3 ligases, we overex-

pressed two mitochondrial ubiquitin E3 ligases 3HA-MARCH5

(Karbowski et al, 2007) and 3HA-MUL1 (Li et al, 2008), as well as

an ER ubiquitin E3 ligase 3HA-RNF185 (El Khouri et al, 2013). Anti-

HA immunoprecipitation showed that all the ubiquitin E3 ligases

pulled down endogenous UBXD8, particularly under MG132 (pro-

teasome inhibitor) treatment, but none of them pulled down UBXD2

(Fig 2B). We further generated a FLAG-UBXD8 knockin HEK293T

cell line and performed anti-FLAG immunoprecipitation. FLAG-

UBXD8 pulled down endogenous MARCH5 and RNF185 (Fig 2C).

These results demonstrate that UBXD8 associates with mitochon-

drial and ER ubiquitin E3 ligases.

▸Figure 1. UBXD8 dually localizes to mitochondria and the endoplasmic reticulum (ER).

A Schematic of the domain structure and membrane topology of UBXD8, UBXD2, and UBXD6. UBA, ubiquitin-associated; HP, hairpin; UAS, ubiquitin associating; UBX,
Ubiquitin regulatory X; CC, coiled-coil.

B Immunofluorescence analysis of exogenously expressed FLAG-UBXD8, FLAG-UBXD2, and FLAG-UBXD6 in U2OS cells. Scale bar, 5 lm.
C Schematic, western blot, and immunofluorescence analysis of the 3 × FLAG-UBXD8 knockin U2OS cell line. Scale bar, 5 lm.
D Immunofluorescence analysis of endogenous UBXD8 in U2OS cells. Scale bar, 5 lm.
E Immunofluorescence analysis of endogenous UBXD8 in WT and DUBXD8 HeLa cells. Scale bar, 5 lm.

Data information: In (B–E), mitochondria were visualized by anti-Tom20 immunostaining; ER was labeled by ER-DsRed or by anti-PDI immunostaining.
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To examine if UBXD8 recruits VCP to mitochondria and the

ER, we purified the mitochondria-enriched and ER-enriched

fractions (Fig 2D). UBXD8 knockout did not affect cellular VCP

level but significantly reduced mitochondrial and ER VCP

levels (Fig 2D and E). We then rescued DUBXD8 cells with

wild-type (WT) UBXD8 or the UBX* mutant. Both WT and

mutant UBXD8 were expressed at much higher levels than

endogenous UBXD8. Overexpression of WT UBXD8 significantly

increased mitochondrial and ER VCP levels, whereas overex-

pression of the UBX* mutant had no such effect (Fig 2D and

E). Thus, UBXD8 mediates VCP recruitment to mitochondria

and the ER.
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Figure 2. UBXD8 associates with mitochondrial and endoplasmic reticulum (ER) ubiquitin E3 ligases and recruits VCP to mitochondria and the ER.

A Blue native gel analysis of UBXD8 in mitochondrial fractions purified from WT and DUBXD8 HeLa cells.
B Immunoprecipitation analysis of UBXD8 interaction with mitochondrial (MARCH5 and MUL1) and ER (RNF185) ubiquitin E3 ligases. HeLa cells were infected with

lentivirus to stably express HA-tagged ubiquitin E3 ligases. Whole cell lysates were prepared for anti-HA immunoprecipitation.
C Immunoprecipitation analysis of UBXD8 interaction with MARCH5 and RNF185. Whole cell lysates from 3 × FLAG-UBXD8 knockin HEK293T cells were prepared for

anti-FLAG immunoprecipitation. MARCH5 and RNF185: short exposure for whole cell lysate blots, long exposure for FLAG-IP blots.
D Fractionation analysis of UBXD8’s effect on VCP recruitment to mitochondria and the ER. Whole cell lysate, mitochondria, and ER fractions were purified (see

Materials and Methods for detail) from WT, DUBXD8, and DUBXD8 HeLa cells rescued with UBXD8 or the UBX* mutant. UBX*-UBXD8 carries four point mutations
(K367A, F407A, P408G, R409A) in the UBX domain to disrupt the UBXD8-VCP interaction. For each sample, 5 lg proteins were loaded for western blot analysis.

E Quantitative analysis of VCP levels in the mitochondria and ER fractions from the indicated HeLa cells. Data are shown as mean � SE from three biological repeats.
Statistics: one-way ANOVA; **P < 0.01, ***P < 0.001.
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Both UBXD8 and UBXD2 (endoplasmic reticulum
valosin-containing protein adaptor) participate in
mitochondrial protein degradation

MiD49 and Mcl1 are two substrates of MARCH5 (Xu et al, 2016;

Cherok et al, 2017). Both proteins accumulated in DMARCH5 HeLa

cells (Fig 3A). MARCH5 knockout almost completely blocked

MiD49 degradation but only partially delayed Mcl1 degradation as

demonstrated by the cycloheximide (CHX, protein synthesis inhi-

bitor) chasing experiment (Fig 3A and B). This is because multiple

ubiquitin E3 ligases are involved in Mcl1 degradation (Zhong

et al, 2005; Inuzuka et al, 2011; Wertz et al, 2011). UBXD8 knock-

out in HeLa cells delayed Mcl1 degradation (Fig 3C and D). As a

control, UBXD2 knockout in both WT and DUBXD8 cells did not

affect Mcl1 degradation (Fig 3C and D). But to our surprise, MiD49

degradation was delayed by the knockout of either UBXD8 or

UBXD2 and was further delayed by the knockout of both proteins

(Fig 3E and F). Immunofluorescence analysis showed that MiD49

maintained mitochondrial localization in DUBXD8 and DUBXD2
cells (Fig 3G), suggesting that ER-localized UBXD2 degrades mito-

chondrial MiD49 in trans. Because MiD49 localizes to the

mitochondria-ER contract sites to mediate mitochondrial fission

(Elgass et al, 2015), the proximity between mitochondria and the

ER at the contact sites may facilitate MiD49 degradation by UBXD2.

Taken together, both mitochondrial and ER VCP adaptors partici-

pate in mitochondrial protein degradation.

UBXD8 degrades mitochondrial and endoplasmic reticulum
substrates in cis and in trans

Stimulated by the unexpected working mode of UBXD2, we investi-

gated whether UBXD8 can degrade substrates in cis and in trans as

UBXD2. We replaced the hairpin domain of UBXD8 by the mito-

chondrial targeting sequence of yeast Fzo1 (aa 702–761, codon-

optimized) to generate mitochondrial UBXD8 (mito-UBXD8), and

replaced the harpin domain and its flanking sequences of UBXD8 by

that of UBXD2 to generate ER-UBXD8 (Fig 4A). Fractionation experi-

ments showed that mito-UBXD8 has enhanced mitochondrial local-

ization and ER-UBXD8 has enhanced ER localization as compared

with WT UBXD8 (Fig 4B). However, because of the extensive

mitochondria-ER tethering (Phillips & Voeltz, 2016), we could not

completely separate mitochondria and ER by fractionation. We thus

performed immunofluorescence analysis and found that FLAG-mito-

UBXD8 exclusively localized to mitochondria and FLAG-ER-UBXD8

exclusively localized to the ER (Fig 4C).

Insig1 is an ER-localized UBXD8 substrate (Lee et al, 2008).

UBXD8 knockout blocked the degradation of Insig1-FLAG (Fig EV2A

and B). Insig1-FLAG localized to the ER in both WT and DUBXD8

HeLa cells as shown by immunofluorescence analysis (Fig EV2C).

Interestingly, both mito-UBXD8 and ER-UBXD8 restored the degra-

dation of Mcl1 (mitochondrial UBXD8 substrate) and Insig1-FLAG

(ER UBXD8 substrate) in DUBXD8 HeLa cells (Fig 4D and E). Collec-

tively, these results establish that mitochondrial and ER VCP adap-

tors can work in cis or in trans to degrade their substrates (Fig 4F).

UBXD8 knockout sensitize cells to mitochondrial stresses and
apoptotic insults

To understand the mitochondrial function of UBXD8, we challenged

cells with multiple mitochondrial stressors. DUBXD8 cells grew nor-

mally as WT cells under DMSO treatment, but showed strong

growth inhibition under oligomycin (complex V inhibitor) or chlo-

ramphenicol (mitochondrial translation inhibitor) treatment; this

phenotype was rescued by UBXD8 re-expression (Fig 5A and B).

DUBXD8 HeLa cells also showed severe growth inhibition and cell

death upon mtDNA depletion (EB treatment; Fig 5C). UBXD8 over-

expression in DUBXD8 HeLa cells not only rescued these defects but

also enhanced cell proliferation under EB treatment (Fig 5C). Thus,

UBXD8 protects cells against mitochondrial stresses.

Because UBXD8 knockout delays Mcl1 degradation, we won-

dered if DUBXD8 HeLa cells are resistant to apoptosis. However,

two chemotherapeutic drugs, doxorubicin (Doxo) and actinomycin

D (ActD), induced faster and stronger cell death in DUBXD8 cells

(Fig 5D). The cell death is apoptosis because DBAX DBAK HeLa

cells showed complete resistance to these two drugs (Fig EV3A).

Western blot analysis showed that both drugs induced stronger

caspase-3 activation and PARP cleavage in DUBXD8 cells (Fig 5E),

indicating excessive apoptosis. FACS analysis of phosphatidylserine

externalization (annexin-V-FITC staining, early apoptosis marker)

and plasma membrane breakage (PI staining, later apoptosis

marker) confirmed that DUBXD8 HeLa cells had enhanced apoptosis

upon Doxo or ActD treatment (Fig EV3B and C). The enhanced

apoptosis in DUBXD8 cells was rescued by WT, mito-, and ER-

UBXD8 (Figs 5D and E, and EV3D) but not by the UBX* mutant

(Fig EV3E), demonstrating that VCP recruitment is critical for

UBXD8 to restrain apoptosis. In another cell line MCF-7, UBXD8

knockout also sensitized cells to drug-induced cell death (Fig 5F),

suggesting the role of UBXD8 to restrain apoptosis is not cell type

specific.

In another assay of long-term colony formation, we challenged

HeLa cells with Doxo for 2 h and ActD for 4 h and then withdrew

the drugs and continuously cultured the drug-treated cells for

21 days. DUBXD8 cells formed fewer surviving colonies than WT

cells; UBXD8 re-expression completely rescued colony formation in

DUBXD8 cells (Fig 5G). Together, these results demonstrate that

UBXD8 antagonizes apoptosis induced by chemotherapeutic drugs.

◀ Figure 3. Both UBXD8 and UBXD2 (ER VCP adaptor) participate in mitochondrial protein degradation.

A, B Western blot (A) and quantitative (B) analyses of MiD49 and Mcl1 degradation in WT and DMARCH5 HeLa cells. Cycloheximide (CHX: 200 lg/ml; protein synthesis
inhibitor); MG132: 20 lM, proteasome inhibitor.

C, D Western blot (C) and quantitative (D) analyses of Mcl1 degradation in the indicated HeLa cells.
E, F Western blot (E) and quantitative (F) analyses of MiD49 degradation in the indicated HeLa cells.
G Immunofluorescence analysis of MiD49-FLAG localization in the indicated HeLa cells. Scale bar, 5 lm.

Data information: Data are shown as mean � SE from three biological repeats (B, D, F). Statistics: two-tailed unpaired Student’s t-test (B, D, F); *P < 0.05, **P < 0.01,
***P < 0.001, n.s., not significant.

6 of 17 EMBO reports 23: e54859 | 2022 � 2022 The Authors

EMBO reports Jing Zheng et al



A

HP UASUBA UBX
1 63 91 113 126 275 445350

UBXD8

mito-UBXD8 TM TM

organelle
lumen

cytosol

UBXD8

U
BA

U
AS

U
BX

U
BA

U
BX

U
AS

mito-UBXD8

(aa 702-761 of Fzo1)

HP UASUBA UBX
1 63 91 113 126 275 445350

UBXD8

ER-UBXD8 (aa 406-438 of UBX2)

ER-UBXD8

U
BA

U
AS

U
BX

85 122

HP

FLAG-Mito-UBXD8

FLAG-Mito-UBXD8

Tom20

ER-DsRed

Merged

Merged

FLAG-ER-UBXD8

FLAG-ER-UBXD8

ER-DsRed

Tom20

Merged

Merged

C

**

***
* ***55

40

40
35

Vector WT-UBXD8
0 1 2 0 1 2 0 1 2 0 1 2

Mito-UBXD8 ER-UBXD8
ΔUBXD8

MW:

FLAG (Insig1)

Mcl1

UBXD8
Actin 0 1 2

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2
0

0.2

0.4

0.6

0.8

1

1.2 ΔD8, vector
ΔD8, WT-D8
ΔD8, mito-D8
ΔD8, ER-D8

**

**

B

D

**
* ***

***

****

E
Relative Mcl1 level Relative Insig1-FLAG level

55

40

55

70

Tom40
(mito)

PDI
(ER)

UBXD8

Hsc70
(cytosol)

W
C

L

M
ito

ER

WT

W
C

L

M
ito

ER

Mito-D8
ΔUBXD8

W
C

L

M
ito

ER

WT-D8

W
C

L

M
ito

ER

ER-D8
ΔUBXD8

(hour)CHX:

MW:

(hour) (hour)
CHX CHX

F

ER

mito
poly-ubiquitin

UBXD8-VCP

UBXD8-VCP

UBXD2-VCP

M
iD

49

In
si

g1

M
cl

1

Figure 4. UBXD8 degrades mitochondrial and endoplasmic reticulum (ER) substrates in cis and in trans.

A Schematic of mito-UBXD8 and ER-UBXD8.
B Fractionation analysis of the subcellular localization of mito-UBXD8 and ER-UBXD8. Whole cell lysate, mitochondria, and ER fractions were purified from the indi-

cated HeLa cells. Exogenously expressed mito-UBXD8 has similar expression level with endogenous UBXD8 in WT cells; exogenously expressed WT UBXD8 and ER-
UBXD8 have similar expression levels.

C Immunofluorescence analysis of mito-UBXD8 and ER-UBXD8 localization in U2OS cells. Scale bar, 5 lm.
D, E Western blot (D) and quantitative (E) analyses of Mcl1 degradation in the indicated HeLa cells. DUBXD8 HeLa cells were rescued with vector, WT-, mito-, and ER-

UBXD8. Data are shown as mean � SE from three biological repeats (E). Statistics: two-tailed unpaired Student’s t-test (E); *P < 0.05, **P < 0.01, ***P < 0.001.
F Cartoon illustration of the substrate degradation by mitochondrial and ER adaptor-VCP complexes.
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UBXD8 mediates the degradation of BH3-only proteins Noxa,
Bnip3, and Bik

Because apoptosis is critically regulated by the balance of pro-

survival and pro-death BH3-domain containing proteins (Huang &

Strasser, 2000; Giam et al, 2008), we examined the protein levels

of BH3 family proteins in HeLa cells under Doxo treatment.

Among all the examined proteins (pro-survival proteins Mcl1,

Bcl-2, and Bcl-xL; pro-death proteins Bid, Puma, Bim, Bad, Blk,

Noxa, Bik, Bnip3, Nix, Bak, and Bax), mitochondrial pro-death

BH3-only proteins Noxa (Oda et al, 2000) and Bnip3 (Chen

et al, 1997), and the ER pro-death BH3-only protein Bik (Boyd

et al, 1995; Germain et al, 2005) accumulated in DUBXD8 cells

before and after Doxo treatment (Fig 6A). Their aberrant accumu-

lation was reduced by UBXD8 re-expression in DUBXD8 cells

(Fig 6A).
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Noxa and Bik are ubiquitinated and degraded by the culin5 ubiq-

uitin E3 ligase (Zhou et al, 2017; Chen et al, 2019); Bnip3 is also a

substrate of the ubiquitin proteasome pathway (Poole et al, 2021).

UBXD8 may be a common factor mediating their degradation.

Indeed, the mRNA levels of Noxa, Bnip3, and Bik were not signifi-

cantly altered by UBXD8 knockout (Fig EV4A). CHX chasing experi-

ment confirmed that the degradation of these proteins was impaired

in DUBXD8 cells and was restored by the re-expression of WT, mito-

, and ER-UBXD8 (Figs 6B and C, and EV4B and C), but not by the

UBX* mutant (Fig EV4D and E). Furthermore, VCP knockdown sig-

nificantly inhibited the degradation of Noxa, Bnip3, and Bik

(Fig EV4F and G). Therefore, UBXD8 mediates the degradation of

Noxa, Bik, and Bnip3 via recruiting VCP.

UBXD8 restrains apoptosis via Noxa degradation

To examine the role of Noxa, Bik, and Bnip3 in Doxo-induced apop-

tosis, we generated DNOXA, DBIK, and DBNIP3 HeLa cells (Fig 6D).

DNOXA and DBNIP3 cells showed resistance to Doxo-induced apop-

tosis, and DBIK cells had similar sensitivity as WT cells (Fig 6E).

We next knocked out these three BH3-only proteins individually or

in combination in DUBXD8 HeLa cells (Fig 6F). Knockout of Bnip3

or Bik did not affect the apoptosis sensitivity of DUBXD8 cells

(Fig 6G). But Noxa knockout significantly increased the apoptosis

resistance of DUBXD8 cells in response to Doxo treatment (Fig 6G).

The DUBXD8 DNOXA DBIK DBNIP3 quadruple knockout cells had

similar apoptosis sensitivity as DUBXD8 DNOXA cells (Fig 6G).

These results clearly demonstrate that the accumulation of Noxa but

not Bnip3 or Bik sensitizes DUBXD8 cells to apoptosis.

UBXD8 restrains mitophagy via Bnip3 degradation

In the PINK1-Parkin mitophagy pathway, VCP is recruited to mito-

chondria after Parkin-mediated ubiquitination of MOM proteins and

is required for mitofusin degradation and the subsequent mitophagy

(Tanaka et al, 2010; Kim et al, 2013). We thus examined if UBXD8

plays a role in mitophagy. We stably expressed GFP-Parkin in HeLa

cells. CCCP treatment induced the rapid degradation of mitofusins

and Tom70 and a relatively slower degradation of other proteins

from all the mitochondrial compartments; this process was not

impaired by UBXD8 knockout (Fig EV5A and B). These results

demonstrate that UBXD8 is dispensable for Parkin-mediated

mitophagy.

However, we were surprised to observe that DUBXD8 HeLa cells

have enhanced mitophagy in the absence of Parkin overexpression.

We used the mitoKeima reporter, a pH-sensitive protein targeted to

mitochondrial matrix, to monitor mitophagy (Katayama et al, 2011;

Sun et al, 2015). MitoKeima has an emission spectrum that peaks at

620 nm and a bimodal excitation at 440 nm (at pH 7.2) and at

586 nm (at pH 4.0; Fig 7A). We labeled the emission from 405 nm

excitation as green pseudo-color and the emission from 561 nm

excitation as red pseudo-color (Fig 7B). Fluorescence imaging

showed that DUBXD8 cells had more mitolysosomes (red dots

pointed by white arrows) than WT cells (Fig 7B). Quantitative anal-

ysis of mitophagy events showed that DUBXD8 cells had a twofold

increase in the percentage of cells with mitolysosomes and a twofold

increase in the number of mitolysosomes per cell compared with

WT cells; the enhanced mitophagy in DUBXD8 cells was rescued by

WT, mito-, and ER-UBXD8, but not by the UBX* mutant (Fig 7C–F).

We also performed FACS analysis of mitophagy. DUBXD8 cells

exhibited a threefold increase in mitophagy in contrast to WT

cells (from � 5% to � 15%); the elevated mitophagy in DUBXD8
cells was rescued by UBXD8 re-expression (Fig 7G and H) and was

abolished by knocking down Beclin1, a key autophagy gene

(Fig EV5C and D).

We noticed that the UBXD8 substrate Bnip3 is also a mito-

phagy receptor (Zhang et al, 2008; Onishi et al, 2021). Quantita-

tive analysis of mitophagy events (Fig 7I–K) and FACS analysis

◀ Figure 5. UBXD8 knockout sensitizes cells to mitochondrial stresses and apoptotic insults.

A–C Growth tests of the indicated HeLa cells in response to oligomycin (A), chloramphenicol (B), and ethidium bromide (EB) (C) treatment. Oligo: 10 lM;
Chloramphenicol: 300 lg/ml; EB: 50 ng/ml.

D Cell survival analysis of the indicated HeLa cells treated with actinomycin D (ActD, 1 lM) or doxorubicin (Doxo, 10 lM). Representative images are shown. Cell
viability was measured by Cell Titer-Glo. Scale bar, 50 lm.

E Western blot analysis of apoptosis activation (caspase cleavage and PARP cleavage) in the indicated HeLa cells treated similarly as in (D).
F Cell survival analysis of WT and DUBXD8 MCF7 cells treated with ActD (1 lM) or Doxo (10 lM). Cell viability was measured by Cell Titer-Glo.
G Cell survival analysis of the indicated HeLa cells. 7 × 105 cells in one well of 6-well plate were treated with ActD (200 nM) for 4 h or Doxo (50 nM) for 2 h and sub-

sequently cultured in normal medium for 21 days. Surviving colonies were stained by 0.1% (W/V) methylene blue. Representative images and quantifications of the
surviving colony numbers are shown.

Data information: Data are shown as mean � SE from three biological repeats (A, B, C, D, F, G). Statistics: two-tailed unpaired Student’s t-test (A, B, C, D, F); one-way
ANOVA (G); *P < 0.05, **P < 0.01, ***P < 0.001.

▸Figure 6. UBXD8 mediates the degradation of multiple BH3-only proteins and restrains apoptosis via Noxa degradation.

A Western blot analysis of BH3-domain containing proteins in the indicated HeLa cells treated with Doxo (10 lM). Three proteins with enhanced level in DUBXD8
cells (Noxa, Bik, and Bnip3) are highlighted in red.

B Western blot and quantitative analysis of Noxa degradation in the indicated HeLa cells.
C Western blot and quantitative analysis of Bik and Bnip3 degradation in the indicated HeLa cells.
D–G Western blot (D, F) and cell viability (E, G) analysis of the indicated HeLa cells. Cell viability was measured by Cell Titer-Glo. Dox: 10 lM.

Data information: Data are shown as mean � SE from three biological repeats (B, C, E, G). Statistics: two-tailed unpaired Student’s t-test (B, C, E, G); *P < 0.05,
**P < 0.001, ***P < 0.001.
Source data are available online for this figure.
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(Fig 7L and M) consistently showed that the enhanced mito-

phagy in DUBXD8 was significantly reduced by Bnip3 knockout.

Thus, Bnip3 accumulation hyperactivates mitophagy in DUBXD8
cells.

Discussion

UBXD8 is an extensively characterized VCP adaptor of ERAD. At the

ER, UBXD8 forms the Derlin1/2-UBXD8-UBAC2-GP78 and Derlin1/
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2-UBXD8-SEL1L-Hrd1 complexes, in which GP78 and Hrd1 are ER

ubiquitin E3 ligases (Alexandru et al, 2008; Mueller et al, 2008;

Christianson et al, 2011). UBXD8 also localizes to lipid droplets to

mediate local protein degradation (Zehmer et al, 2009; Suzuki

et al, 2012; Olzmann et al, 2013). It was suggested that UBXD8 is

targeted by Pex19 and Pex3 to the ER and mis-localizes to mitochon-

dria in Pex19-null cells (Schrul & Kopito, 2016). In this study, we

provide three layers of evidence (exogenously expressed UBXD8,

endogenously tagged UBXD8, and endogenous UBXD8 recognized

by antibody) to show that UBXD8 also localizes to mitochondria in

normal cells (Fig 1). The mitochondrial localization of endogenous

UBXD8 was confirmed by UBXD8 knockout (Fig 1E). The mitochon-

dria and ER dual-localization of UBXD8 is evolutionarily conserved

as Ubx2, the yeast homolog of UBXD8, is also dually localized

(Martensson et al, 2019). Like Ubx2, UBXD8 associates with the

TOM complex but is dispensable for translocation-associated degra-

dation (Fig EV1), suggesting functional divergence across evolution.

Our characterizations demonstrate UBXD8 as an important MAD

component. First, UBXD8 is a key factor recruiting VCP to mitochon-

dria (Fig 2). Second, UBXD8 associates with mitochondrial ubiquitin

E3 ligases MARCH5 and MUL1 and facilitates the degradation of

their substrates (Figs 2 and 3). Third, in addition to MiD49 and

Mcl1, we identify BH3-only proteins Noxa, Bik, and Bnip3 as novel

UBXD8 substrates (Fig 6). In HeLa cells, Noxa accumulation sensi-

tizes DUBXD8 cells to apoptosis, mechanistically link MAD to apop-

tosis regulation (Fig 6). It is conceivable that UBXD8-mediated

degradation of Bik and Bnip3 may regulate apoptosis sensitivity in

other cell types. More interestingly, UBXD8-mediated MAD also reg-

ulates mitophagy via degrading the mitophagy receptor Bnip3

(Fig 7). Considering that UBXD8 is the major mitochondrial VCP

adaptor, more mitochondrial substrates and mitochondrial functions

may subject to regulation by UBXD8-mediated MAD.

Our study also reveals the intimate crosstalk between MAD and

ERAD. We show that ER-localized VCP adaptor UBXD2 participates

in MAD (Fig 3), and both mitochondria- and ER-localized UBXD8

can mediate MAD and ERAD (Fig 4). The cross-membrane degrada-

tion of substrates most likely occurs at the mitochondria-ER contact

site, where mitochondria and the ER juxtapose at a distance of

� 10–50 nm (Csord�as et al, 2006; Wang et al, 2015; Giacomello &

Pellegrini, 2016; Murley & Nunnari, 2016). Considering that a ubiq-

uitin molecule has a diameter of � 3.4 nm and the VCP hexamer

has a diameter of � 20 nm (Halawani et al, 2009), it is easy for

poly-ubiquitinated membrane proteins to be reached by the VCP

complex on the opposite membrane at the mitochondria-ER contact

site. The close cooperation between MAD and ERAD may facilitate

the degradation of a subset of mitochondrial/ER substrates that

localize to or can diffuse into the contact site. However, because not

all the ER and mitochondria are in contact, and because the ER is a

highly compartmentalized organelle with subdomains different in

protein composition and function (Lynes & Simmen, 2011), we

speculate that MAD and ERAD cannot compensate each other for

all the substrates, which necessitates mitochondria/ER-resident

adaptor-VCP complexes.

Materials and Methods

Antibodies and chemicals

Actin (Sigma-Aldrich, A2066), AIF (Santa Cruz Biotechnology, SC-

13116), Bad (Santa Cruz Biotechnology, SC-8044), Bak (Cell Signal-

ing Technology, 3814), Bax (Cell Signaling Technology, 5023),

Beclin1 (Cell Signaling Technology, 3495), Bcl-2 (Proteintech,

12789-1-AP), Bcl-xL (Cell Signaling Technology, 2764), Bid (Cell

Signaling Technology, 2002), Bik (Santa Cruz Biotechnology, SC-

365625), Bim (Cell Signaling Technology, 2933), Blk (Santa Cruz

Biotechnology, SC-65980), Bnip3 (Abcam, ab109362), Caspase-3

(Cell Signaling Technology, 9662), FLAG (Sigma-Aldrich, F1804)

Hsp60 (Cell Signaling Technology, 4870), LonP1 (Proteintech,

15440-1-AP), MARCH5 (Cell Signaling Technology, 19168), Mcl1

(Santa Cruz Biotechnology, SC-819), Mfn1 (Proteintech, 13798-1-

AP), Mfn2 (Cell Signaling Technology, 9482), MiD49 (Proteintech,

16413-1-AP), Nix (Cell Signaling Technology, 12396), Noxa (Santa

Cruz Biotechnology, SC-56169), P4D1 (Santa Cruz Biotechnology,

SC-8017), PARP (Cell Signaling Technology, 9542), Prohibitin

(Proteintech, 12295-1-AP), Puma (Santa Cruz Biotechnology, SC-

374223), RNF185 (Abcam, ab181999), Smac (Cell Signaling Tech-

nology, 2954), Tim23 (Proteintech, 11123-1-AP), Tom22 (Protein-

tech, 11278-1-AP), Tom40 (Proteintech, 18409-1-AP), Tom70

(Proteintech, 14528-1-AP), UBXD2 (Proteintech, 21052-1-AP),

UBXD8 (Cell Signaling Technology, 34945; Santa Cruz Biotechnol-

ogy, SC-374098), VCP (Proteintech, 10736-1-AP), Donkey anti-rabbit

IgG (Jackson ImmunoResearch, 711-035-152), Goat anti-mouse IgG

(Sigma-Aldrich, A5278), HA-peroxidase (Sigma-Aldrich, H6533).

Chemicals
Annexin V-FITC/PI apoptosis detection kit (Abmaking, ABM0001K),

actinomycin D (Abcam, ab141058), blasticidin (InvivoGen, ant-bl),

CCCP (Sigma-Aldrich, C2759), chloramphenicol (Selleck, S1677),

cycloheximide (VWR life science, 94271), digitonin (Sigma-Aldrich,

D5628), doxorubicin (Sigma-Aldrich, D1515), doxycyclin (Frontier

Scientific, D10056), ethidium bromide (Sigma-Aldrich, E1510),

G418 (Amresco, e859-5), MG132 (CSNpharm, CSN11436),

oligomycin (Abcam, ab141829), polybrene (Sigma-Aldrich, H9268),

◀ Figure 7. UBXD8 restrains mitophagy via Bnip3 degradation.

A Schematic of the mitophagy reporter mtKeima. mtKeima is optimally excited at 440 nm at pH 7.2 and optimally excited at 586 nm at pH 4.8.
B Representative images of the mitophagy events in the indicated HeLa cells. mtKeima emission excited by 405 nm laser is shown as green; mtKeima emission

excited by 561 nm laser is shown as red. Mitolysosomes are pointed by white arrows. Scale bar, 5 lm.
C–F Quantitative analysis of mitophagy events in the indicated HeLa cells. Only cells with mitophagy were selected to quantify mitolysosome numbers (D, F).
G, H Representative FACS (G) and quantitative analysis (H) of mitophagy index in the indicated HeLa cells.
I–K Representative images (I) and quantitative analysis of mitophagy events (J, K) in the indicated HeLa cells. White arrows point to mitolysosomes. Scale bar, 5 lm.
L, M Representative FACS (L) and quantitative analysis (M) of mitophagy index in the indicated HeLa cells.

Data information: Data are shown as mean � SE from three biological repeats (C–F, H, J, K, M). Statistics: one-way ANOVA (H, M); two-tailed unpaired Student’s t-test
(C–F, J, K); **P < 0.01, ***P < 0.001.
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Polyethylenimine (PEI; Polysciences, 23966-1), puromycin (Invi-

voGen, ant-pr-1).

cDNAs and plasmids

cDNA and plasmids used and generated in this work are listed in

Appendix Table S1.

Cell culture and transfection

U2OS, HeLa, HEK293T, and MCF7 cells were maintained in DMEM

supplemented with 10% Fetal Bovine Serum and 1% penicillin–

streptomycin. All cells were incubated at 37°C with 5% CO2.

For transfection, the PEI-DNA mixture was made by mixing plas-

mid with PEI (1 mg/ml dissolved in distilled deionized water) at the

ratio of 1 lg plasmid: 5 ll PEI and incubated 15 min at room tem-

perature. Cells were transfected by the PEI-DNA mixture for 6 h.

The medium was then replaced and the cells were incubated at 37°C

cell culture incubator.

Lentivirus production and generation of stable cell lines

HEK293T cells cultured in a well of 6-well plate with 70% conflu-

ency were co-transfected with gene-expressing plasmids (1 lg) and
lentiviral packaging vectors psPAX2 (0.6 lg) and pMD2.G (0.4 lg).
Forty-eight hours later, lentivirus was collected and filtered through

a 0.45-lm filter. For generating stable cell lines, 3 × 105 cells were

seeded in a well of 6-well plate and cultured for 24 h. Cells were

infected with lentivirus in the presence of 10 lg/ml polybrene for

48 h. Infected cells were selected by 2 lg/ml puromycin (for FUIPW

vector), 5 mg/ml G418 (for pLVX vector), and 50 lg/ml Blasticidin

(for pLENTI-TO vector) supplemented in the culture medium for

4 days. Gene expression was validated by immunoblotting.

Generation of knockout cell lines

Guide RNAs (gRNA) for target genes were cloned into PX458 (plas-

mid #48138, Addgene). Fifty percent confluent HeLa or MCF7 cells

cultured in a well of 6-cm dish were transfected with 2 lg PX458

plasmid. Two days later, the GFP-positive cells were sorted into 96-

well plate by BD FACSAria III (BD Biosciences) and grown for

2 weeks. Single clones were trypsinized and expanded. UBXD8,

UBXD2, NOXA, BIK, and BNIP3 knockout clones were identified by

immunoblotting. MARCH5 knockout clones were identified by

sequencing. The oligonucleotides of gRNAs and primers used to ver-

ify knockout clones are listed in Appendix Table S2.

Generation of FLAG knockin cell line

To generate the UBXD8 N-terminal 3 × FLAG knockin U2OS cell

line, gRNA (50–30 GCGCCGGCGGCCGTTCAGAC) targeting the 5’

UTR of UBXD8 was cloned into PX458. The donor sequence contain-

ing the FLAG sequence flanked by � 900-bp homology arms com-

plementary to the knockin site with PAM mutation was inserted

into pBM16A T-vector, (Biomad, CL071). U2OS cultured in 10-cm

dish with 70% confluency was transfected with 2 lg PX458 and

6 lg donor plasmid. Two days later, 2000 GFP-positive cells were

sorted by BD FACSAria III and cultured in 15-cm dish for 3 weeks.

Single clones were trypsinized and expanded. FLAG knockin clones

were selected by immunoblotting and confirmed by DNA sequenc-

ing. The primers used to check correct insertion are listed in

Appendix Table S2.

Isolation of mitochondria and endoplasmic reticulum fractions

Mitochondria isolation
Cells cultured in four 15-cm dishes (100% confluency) were

washed once with PBS and scraped. Cells were centrifuged at 600 g

for 5 min to pellet cells. Cell pellets were resuspended with 30 ml

PBS and centrifuged again. Cell pellets were resuspended in 15 ml

homogenization buffer (20 mM HEPES (pH 7.4), 10 mM KCl,

1.5 mM MgCl2, 1 mM EDTA, 1 mM EGTA, 210 mM mannitol,

70 mM sucrose, 0.5% (w/v) BSA) supplemented with protease inhi-

bitor cocktail (Roche, 4693159001) and 1 mM PMSF and incubated

on ice for 20 min. Cells were broken by a French press

(EmulsiFlex-C3, AVESTIN Inc.) at a pressure in the range of

1,000 � 1,500 psi. Cell homogenates were centrifuged at 1,000 g

for 5 min at 4°C. This step was repeated four times to thoroughly

discard cell debris and the nuclear fraction. Supernatants were cen-

trifuged at 19,800 g for 15 min at 4°C to pellet crude mitochondrial

fraction. The crude mitochondrial pellets have a brown pellet

enriched with mitochondria at the bottom and a white pellet with

ER contaminants at the periphery. They were washed thoroughly to

decrease ER contamination. In detail, crude mitochondrial pellets

were rinsed with 5 ml homogenization buffer containing 1 mM

PMSF. The peripheral white pellet was removed with a pipette. The

brown mitochondrial pellets were resuspended with 5 ml homoge-

nization buffer containing 1 mM PMSF and then centrifuged at

19,800 g for 10 min at 4°C. Mitochondrial pellets were rinsed with

5 ml homogenization buffer supplemented with 1 mM PMSF to

remove the white pellet again. Enriched mitochondrial pellets were

resuspended with 1 ml homogenization buffer containing 1 mM

PMSF, split into two aliquots, centrifuged at 19,800 g for 10 min at

4°C. The mitochondrial pellets were snap-frozen by liquid nitrogen

and stored at �80°C.

ER isolation
ER was isolated with the ER isolation kit (Sigma-Aldrich, ER0100)

according to the manufacturer’s instructions. In brief, cells cultured

in eight 15-cm dishes (90% confluency) were washed once with

PBS and scraped. Cells were centrifuged at 600 g for 5 min to collect

cells. Cell pellets were washed with 30 ml PBS and centrifuged

again. Cells were resuspended in 9 ml 1× hypotonic extraction

buffer supplemented with protease inhibitor cocktail for 20 min on

ice. Cells were centrifuged at 600 g for 5 min. Cell pellets were

resuspended with 6 ml 1× isotonic extraction buffer supplemented

with protease inhibitor cocktail. Cells were broken with 10 strokes

of Dounce homogenizer with a speed of 200 rpm. Cell homogenates

were centrifuged at 1,000 g for 10 min at 4°C to discard cell debris

and the nuclear fraction. Supernatants were centrifuged at 12,000 g

for 15 min at 4°C to discard mitochondrial fraction. The floating

lipid layer was removed and the supernatants were transferred to

the Beckman ultracentrifuge tube, centrifuged at 100,000 g for

60 min at 4°C. ER pellets were resuspended by 1 ml PBS and cen-

trifuged at 18,000 g for 10 min at 4°C. The ER pellets were snap-

frozen by liquid nitrogen and stored at �80°C.
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Immuprecipitation

To examine the interaction between UBXD8 and HA-tagged ubiqui-

tin E3 ligases, cells cultured in one 10-cm dish (90–100% conflu-

ency) were collected and lysed by 1 ml lysis buffer (50 mM Tris–

HCl (pH 8.0), 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 10%

Glycerol, 10 mM NaF) supplemented with protease inhibitor cock-

tail (Roche, 4693159001) for 30 min on ice. Cell extracts were cen-

trifuged at 18,000 g for 10 min at 4°C to remove cell debris.

Supernatants were incubated with 20 ll anti-HA agarose beads

(Sigma-Aldrich, A2095) for 8 h at 4°C. The beads were washed five

times with the lysis buffer and eluted with 60 ll elute buffer (lysis

buffer supplemented with 2 mg/ml HA peptide (ChinaPeptides Co.

Ltd.), protease inhibitor cocktail and 1 mM DTT) overnight at 4°C.

The elute product was boiled at 98°C for 10 min for subsequent

immunoblotting analysis.

To examine the interaction between UBXD8 and endogenous

MARCH5 and RNF185, FLAG-UBXD8 knockin 293T cells cultured in

one 10-cm dish (90–100% confluency) were collected and lysed by

1 ml buffer A (50 mM HEPES-KOH (pH 7.5), 50 mM Mg(OAc)2,

70 mM KOAc, 0.2% Triton X-100, 0.2 mM EDTA, 10% glycerol)

supplemented with protease inhibitor cocktail (Roche, 4693159001)

for 30 min on ice. Cell extracts were centrifuged at 18,000 g for

10 min at 4°C to remove the pellet. Supernatants were incubated

with 20 ll FLAG agarose beads (Sigma-Aldrich, A2220) for 6 h at

4°C. The beads were washed five times with buffer A and eluted

with 60 ll elute buffer (buffer A supplemented with 2 mg/ml FLAG

peptide (ChinaPeptides Co. Ltd.), protease inhibitor cocktail and

1 mM DTT) overnight at 4°C. The eluted product was boiled at 98°C

for 10 min for subsequent immunoblotting analysis.

To examine the interaction between FLAG-UBXD8 and the TOM

complex, mitochondrial fraction was purified as described above.

Mitochondria pellet was solubilized with 1 ml 1% digitonin buffer

(20 mM Tris–HCl (pH 7.5), 1% (w/v) digitonin, 50 mM NaCl,

0.5 mM EDTA, 10% Glycerol) supplemented with 1 mM DTT,

2 mM ATP, and protease inhibitor cocktail (Roche, 4693159001) for

1 h. The mitochondrial lysates were centrifuged at 18,000 g for

10 min at 4°C to discard the pellets. Supernatants were incubated

with 15 ll FLAG agarose beads (Sigma-Aldrich, A2220) for 6 h at

4°C. The beads were washed five times with 0.1% digitonin buffer

and eluted with with 60 ll elute buffer (1% digitonin buffer supple-

mented with 2 mg/ml FLAG peptide (ChinaPeptides Co. Ltd.), pro-

tease inhibitor cocktail and 1 mM DTT) overnight at 4°C. The elute

product was boiled at 98°C for 10 min for subsequent immunoblot-

ting analysis.

Blue native PAGE

Mitochondrial fractions from cells cultured in three 15-cm dishes

were purified as described above. The mitochondrial pellets were

washed two times by 1 ml homogenization buffer supplemented

with 1× protease inhibitor cocktail (Roche, 4693159001), split into

three to four aliquots, and snap-frozen by liquid nitrogen. Mitochon-

drial proteins were prepared with NativePAGETM Sample Prep Kit

(Invitrogen, BN2008) according to manufacturer’s instructions. In

brief, one aliquot of mitochondrial pellet was thawed and solubi-

lized by 80 ll 1 × sample buffer containing 1% digitonin on ice for

20 min. The supernatants were collected by centrifugation at

18,000 g for 10 min, and the protein concentrations were deter-

mined by the Bradford assay kit (Sigma, B6916). Ten microgram

mitochondrial proteins were mixed with 1 × NativePAGE 5% G250

sample addictive buffer and loaded to 4–12% NuPAGE gel (Invitro-

gen, NP0336BOX). Electrophoresis was performed at 4°C by running

with dark blue buffer (Invitrogen, BN2002) at 150 V for 40 min and

then with light blue buffer at 250 V for 60 min. Proteins were trans-

ferred to a PVDF membrane at 250 V for 1.5 h on ice and fixed on it

by incubating the PVDF membrane in 8% acetic acid for 15 min.

Unstained native markers were labeled by de-coloring the PVDF

membrane with methanol before washed membranes with deion-

ized water. Then the membranes were subjected to immunoblot-

ting.

Immunoblotting

Cells were collected and lysed with RIPA buffer (50 mM Tris–HCl

(pH 8.0), 1% Triton X-100, 150 mM NaCl, 0.1% (w/v) SDS, 0.5%

(w/v) sodium deoxycholate) supplemented with protease inhibitor

cocktail (Roche, 4693159001) and incubated on ice for 30 min. Cell

lysates were then centrifuged at 18,000 g for 10 min to remove cell

debris. Protein concentration was determined by the Bradford assay

kit (Sigma, B6916). Proteins were diluted with 4 × sample buffer

(240 mM Tris–HCl, pH 6.8, 28% glycerol, 8% 2-mercaptoethanol,

8% SDS, 0.08% Bromophenol Blue) and boiled at 98°C for 15 min.

Ten to twenty-five microgram proteins were separated by SDS–

PAGE at 150 V for 70 min and then transferred to nitrocellulose

membrane (GE Healthcare) at 400 mA for 1.5 h. Membranes were

incubated with primary antibodies in 5% non-fat milk dissolved in

PBST overnight. After washing with PBST 3 × 5 min, membranes

were incubated with HRP-conjugated secondary antibodies for 1 h

at room temperature. Then membranes were washed three times

and immunodetection was performed by Western Lightning Plus-

ECL (PerkinElmer, NEL120001EA).

Immunofluorescence microscopy

5 × 104 U2OS cells were seeded on glass coverslips and cultured for

1 day. To examine the localization of exogenously expressed pro-

teins, 0.5 lg plasmids expressing interested proteins were trans-

fected to cells and expressed for 24 h. After washing once with

PBS, cells were fixed with 4% paraformaldehyde in PBS for 30 min

at room temperature. After washing with PBS for 3 × 5 min, cells

were permeabilized with 0.1% Triton X-100 in PBS for 30 min.

Non-specific binding was blocked with 10% BSA in PBS for 30 min.

Cells were then incubated with primary antibodies diluted in PBS

containing 10% BSA overnight at 4°C. The coverslips were washed

with PBS for 3 × 5 min, then incubated with Alexa-Fluor-

conjugated secondary antibodies for 1 h at room temperature. After

washing with PBS for 3 × 5 min, coverslips were mounted onto

slides.

To examine the localization of endogenous 3 × FLAG-UBXD8

with the knockin cell line, an additional process was performed

before fixing by treating cells with �20°C pre-chilled methanol for

30 min on ice to decrease the non-specific binding in cytosol. Fluo-

rescent images were captured by an inverted fluorescence micro-

scope Nikon A1 with a 60× oil objective (CFI Plan Apochromat

Lambda; NA1.42; Nikon).
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RNA isolation and qRT-PCR

RNA was isolated following the TRIzol reagent user guide. Cells cul-

tured in a 35-mm dish (100% confluency) were lysed in 500 ll
TRIzol reagent and incubated at room temperature for 5 min. One

hundred microliter chloroform was added and fully mixed. The

samples were centrifuged at 12,000 g for 15 min at 4°C and 200 ll
aqueous phase containing RNA was transferred to a new tube. Then

200 ll isopropanol was added to the aqueous phase and mixed well

to precipitate RNA. The RNA pellet was collected through centrifug-

ing at 12,000 g for 10 min at 4°C and washed two times with 75%

ethanol. The RNA pellet was air-dried for 10 min and resuspended

in 100 ll nuclease-free H2O. Complementary DNA was synthesized

with 1 lg RNA by 5 × All-In-One RT MasterMix (abm). qRT-PCR

reactions were prepared with TB Green Premix Ex Taq (Takara) and

25 ng cDNA template. qRT-PCR was assayed by CFX96 Touch Real-

Time PCR Detection System (Bio-Rad) with three biological repli-

cates. ACTINB was selected as the reference gene for normalization.

Primers used for qPCR are listed in Appendix Table S2.

Cell survival analysis

Cells were seeded in 96-well plate (1.5 × 104 per well) and cultured

for 1 day. Cells were treated with actinomycin D (1 lM) or doxoru-

binxin (10 lM) for 6, 8, and 10 h respectively. Cell survival was

indicated by cellular ATP level measured with the Cell Titer-Glo

Luminescent assay kit (Promega, G7570). Briefly, cells were lysed

by adding 30 ll CellTiter-Glo reagent into the media and mixed on

an orbital shaker for 5 min at room temperature. Luminescence sig-

nals were stabilized at room temperature for 10 min and recorded

by the EnspireTM Multilabel Reader.

Annexin V-FITC/PI staining

Annexin V-FITC/PI staining was performed with Annexin V-FITC/PI

apoptosis detection kit (Abmaking, ABM0001K) according to the

manufacturer’s instructions. Briefly, cells were seeded in 6-well

plate (3.5 × 105 per well) and cultured for 1 day. Cells were treated

with actinomycin D (1 lM) or doxorubicin (10 lM) for 0, 6, and

8 h respectively. Both culture medium and trypsin digested cells are

collected in a 15 ml BD tube and then centrifuged at 180 g for 5 min

to harvest cells. Cells were washed twice with 5 ml pre-cold PBS

and resuspended with 1× binding buffer to reach a cell density of

1 × 106/ml. Five microliter Annexin V-FITC was added to 100 ll cell
suspension and incubated in the dark for 10 min at room tempera-

ture. Five microliter PI was added to the cell suspension and incu-

bated in the dark for 5 min at room temperature. The cell

suspension was diluted with 400 ll PBS and filtered by a 40 lm fil-

ter. The fluorescence of 1 × 104 cells was analyzed by BD FACSAria

III and the results were processed with FlowJo V10 software.

Mitophagy assay

Stable cell line expressing mtKeima controlled by the tetracycline-

inducible promoter (TO-mtKeima) were treated with doxycycline

(1 lg/ml) for 48 h to induce mitoKeima expression and then cul-

tured for another 24 h in doxycycline-free media. For FACS analy-

sis, cells were trypsinized and filtered by a 40 lm filter. The

fluorescence of 1 × 104 cells was analyzed by BD FACSAria III

and the results were processed with FlowJo V10 software. For

imaging analysis, cells cultured in a 35-mm glass-bottom dish

were imaged using an inverted fluorescence microscope Nikon A1

with a 60× oil objective. Pictures were processed with ImageJ

software.

Quantification and statistical analysis

For Fig 2E and CHX chasing experiments, protein bands were quan-

tified using ImageJ software. Data were presented as mean � SE

from three replicates. Statistical significance was analyzed by the

Student’s two-tailed, unpaired t-test in Excel or one-way ANOVA

using Tukey’s test in GraphPad Prism software as indicated in the

figure legends. P-values are denoted in figures as: *P < 0.05,

**P < 0.01, ***P < 0.001.

Data availability

No primary data sets have been generated and deposited.

Expanded View for this article is available online.
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