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Attention to visual motion suppresses 
neuronal and behavioral sensitivity in nearby 
feature space
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Abstract 

Background:  Feature-based attention prioritizes the processing of the attended feature while strongly suppress‑
ing the processing of nearby ones. This creates a non-linearity or “attentional suppressive surround” predicted by 
the Selective Tuning model of visual attention. However, previously reported effects of feature-based attention on 
neuronal responses are linear, e.g., feature-similarity gain. Here, we investigated this apparent contradiction by neuro‑
physiological and psychophysical approaches.

Results:  Responses of motion direction-selective neurons in area MT/MST of monkeys were recorded during a 
motion task. When attention was allocated to a stimulus moving in the neurons’ preferred direction, response tun‑
ing curves showed its minimum for directions 60–90° away from the preferred direction, an attentional suppressive 
surround. This effect was modeled via the interaction of two Gaussian fields representing excitatory narrowly tuned 
and inhibitory widely tuned inputs into a neuron, with feature-based attention predominantly increasing the gain 
of inhibitory inputs. We further showed using a motion repulsion paradigm in humans that feature-based attention 
produces a similar non-linearity on motion discrimination performance.

Conclusions:  Our results link the gain modulation of neuronal inputs and tuning curves examined through the fea‑
ture-similarity gain lens to the attentional impact on neural population responses predicted by the Selective Tuning 
model, providing a unified framework for the documented effects of feature-based attention on neuronal responses 
and behavior.
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Background
Attention, defined as the selection and modulation of 
information processing in the brain, allows sensory sys-
tems to deal with information processing overload [1]. 
Attention can be allocated to a region of space (spatial 

attention) or to object features (feature-based atten-
tion). Feature-based attention facilitates the processing of 
the attended feature relative to unattended ones [2–11]. 
Electrophysiological studies in behaving monkeys have 
shown that feature-based attention can modulate the 
responses of sensory neurons to visual stimuli [4, 12]. 
This effect is described as a monotonic change in the gain 
of neuronal responses following the feature-similarity 
gain principle [4]. In these studies, feature-based atten-
tion enhances the response gain of the neurons selective 
for the attended feature, an effect that grows smaller to 
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become a suppression as the neuron’s preferred feature 
differs from the attended feature [4, 8]. On the other 
hand, a computational model, Selective Tuning model 
of visual attention [1, 13, 14], has predicted a non-linear 
effect of feature-based attention (feature-based surround 
suppression) which has been corroborated by human 
studies [15–22]. When a feature is attended, responses 
to nearby unattended features in feature space are sup-
pressed. Since the attended stimuli often have other stim-
uli nearby in real scenes (the context problem [14]), the 
Selective Tuning model ameliorates contextual interfer-
ence via top-down attention, e.g., suppressing responses 
to stimuli in the neighborhood of the attended stimulus. 
The context problem and the Selective Tuning model’s 
solution can apply to space, features, or objects [1, 13, 
14]. The link between the gain effects observed in single 
neurons and the non-linearities predicted by computa-
tional modeling and observed during behavior remains 
unclear.

Behavioral studies using a visual motion attentional 
cueing paradigm found that participants’ performance 
decreased as the direction offset between a cue and a 
target stimulus became greater; however, performance 
gradually recovered when the offset was larger than 90° 
[20, 21], indicating feature-based surround suppres-
sion in motion processing. On the other hand, a previ-
ous neurophysiological study of feature-based attention 
has shown that tuning curves of direction-selective neu-
rons in the middle temporal area (MT) show mainly gain 
changes [4]. This study, however, used moving random 
dot patterns (RDPs) positioned in different hemifields 
and recorded from area MT.

neurons with receptive fields (RFs) localized to the con-
tralateral visual hemifield. It is possible that the lack of 
interference (context within the Selective Tuning mod-
el’s framework) due to the stimuli being far away and 
the relatively small attentional modulation of responses 
documented in these conditions is insufficient to produce 
the feature-based surround suppression predicted by the 
Selective Tuning model and observed in behavioral stud-
ies. The present study aims at clarifying these issues.

First, we measured the activity of direction-selective 
neurons in MT and medial superior temporal (MST) 
visual cortical areas of macaque monkeys. We obtained 
tuning curves of direction-selective neurons by plac-
ing two moving RDPs within a neuron’s RF—one RDP 
always moved in the neuron’s preferred direction (pre-
ferred pattern) and the other moved in one of twelve 
different directions (tuning pattern). In different trials, 
we instructed the animals to direct attention either to 
the fixation point (fixation condition) or to one of the 
RDPs (attend-preferred and attend-tuning conditions). 
We found that during fixation, neuronal and population 

tuning curves were well fitted by a single Gaussian curve 
with positive gain. However, when the animals attended 
to the preferred pattern, neuronal tuning curves exhib-
ited a suppressive surround. Here, response profiles 
were better described by adding a second wider Gauss-
ian function with negative gain. We modeled the feature-
based surround suppression by the additive interaction 
of the two Gaussian fields representing excitatory and 
inhibitory input fields into a neuron. Feature-based atten-
tion disproportionally increases the gain of the inhibitory 
wider relative to the excitatory narrower input field pro-
ducing a suppressive surround.

In the behavioral experiment, we measured behavio-
ral correlates of this feature-based attentional suppres-
sive effect on motion repulsion, a perceptual illusion 
arising from an overestimation of the directional differ-
ence between the two superimposed motion surfaces 
[23–25]. Studies demonstrated that feature-based atten-
tion affects the magnitude of motion repulsion [26, 27]. 
Specifically, directing attention to one motion direction 
reduces motion repulsion, suppressing the inhibitory 
effect from the other (unattended) motion direction. 
We hypothesized feature-based surround suppression 
would reduce motion repulsion to a greater degree if the 
attended and the unattended motion directions are simi-
lar. Furthermore, using motion repulsion could provide a 
more sensitive behavioral measure than the electrophysi-
ological study where animals’ task performance is high so 
we would not expect to see apparent feature-based sur-
round suppression at the behavioral level. We measured 
motion repulsion under different attentional conditions 
(focused vs. divided attention) while the directional dif-
ference between two superimposed motion surfaces 
varied. Consistent with surround suppression, motion 
repulsion was minimized when one motion direction 
was attended while the unattended direction was close to 
the attended one compared with greater direction differ-
ences. These results support the Selective Tuning model’s 
prediction that surround suppression in feature-based 
attention reduces interference from the unattended fea-
ture in nearby feature space, consequently decreasing 
motion repulsion.

Results
Neurophysiology
Two macaque monkeys were trained to selectively attend 
to a cued stimulus, while keeping gaze on a fixation point 
(Fig. 1A). We positioned two RDPs within a neuron’s RF, 
one RDP always moved in the neuron’s preferred direc-
tion (preferred pattern) and the other could move in one 
of 12 different directions from trial to trial (tuning pat-
tern, in steps of 30°). The animals attended to either the 
preferred pattern (attend-preferred condition) or tuning 
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pattern (attend-tuning condition) (Fig.  1B). A direction 
change could occur on one of the two patterns and the 
animals reported this change only when it happened 
on the attended pattern. In the fixation condition, they 
detected a color change of the fixation point while ignor-
ing both RDPs. Animal F and M achieved 86 and 87% of 
change detection accuracy, respectively, indicating that 
they correctly perform the task.

Seventy-eight neurons were included in the analy-
sis. Two examples of neuronal responses in different 

attentional conditions are shown in Fig.  1C. Responses 
in the attend-preferred condition (labeled as zero in the 
abscissa of Fig. 1C) were in general stronger than in the 
other conditions. The attend-preferred curve (red) is pre-
dominantly above the fixation (black) and attend-tuning 
(blue curves). Importantly the attend-preferred curve 
shows a non-Gaussian profile with a peak at the preferred 
direction and a dip at directions away from the preferred 
by 60–90°. This was particularly noticeable for the cell 
on the right. Thus, the tuning curve corresponding to 

Fig. 1  A Stimulus configuration of Experiment 1. The preferred pattern (always moving in the neuron’s preferred direction) and the tuning 
pattern (moving in one of 12 directions) were presented within a neuron’s RF. The fixation point was presented on the left side of the display. 
B Three attentional conditions. While an animal foveated the fixation point, it was cued to attend to either the preferred (attend-preferred) or 
tuning (attend-tuning) pattern and reported a directional change of the attended pattern. In the fixation condition, the animal was cued to the 
fixation point and had to report a change in the color of a small square superimposed on the fixation point while ignoring the RDPs. The yellow 
spot indicates the allocation of attention in each condition. C Responses of two single neurons in different attentional conditions. The abscissa 
represents the direction of the tuning pattern as a function of the distance to the preferred direction and the ordinate represents the response in 
spikes/second. Error bars indicate the standard error of the mean (SEM)
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the attend-preferred condition underwent a non-linear 
transformation when the animal directed attention to the 
preferred direction and ignored the tuning pattern. This 
transformation resembles a ring-of-inhibition around the 
attended-preferred feature.

In order to determine the difference in responses 
between conditions, we normalized response of each 
neuron to the maximal response and then averaged this 
normalized response across neurons in each condition. 
We arranged the responses along the x-axis as a function 
of the difference between the preferred direction and the 
direction of the tuning pattern in a symmetrical manner 
to produce a response profile (Fig. 2A).

A repeated-measures analysis of variance (ANOVA) 
showed the main effect of attentional conditions that 
the neuronal response was significantly modulated by 
different attentional conditions (F(2, 122) = 47.058, 
p < 0.001). Subsequent pairwise comparisons showed 
that there was an increased overall response in the 
attend-preferred condition relative to the other con-
ditions (all ps < 0.001 with Bonferroni correction). No 
significant difference was observed between the attend-
tuning and the fixation conditions (p = 1). The direction 

of the tuning pattern relative to the preferred direction 
also significantly modulated neuronal responses (F(11, 
671) = 45.768, p < 0.001), with the greatest response when 
the tuning pattern moved in the preferred direction (0° 
difference, all ps < 0.001) and a gradual decrease as the 
tuning pattern’s direction deviated from the preferred 
direction. The interaction between the attentional condi-
tions and the directional difference was significant (F(22, 
1342) = 13.561, p < 0.001). To elucidate the nature of this 
interaction, we examined the profile of attentional mod-
ulation under different attentional conditions. Because 
the response functions show a symmetric profile, we col-
lapsed neuronal responses when the absolute directional 
difference between the preferred and the tuning patterns 
was the same (e.g., ± 30°) (Fig. 2B).

Neuronal response in the fixation condition peaked 
when the tuning pattern moved in the neuron’s preferred 
direction likely because both RDPs moved in the pre-
ferred direction and neither pattern extended into the 
RF’s inhibitory surround. This was assessed during initial 
mapping of the RF (see “Recordings” in “Methods”). The 
response reached its minimum when the tuning pattern 
moved in the neuron’s anti-preferred direction. There 

Fig. 2  A Average normalized neuronal response in each attentional condition. B Normalized neuronal responses averaged across the same 
(absolute) directional difference (n = 78). Responses in the attend-tuning and the fixation conditions monotonically decrease as the offset between 
the preferred and tuning patterns increases. Responses in the attend-tuning condition are larger than that in the fixation condition when the 
direction of the tuning pattern is close to the neuron’s preferred direction (0 ~ 30°). This relationship reverses when the direction of the tuning 
pattern approaches the neuron’s anti-preferred direction. In the attend-preferred condition, however, responses are lowest when the direction of 
the tuning pattern is approximately 90° away from the preferred direction. Then, the responses increase as the directional difference increases. Error 
bars indicate SEM across the normalized responses of each neuron. * p < .05, *** p < .001
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was a monotonic decrease in response as a function of 
the difference between the neuron’s preferred direction 
and the direction of the tuning pattern (Fig. 2B).

Neuronal response in the attend-tuning condition also 
monotonically decreased as the directions between the 
preferred and the tuning patterns became dissimilar. In 
this condition, neuronal responses were greater than 
those in the fixation condition when the direction of the 
tuning pattern was closer to the neuron’s preferred direc-
tion (at 0 and 30° differences, all ps < 0.001). On the other 
hand, responses in the attend-tuning condition were 
lower than those in the fixation condition when the tun-
ing pattern moved in the neuron’s anti-preferred direc-
tion (mean difference (Mdiff) =  − 0.07, standard error 
(SE) = 0.04, t(76) = -2.101, p = 0.039). This effect is similar 
to feature-similarity gain modulation described in other 
studies [4].

In the attend-preferred condition, the maximal neu-
ronal response was also observed when the directions of 
the preferred and tuning patterns were the same. How-
ever, we did not observe a monotonic response decrease 
with the direction of the tuning pattern relative to the 
preferred direction. Responses were lowest when the tun-
ing pattern moved in directions approximately 90° away 
from the preferred direction, not when the tuning pattern 
moved in the anti-preferred direction. A repeated-meas-
ures ANOVA showed that average normalized neuronal 
response significantly changed depending on directional 
differences between the two RDPs (F(6, 450) = 28.367, 
p < 0.001). We conducted the Benjamini–Hochberg pro-
cedure to adjust multiple comparisons (FDR = 0.05, [28]). 
This procedure corrects multiple comparisons that are 
partially related, so it is more appropriate than Bonferroni 
correction which assumes independence of (categorical) 
data. We compared the minimum neuronal response at 
90° difference to the responses at the other six directional 
differences. Responses at 0° difference (Mdiff =  − 0.22, 
SE = 0.02, p < 0.001, BH critical value = 0.008) and at 
30° difference (Mdiff =  − 0.11, SE = 0.02, p < 0.001, BH 
critical value = 0.008) were significantly greater than the 
minimum neuronal response. The response at 60° dif-
ference did not significantly differ from the response 
at 90° difference (Mdiff =  − 0.01, SE = 0.01, p = 0.159, 
BH critical value = 0.008). When the directional dif-
ference between the two RDPs became larger, neu-
ronal responses were much greater than the minimum 
response (90 vs. 120°: Mdiff = 0.03, SE = 0.01, p = 0.007, 
BH critical value = 0.025; 90 vs. 150°: Mdiff = 0.04, 
SE = 0.02, p = 0.011, BH critical value = 0.033; 90 vs. 180: 
Mdiff = 0.05, SE = 0.02, p = 0.026, BH critical value = 0.05).

In addition, we looked into at which directional dif-
ference individual neurons showed minimum response 
(i.e., maximum suppression) to estimate the center of 

a suppressive surround. We found that the minimum 
responses were mostly observed when the directional 
difference was around 60 ~ 90° (see Additional file  1). 
This result indicates that the attend-preferred condition 
causes a suppressive surround for motion quasi-orthogo-
nal to a neuron’s preferred direction.

Tuning curves
Neuron’s tuning curves have been modeled using Gauss-
ian functions [8]. However, because responses do not 
clearly follow a monotonic profile in the attend-preferred 
condition, we fitted two different models to the average 
normalized neuronal response (population response) 
in each experimental condition, a single Gaussian and a 
sum of two Gaussians. A single Gaussian model was:

where b is the baseline, g is the response gain, µ is the 
center, and σ is the width of the Gaussian. A sum of two 
Gaussians model was the combination of two regular 
Gaussian functions:

The two Gaussian functions were center aligned (shar-
ing the same µ parameter). In the attend-preferred con-
dition (Fig.  3A), the sum of two Gaussians (adjusted 
R2 = 0.990) model explained the population response bet-
ter than the single Gaussian model (adjusted R2 = 0.886). 
This was mainly due to the ability of the sum of two 
Gaussians (one Gaussian having a positive gain and nar-
rower width than the second Gaussian with negative 
gain and larger width) to account for the decrease in 
response in the vicinity of the preferred direction relative 
to directions farther away from the preferred one. This 
effect resembles the feature-based surround suppression 
reported in previous behavioral and modeling studies 
[15–22]. In the other attentional conditions (Fig. 3B, C), 
both models could explain the response profiles equally 
well (all adjusted R2, attend-tuning condition: single 
Gaussian (0.994), sum of two Gaussians (0.999); fixation 
condition: single Gaussian (0.957), sum of two Gaussians 
(0.987)).

In order to quantify these observations, we compared 
model fits at the individual neuron level. Our curve fit-
ting algorithm failed to fit a given individual neuronal 
response if the fit did not converge due to variability in 
the data, or because some data points were missing (max-
imum number of iterations allowed = 400). We included 
individual neurons in the analysis only if both models 
successfully fit their responses. We then compared dif-
ferent model fits to the same neuronal response (i.e., 

f (x) = b+ g∗e
−

(x−µ)2

2σ2

f (x) = b+ g1∗e
−

(x−µ)2

2σ1
2

+ g2∗e
−

(x−µ)2

2σ2
2



Page 6 of 19Yoo et al. BMC Biology          (2022) 20:220 

pairwise comparison): 69 neurons in the attend-preferred 
condition, 53 neurons in the attend-tuning condition, 
and 59 neurons in the fixation condition were included in 
the analysis. Example model fits to normalized responses 
are shown in Fig.  3D–F. As a goodness-of-fit measure, 
we computed the Akaike Information Criteria (AIC) for 
each model fit. The AIC takes into account the number 
of parameters in each model, which is lower in the single 
Gaussian compared to the sum of two Gaussians. In the 
attend-preferred condition (Fig. 3G), the AIC was greater 
for the single Gaussian than for the sum of two Gauss-
ians (Mdiff = 2.22, SE = 1.03, t(68) = 2.148, p = 0.035), 
meaning that the latter model explained the data bet-
ter, considering the number of parameters. Conversely, 
the single Gaussian fitted the data better in the attend-
tuning condition (Fig. 3H), demonstrating a smaller AIC 
value than the sum of two Gaussians (Mdiff =  − 2.25, 
SE = 0.92, t(52) =  − 2.448, p = 0.018). In the fixation 

condition (Fig.  3I), there was no significant difference 
in AIC between the two models (Mdiff = 0.53, SE = 0.88, 
t(58) = 0.605, p = 0.548).

Overall, for the population as well as for single neurons 
the sum of two Gaussians model fits the data better only 
in the attend-preferred condition. In the other condi-
tions, either both models fit the data equally well (fixa-
tion) or the single Gaussian model performs better than 
the sum of two Gaussians model (attend-tuning). These 
results indicate that feature-based surround suppression 
became evident only in the attend-preferred condition.

Modeling feature‑based surround suppression
The attend-preferred condition may have allowed us to 
isolate the feature-based surround suppression effect 
because attention was always on the same feature (pre-
ferred direction) while the distractor tuning pattern 

Fig. 3  A–C Different model fits to the average normalized neuronal response (population level) in the attend-preferred, attend-tuning, and fixation 
conditions (n = 78). Solid curve indicates the single Gaussian model fit and dashed curve indicates the sum of two Gaussians model fit (see D–F for 
an example neuron). G–I Akaike Information Criterion (AIC) for each model fit was measured at individual neuron level. Smaller AIC value means 
better model fit (n = 78). Outlined and filled bars indicate the mean AIC of the single Gaussian and the sum of two Gaussians models, respectively. 
Error bars indicate SEM. * p < .05
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changed direction from trial to trial. Thus, keeping atten-
tion on the preferred direction reveals the surround 
suppressive effect on distracting features. One possi-
ble explanation for this effect is the interaction between 
excitatory- and inhibitory-tuned inputs into a neuron 
during the allocation of feature-based attention. In order 
to model this interaction, we modeled the excitatory 
and inhibitory fields of direction-selective neurons as 
two Gaussian functions with positive and negative gain, 
respectively. We first fit the average normalized neu-
ronal responses in the fixation condition with the single 
Gaussian model. The same model for the neurons’ tun-
ing curves was used here (see the “Tuning curves” section 
above), except that the parameter for the width of the 
Gaussian was σ , rather than 2 σ for simplicity and that 
the center of the Gaussian µ was always 0 because neu-
ronal response was maximized when the preferred and 
tuning pattern moved in the same direction (no direc-
tional difference). An important point here is that we 
assumed that in the fixation condition, the predominant 
contribution to the response is provided by excitatory-
tuned inputs into the cell with σ representing the width 
or selectivity of the inputs. The contribution of inhibi-
tory inputs into the cell is considered relatively small 
here than when attention is directed to the RDPs within a 
RF, and will be captured by the single Gaussian [29]. We 
cannot exclude the possibility of inhibition during fixa-
tion. However, this inhibition would be relatively small 
in magnitude and not related to feature selectivity (i.e., 
motion direction), thus it would be difficult to measure in 
the present experiment. The fitting result is illustrated in 
Fig. 4A (yellow line). The coefficients and goodness-of-fit 
measures are shown in Table 1.

Second, we fit the average normalized neuronal 
response in the attend-preferred condition with a sum 
of two Gaussians model. We “set” the parameters of one 
Gaussian to the same parameters obtained from the fixa-
tion condition under the assumption it approximates the 
excitatory field provided by the tuned inputs into the cell. 
For the second Gaussian, the coefficients were not con-
strained. We assumed that this second Gaussian would 
have negative gain representing inhibitory-tuned inputs 
into the neuron recruited (or magnified) by feature-based 
attention. The equation is:

The parameters b (baseline), gi (gain), and σi (width) 
were free to vary (while μi was set to 0).The baseline was 
not fixed since it may capture overall changes in response 
due to spatial attention or arousal, i.e., in the fixation con-
dition attention was directed to the fixation point while 
in the attend-preferred condition attention was directed 

f (x) = b+ (0.2713×e
−

x−µ
51.29

2

)+ (gi×e
−

x−µi
σi

2

)

to the RF likely producing a response increase for all 
directions [8]. The other parameters, gi and σi , represent 
the gain and width of the inhibitory inputs into a neuron. 
Negative values of gi would reflect increase in the gain of 
inhibitory inputs/field by attention.

In the attend-preferred condition, the baseline of neu-
ronal response increased (red dashed line) relative to the 
baseline in the fixation condition (yellow line) (Fig.  4A 
and Table 1). This may reflect the increase in responses 
due to directing attention into the RF. As anticipated, the 
second Gaussian which represents the inhibitory field 
(blue dashed line) showed a negative gain ( gi < 0) and a 
broader ( σi > σ ) width than the first Gaussian represent-
ing the excitatory field (51.29 vs. 110.8, Table 1). Notice 
the excitatory field was estimated from the Gaussian fit 
in the fixation condition, where we assume the contribu-
tion of the inhibitory field was small relative to that of the 
excitatory field. We repeated the fitting procedure but 
letting the coefficients of both Gaussian functions freely 
vary (Fig. 4B). The improvement in the goodness-of-fit of 
the model and changes in the coefficients were negligi-
ble (Table 1), indicating that changes induced by feature-
based attention on the inhibitory field can account for the 
changes in tuning profile.

We repeated a similar procedure at the level of single 
neurons. We first fit the single Gaussian model to the 
normalized individual neuronal responses in the fixa-
tion condition and used the coefficients to model the 
neuron’s excitatory field in the attend-preferred condi-
tion. The coefficients for the second Gaussian were not 
constrained. Neurons were excluded from the analyses if 
the fitting procedure was not successful due to missing 
data points or severe variability in the data (i.e., fit did not 
converge). Consequently, 69 neurons were included in 
the analysis. The median baseline, gain, and width coef-
ficients of the single Gaussian model fit in the fixation 
condition were 0.4656, 0.3996, and 54.83, respectively. 
In the attend-preferred condition, after constraining the 
first (excitatory) Gaussian coefficients, the median base-
line was 0.808 and the median gain and width of the 
second (inhibitory) Gaussian were − 0.2889 and 113.97, 
respectively. Wilcoxon signed-rank tests showed that the 
baseline was significantly elevated in the attend-preferred 
condition (Z = 4.1105, p < 0.001, Fig.  4E). The inhibi-
tory fields had significantly lower gains (Z =  − 3.9371, 
p < 0.001, Fig.  4F) and the broader widths (Z = 5.0612, 
p < 0.001, Fig.  4G) than the excitatory fields. This shows 
that model fits to the individual neuron data show the 
same results as in the population-level analysis.

Behavioral effects of feature‑based surround suppression
We investigated the effect of feature-based surround 
suppression on behavior using motion repulsion, 
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subject to feature-based attentional modulation [26, 
27]. Motion repulsion was measured when partici-
pants divided their attention to two superimposed 
RDPs (divided attention condition) or focused on one 
of them (focused attention condition, Fig.  5A). The 
superimposed RDPs were separated by different colors 
and their directional offsets systematically varied (10 to 
50°). The speed of motion for the RDPs could be 3°/s or 
6°/s.

First, we analyzed how feature-based attention and 
motion speed influenced participants’ direction judg-
ment accuracy—i.e., whether reported directions fell 
within a valid response range (Fig.  5B, see “Data analy-
sis” in “Methods”). Direction judgment accuracy in the 
focused attention condition was measured only if the 
attention task (detecting a brief directional shift) was 
successfully performed. A repeated-measures ANOVA 
demonstrated significant main effects of the attentional 

Fig. 4  A,B Model fits to the averaged normalized neuronal responses (population level, n = 78). Outlined circles and filled circles indicate the 
data in the attend-preferred condition and in the fixation condition, respectively. A For the sum of two Gaussians model in the attend-preferred 
condition, coefficients of the excitatory Gaussian (gain and width) were the same as those of the single Gaussian model in the fixation condition. 
B All coefficients of the sum of two Gaussians model were free to vary. C,D Examples of the model fits to individual neuronal responses. In C, the 
coefficients of the excitatory Gaussian were constrained while they were unconstrained in D. E–G Median coefficients of the model fits to the 
normalized individual neuronal data (n = 69). E Baseline coefficients when the single Gaussian model fit the data in the fixation condition and when 
the sum of two Gaussians model fit the data in the attend-preferred condition. F Gain and G width coefficients of the excitatory and inhibitory 
Gaussians when the sum of two Gaussians model fit the data in the attend-preferred condition. Note that the gain coefficients of the excitatory 
Gaussian were the same as those of the single Gaussian fits in the fixation condition. Error bars indicate SEM. *** p < . 001
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conditions (F(1, 13) = 6.683, p = 0.023) and motion speed 
(F(1, 13) = 22.443, p < 0.001) on direction judgment accu-
racy. Post hoc pairwise comparisons with the Bonferroni 
correction showed that direction judgment was more 
accurate in the focused attention condition than in the 
divided attention condition (Mdiff = 4.59%, SE = 1.78%) 
for both motion speeds (3°/s: p = 0.044, 6°/s: p = 0.065 
(trend)) because participants tracked only one motion 
direction in the focused attention condition. Direction 
judgment accuracy was also higher when motion speed 
was faster (Mdiff = 9.03%, SE = 1.91%) in both attentional 
conditions (divided: p < 0.001, focused: p = 0.01). Color of 
the target RDP did not influence direction judgment (F(1, 
13) = 0.051, p = 0.825). All interactions between the vari-
ables were not significant.

Figure 5C shows the mean accuracy of directional shift 
detection in the focused attention condition. The mean 
accuracy was 83.14% (SD 13.45%) and 82.93% (SD 9.79%) 
when motion speed was 3°/s and 6°/s, respectively. They 
did not statistically differ (p = 0.915), indicating that dif-
ficulty of the attention task was well controlled across 
different speed conditions. When it was broken down by 
the color of the attended RDP (target), the main effect of 
the target surface color on directional shift detection was 
significant (F(1, 13) = 13.995, p = 0.002). Detecting direc-
tional shifts was better when the target RDP was red than 
when it was green (Mdiff = 3.21%, SE = 0.86%) for both 
motion speeds (3°/s: p = 0.062 (trend), 6°/s: p = 0.015). 
The performance advantage in the red RDPs likely rep-
resents strong attentional guidance of red [30, 31]. Inter-
action between motion speed and the color of the target 
RDP was not significant (F(1, 13) = 0.12, p = 0.734).

Our main interest was examining feature-based sur-
round suppression reflected in motion repulsion. To 
address this, we analyzed motion repulsion of the trials 
in which participants correctly discriminated motion 

direction. The main effect of motion speed significantly 
affected motion repulsion (F(1, 13) = 54.343, p < 0.001): 
faster motion speed (6°/s) reduced motion repulsion 
(Mdiff = 3.47°, SE = 0.47°) as previously reported [32–34]. 
When motion speed was 3°/s (Fig.  6A), the main effect 
of the attentional condition on motion repulsion was not 
significant (F(1, 13) = 2.224, p = 0.16), whereas motion 
repulsion significantly varied depending on the direc-
tional difference between the two RDPs (F(4, 52) = 2.715, 
p = 0.04). Importantly, motion repulsion was influenced 
by the interaction between the attentional condition and 
the directional difference (F(4, 52) = 3.958, p = 0.007). 
Motion repulsion was significantly reduced in the focused 
attention condition when the directional difference was 
30° (Mdiff = 4.40°, SE = 1.41°, p = 0.008) and this effect 
was marginal when the directional difference was 40° 
(Mdiff = 2.81°, SE = 1.34°, p = 0.056). We also compared 
the suppressive effect, defined by the difference in motion 
repulsion between the two attention conditions (focused 
vs. divided), at 30° difference (where the reduction of 
motion repulsion was apparent) with the effects at the 
other directional differences. Pairwise comparisons with 
the Benjamini and Hochberg procedure (FDR = 0.05) 
showed that the suppressive effect at 30° difference was 
significantly greater than the effects at 10° (Mdiff = 5.06°, 
SE = 2.01°, p = 0.026, BH critical value = 0.038) and 20° 
differences (Mdiff = 4.34°, SE = 1.64°, p = 0.02, BH critical 
value = 0.025), and it tended to be greater than the effect 
at 50° difference (Mdiff = 5.35°, SE = 1.95°. p = 0.017, BH 
critical value = 0.013). To provide converging evidence, 
we fit a quadratic model to the data as an approxima-
tion of the surround suppression [35] and compared its 
goodness-of-fit with that of a linear model. Whereas 
the linear model did not properly fit the data (adjusted 
R2 =  − 0.305, AIC = 11.344), the quadratic model, an 
approximation of the surround suppression [35], showed 

Table 1  Coefficients of the model fits to the average normalized neuronal responses (population level, n = 78) in the fixation and 
attend-preferred conditions and goodness-of-fit measures

Fixation Attend-preferred
(constrained)

Attend-preferred
(unconstrained)

Baseline 0.50 0.76 0.74

1st Gaussian (excitatory) Gain 0.27 0.27 0.28

Width 51.29 51.29 42.65

2nd Gaussian (inhibitory) Gain N/A  − 0.15  − 0.12

Width 110.82 96.94

Goodness-of-fit SSE 0.002731 0.001433 0.0003139

R2 0.9738 0.9667 0.9927

Adjusted R2 0.9679 0.9594 0.9886

RMSE 0.01742 0.01262 0.006696
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a better fit (adjusted R2 = 0.734, AIC = 6.826). Reduction 
of motion repulsion at around 30 ~ 40° difference sug-
gests that feature-based surround suppression played a 
role by inhibiting an unattended motion direction that 
was near the attended motion direction.

When motion speed was 6°/s (Fig.  6B), the atten-
tional condition significantly modulated motion repul-
sion (F(1, 13) = 19.557, p = 0.001), demonstrating that 
motion repulsion was generally smaller in the focused 
attention condition (Mdiff = 3.18°, SE = 0.72°). Directional 

Fig. 5  A Experimental conditions and procedure of human behavioral experiment. In the divided attention condition, participants attended to 
both RDPs equally, ignoring any directional shift. A color cue was presented after RDPs disappeared, and then, participants reported a direction 
of the cued RDP by clicking along a white circular outline. In the focused attention condition, a color cue indicated which RDP participants had 
to attend. Participants were asked to detect a directional shift on the cued RDP if it occurred, and then reported motion directions of this RDP as 
in the divided attention condition. B Direction judgment was more accurate in the focused attention condition, and when motion speed was 
faster (n = 14). C Detection of directional shifts (only in the focused attention condition) was not affected by motion speed. However, direction 
discrimination was more accurate when the attended RDP was red. Error bars indicate SEM. * p < .05, *** p < . 001
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difference (F(4, 52) = 1.652, p = 0.175) and the interaction 
between the attentional condition and the directional dif-
ference (F(4, 52) = 1.049, p = 0.391) did not significantly 
affect motion repulsion. Motion repulsion was signifi-
cantly smaller in the focused attention condition at all 
directional differences, except at 10° difference, and the 
difference in motion repulsion did not statistically vary 
across directional differences. Therefore, unlike when 
motion speed was 3°/s, it was difficult to specify the effect 
of feature-based surround suppression.

We further broke down the data by the color of the tar-
get RDP to see how this factor is associated with motion 
repulsion. When motion direction was 3°/s, the amount 
of motion repulsion was different depending on the color 
of the target RDP (F(1, 13) = 28.589, p < 0.001; Fig.  6C). 
Motion repulsion was smaller when the target RDP was 
green than when it was red (Mdiff = 7.07°, SE = 1.32°). 
Although the attentional condition did not affect motion 
repulsion (F(1, 13) = 2.07, p = 0.174), there was a signifi-
cant interaction between the target RDP color and the 

attentional condition (F(1, 13) = 9.199, p = 0.01). We con-
ducted an ANOVA separately for each target RDP color 
to investigate this interaction in more detail. When the 
target RDP was red, motion repulsion was not affected by 
the attentional conditions (F(1, 13) = 1.188, p = 0.296) but 
by the directional difference between the two RDPs (F(4, 
52) = 7.522, p < 0.001). The interaction between these two 
variables was not significant (F(4, 52) = 0.8, p = 0.531). 
Hence, there was no evidence for feature-based surround 
suppression. On the other hand, when the target RDP 
was green, the main effect of the attentional conditions 
was significant (F(1, 13) = 22.631, p < 0.001), indicating 
that feature-based attention reduced motion repulsion 
(Mdiff = 3.96°, SE = 0.83°) as previously reported [26]. 
Motion repulsion was not modulated by the directional 
difference (F(4, 52) = 0.802, p = 0.529), but the interaction 
between the attentional conditions and directional differ-
ence was significant (F(4, 52) = 6.699, p < 0.001). Motion 
repulsion significantly decreased in the focused attention 
condition when the directional difference was around at 

Fig. 6  A When motion speed was 3°/s, the amount of motion repulsion between the two attentional conditions significantly differed when the 
directional difference was 30° (n = 14). The same effect was marginal when the directional difference was 40° (p = .056). B When motion speed was 
6°/s, motion repulsion was reduced in the focused attention condition and it was true across all directional differences, except at 10° difference. 
We further broke down the data by the color of the target RDP. C When motion speed was 3°/s, attentional modulation on motion repulsion was 
evident only if the target RDP was green. D On the other hand, when motion speed became faster, attentional modulation on motion repulsion 
was observed regardless of the color of the target RDP. Error bars indicate SEM. * p < .05, ** p < .01, *** p < .001
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20 ~ 40° (20°: p = 0.051 (marginal), 30°: p < 0.001, and 40°: 
p = 0.005). This indicates that feature-based surround 
suppression in the 3°/s condition was mainly derived 
from the trials where the target RDP was green.

When motion speed was 6°/s, motion repulsion 
was modulated by the color of the target RDP (F(1, 
13) = 14.491, p = 0.002), showing smaller motion repul-
sion in the green RDPs (Mdiff = 4.72°, SE = 1.24°; Fig. 6D). 
In addition, the attentional condition significantly 
affected motion repulsion (F(1, 13) = 16.507, p = 0.001). 
Motion repulsion was smaller in the focused atten-
tion condition than in the divided attention condition 
(Mdiff = 3.07°, SE = 0.76°). The interaction between the 
target RDP color and the attentional condition was not 
significant (F(1, 13) = 0.865, p = 0.369). Unlike when 
motion speed was 3°/s, the attentional condition modu-
lated motion repulsion even when the color of the target 
RDP was red (F(1, 13) = 5.177, p = 0.04). Post hoc pair-
wise comparisons showed that motion repulsion was 
reduced in the focused attention condition (Mdiff = 2.22°, 
SE = 0.97°) and it was significant when the directions of 
RDPs differed by 40 ~ 50° (40°: p = 0.036, 50°: p = 0.02). 
When the target RDP was green, feature-based atten-
tion also significantly reduced motion repulsion (F(1, 
13) = 8.148, p = 0.014; focused vs. divided: Mdiff =  − 3.93°, 
SE = 1.38°). The reduction was at the trend level at 
10 ~ 20° difference (10°: p = 0.053, 20°: p = 0.085) and 
became significant at 30 ~ 40° difference (30°: p = 0.008, 
40°: p = 0.021). Motion repulsion patterns for green RDPs 
were consistent across different motion speeds, whereas 
feature-based attention played a role only if motion speed 
was faster when the target RDP was red. Therefore, the 
almost universal decrement in motion repulsion in the 
6°/s condition might have resulted from the interaction 
between the color of the target RDP and motion speed.

Discussion
Our neurophysiological findings in monkey show that 
attention to a neuron’s preferred motion direction modu-
lates its direction tuning curve, imposing a suppressive 
surround around the attended direction. In addition, 
our behavioral study demonstrates feature-based sur-
round suppression on motion repulsion in humans. We 
modeled this non-linear effect of feature-based attention 
as differential gain modulations of widely tuned inhibi-
tory inputs and narrowly tuned excitatory inputs into 
neurons.

Effects of feature‑based attention on motion direction 
tuning curves
Feature-based attention allows enhancing the process-
ing of attended features while suppressing the process-
ing of unattended ones [5]. These effects of feature-based 

attention have been captured by the feature-similarity 
gain model, which proposes that modulation of a neu-
ron’s response is a monotonic function of the differences 
between the neuron’s preferred feature and the attended 
feature [4, 8]. Feature-based attention produces a maxi-
mal response enhancement for the attended feature and a 
progressive decrease of responses that becomes suppres-
sion relative to a neutral condition as the attended feature 
deviates from the preferred feature of the neurons. Our 
results in this study do not match those reported by pre-
vious electrophysiological studies of feature-based atten-
tion in macaques [4, 8]. Here, we found that the decay 
in the intensity of the feature-based attention response 
enhancement was not monotonic but reached its mini-
mum in the vicinity of the attended feature producing a 
non-linearity in the tuning curve that cannot be directly 
explained by a gain modulation.

One possible explanation for the difference between 
our results and those of the previous study is that in [4] 
there was a large separation between target and distrac-
tor; therefore, the feature-based attentional response 
modulation may not have been sufficiently large to reveal 
the precise shape of the feature-similarity modulation. 
Location-based surround suppression predicted by the 
Selective Tuning model was formulated for stimulus con-
ditions in which distractors are adjacent to the attended 
stimulus and attention filters out their contribution to 
the neuron’s response. In our study the attended stimulus 
and distractor were nearby, within the same RF, resem-
bling the formulation in the Selective Tuning model. Fea-
ture-based attentional modulation was stronger because 
the proximity of the RDPs may have triggered stronger 
inhibitory circuit dynamics. Indeed, attentional modu-
lation is stronger when targets and distractors are posi-
tioned inside the RF relative to when they are positioned 
one inside and the other outside the RF [8, 36]. Moreo-
ver, distractor interference is stronger when both stimuli 
are within the same hemifield relative to when they are 
in different hemifields [37]. Additionally, in our study, 
we maintained the preferred pattern in the RF, which 
may have strongly driven neuronal responses [38] in a 
way that the modulation was detectable with a reason-
able sample of recorded neurons and trials. Supporting 
the later view, we observed a variability in the intensity of 
the non-linear effect across neurons (Fig. 1C). This inter-
pretation suggests that feature-based attention might 
interact with spatial attention (spatial attention refers to 
the allocation of attention to spatial locations, while fea-
ture-based attention refers to the allocation of attention 
to different features independently of their spatial loca-
tions). Our previous study provided supporting evidence 
for the interaction between spatial and feature-based sur-
round suppression [35]. We showed that the suppressive 
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effect is greatest when the two (spatially) adjacent targets 
are also close in feature space. However, we acknowledge 
that this topic is still a matter of debate [39–42] and fur-
ther research is required to elucidate the nature of fea-
ture-based attention.

Since the preferred pattern was constantly presented 
within the RF across different attention conditions, pure 
motion sensory adaptation to this stimulus is unlikely 
to explain our results [43, 44]. However, the effects of 
adaptation might have interacted with attention because 
attention varied along the different combinations of 
RDPs in the attend-preferred and attend-tuning condi-
tions (c.f., adaptation to different cues [12]).

Modeling the response modulation
Models of MT neurons have proposed that feature tuning 
is a function of excitatory-tuned inputs from upstream 
neurons and inhibitory inputs from neurons within the 
same area. This idea is captured by normalization models 
[45], which propose that inhibitory inputs into a neuron 
are not tuned for stimulus features. Normalization mod-
els can account for observed modulations of neuronal 
responses by attention [46]. Attention could modulate 
inputs into neurons, and because the same inputs acti-
vate the normalization pool in different manners depend-
ing on the size of the attentional focus, a variety of effects 
could be achieved at the level of single-cell responses 
[45]. Others have further proposed tuned normalization 
as a mechanism to explain attentional modulation across 
neurons [47, 48].

One possibility that explains our results is a tuned 
normalization pool modulated by feedback signals from 
high-order areas into MT/MST. However, for a gain feed-
back modulation to explain the feature-based surround 
suppression, the tuning of the feedback modulation, or 
of the inhibitory neuronal pools they activate (directly 
or indirectly) needs to be wider than the tuning of feed-
forward excitatory inputs. It is possible the feedback 
does not directly drive inhibitory neurons but excitatory 
cells that in turn activate the inhibitory pool. It is diffi-
cult with the available data to provide a detailed circuit 
layout. But we can elaborate on a hypothesis as follows: 
(1) the tuning/width of the inhibitory inputs into a neu-
ron are wider than those of excitatory inputs, and (2) 
attention modulates the gain of inhibitory inputs more 
strongly than excitatory inputs. The appeal of this pro-
posal relies on how gain changes differentially applied 
to MT/MST excitatory and inhibitory fields could pro-
duce a non-monotonic non-linear modulation when the 
modulated excitatory and inhibitory fields are integrated. 
We should note that feedforward inputs into a neu-
ron could increase their strength with attention as long 
as the effect is smaller than the one of feedback inputs. 

Indeed, this may be the case according to studies isolat-
ing the modulation of responses in area V1 [36]. If feed-
back gain signals were to originate downstream from the 
recorded area, and given that the attentional modulation 
of responses grows along the hierarchy of visual process-
ing [49, 50], it is reasonable to assume that within a given 
area changes in the strength of feedback signals would 
be greater than changes in the strength of feedforward 
inputs. This assumption, however, needs to be further 
tested.

Previous studies have reported that the tuning of 
inhibitory neurons for stimulus features is wider than the 
tuning of excitatory cells [51]. In monkey dorsal MST, 
narrow-spiking putative interneurons are more broadly 
direction tuned than broad-spiking putative pyramidal 
cells [52]. Given that parvalbumin positive (PV) cells 
are the most abundant interneuron type in MT/MST 
[53], and they are involved in gain control of pyramidal 
cells [54], it could be that PV cells recruited by top-down 
inputs [55] provide the wide strong inhibitory drive that 
produces the non-linear change in the tuning curves.

Remarkably, a computational model, Selective Tuning 
model, predicts the effects described here as resulting 
from top-down feedback signals modulating the land-
scape of neuronal population activity in visual areas such 
as MT. Indeed, studies using moving RDPs have shown 
that the latency of the attentional effects on the responses 
of direction-selective neurons is shorter in the lateral 
prefrontal cortex than in MT [50], suggesting that top-
down feature-based attentional signals originate in areas 
of the prefrontal cortex and feedback into visual cortex 
to modulate processing [55, 56]. Our results add detail to 
the way in which this specific modulation is implemented 
at the levels of single neurons and circuitry in MT that 
can be incorporated into models like the Selective Tun-
ing model to generate detailed predictions at microcir-
cuit level. One thing to note is that MST neurons have 
larger RFs than MT neurons that in many cases crossed 
the vertical meridian, and MST neurons are tuned for 
spiral motion. In addition, attentional effects are system-
atically stronger in MST than in MT [49]. Unfortunately, 
the sample we recorded from was small and we could not 
reliably analyze MST and MT neurons separately for this 
specific experiment.

Behavioral effects of feature‑based surround suppression
We observed that attention to one of the two superim-
posed RDPs reduced motion repulsion and this reduction 
was greatest when the RDPs moved in similar direc-
tions. This feature-based surround suppression effect 
varied depending on bottom-up factors such as motion 
speed and the color of the target RDP which indicates 
an interplay between top-down feature-based attention 
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and bottom-up factors. The present results appear to 
be inconsistent with the previous report that the color 
of motion surfaces does not influence motion repul-
sion [57]. However, in their study, motion repulsion was 
not measured separately for the motion surface colors; 
hence, the effect of the surface color might have not been 
addressed. Greater motion repulsion in red surfaces sug-
gests that these surfaces are more strongly affected by 
inhibition. Such a result is consistent with a recent study 
that showed red facilitated response inhibition compared 
to green [58]. It is also possible that different color wave-
lengths may influence motion repulsion. When the speed 
of the motion was faster, producing more signal strength, 
it is likely that the balance in mutual inhibition between 
the two-colored surfaces was more even, which then 
allowed for feature-based attentional modulation and 
surround suppression to be seen on the red surface.

One puzzling finding was that feature-based surround 
suppression in our behavioral experiment in humans was 
produced when the directional difference between two 
motions was smaller (30 ~ 40°) than in the neurophysi-
ological experiment in monkeys (60 ~ 90°). The previous 
behavioral studies reported broader feature-based sup-
pressive surrounds in the motion direction dimension 
than those in the other feature dimensions (maximum 
suppression around at around 90° difference, [20, 21]), a 
range similar to what we found in the neurophysiological 
experiment [59–61]. There are several possible explana-
tions for the discrepancy between our two experiments. 
It may be that responses of MT single neurons tuned for 
motion direction translate into a different population 
response profile in areas downstream from MT/MST 
(e.g., lateral intraparietal area or the prefrontal cortex). In 
favor of this hypothesis, it has been reported that during 
a task that requires categorization of motion directions, 
lateral intraparietal and prefrontal neurons change their 
tuning while MT neurons do not [62]. It may also be that 
a narrower surround suppression profile in our behav-
ioral experiment could be due to the nature of motion 
repulsion. Motion repulsion is typically attenuated as 
the two superimposed motions move in more dissimilar 
directions. In addition, human participants were asked 
to report motion directions with high precision, whereas 
monkeys had to detect directional changes while main-
taining attention on an eccentric motion pattern. Finally, 
we used colored, superimposed RDPs in the behavioral 
experiment, while white, spatially separated RDPs in the 
neurophysiological experiment. Finally, biases idiosyn-
cratic to each species (humans vs. monkeys) may have 
also influenced the profile of feature-based surround 
suppression.

The current behavioral paradigm allowed insight into 
feature-based surround suppression mechanisms. As 

motion repulsion is thought to occur due to mutual inhi-
bition between competing pools of direction-selective 
neurons [63], it is possible increasing the gain of inhibi-
tory relative to excitatory inputs into neurons within 
the focus of attention produces the observed effect, i.e., 
shifting the population tuning back towards the veridical 
direction from the repulsed one. Our experimental para-
digm more directly demonstrates feature-based surround 
suppression of the Selective Tuning model relative to the 
previous ones.

Conclusions
Our results demonstrated a consistent attentional sur-
round suppressive effect at both neurophysiological and 
behavioral levels and resolved seemingly contradictory 
findings of feature-based attention: the feature-simi-
larity gain modulation of neuronal inputs and tuning 
curves and the attentional impact on neural population 
responses predicted by the Selective Tuning model. We 
also modeled this suppressive effect, suggesting how 
non-linear changes in neural tuning and behavior can 
emerge from gain modulation induced by feature-based 
attention. Ultimately, our work provides a unified frame-
work for the effects of feature-based attention on neu-
ronal responses and behavior.

Methods
Neurophysiology in macaque monkeys
Research with non-human primates represents a small 
but indispensable component of neuroscience research. 
The researchers in this study are aware and are commit-
ted to the responsibility they have in ensuring the best 
possible science with the least possible harm to the ani-
mals [64].

Apparatus and stimuli
We recorded the responses of direction-selective neu-
rons in areas MT and MST (n = 107) of two male adult 
macaque monkeys in different task conditions. After 
initial training, a head post, a scleral search coil [65] to 
monitor eye position  [66], and a recording chamber 
were implanted in each animal. A custom computer 
program running on an Apple Macintosh PowerPC 
controlled the stimulus presentations, monitored eye 
position and behavioral responses during the experi-
ments, and recorded the behavioral and neuronal data. 
The experiments reported in this study were conducted 
according to local and national rules and regulations and 
were approved by the Regierungspraesidium Tuebingen 
(Germany).

RDPs consisted of small bright dots with a density of 5 
dots/deg2 within a stationary circular virtual aperture on 
a dark computer monitor. The luminance of the dots was 
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55 cd/m2 and the viewing distance was 57 cm. The size 
of the RDPs was adjusted (varied from about 1 to 3° in 
diameter) depending on the size of the recorded neuron’s 
RF so that both RDPs fell within the neuron’s classical RF. 
Eccentricity of the RFs’ centers from the fixation point 
varied between 3 and 10°, contralateral to the recorded 
hemisphere. Animals did not perform the task when RFs 
were more eccentric or when eye movements interfered 
with trial execution if RFs were too close to the fixation 
point. In every trial, we presented two RDPs of equal size 
at separate locations inside the neurons’ RF and their 
centers were approximately equally distant from the fixa-
tion point. The two locations within the RF were chosen 
in a manner that different directions of a single RDP elic-
ited similar responses when presented at either location. 
One RDP always moved in the neuron’s preferred direc-
tion, which was estimated in a separate block of trials by 
online display of the responses to a single RDP inside the 
RF moving in different directions while the animal was 
fixating a dot at the screen center (see [8]). The other 
pattern could move in one of twelve different directions 
spaced every 30°. Movement of the dots was created by 
displacement of each dot by the appropriate amount at 
the monitor refresh rate of 75 Hz.

Recordings
Extracellular recordings from the left hemisphere were 
conducted using tungsten microelectrodes (impedance 
0.5–2 mΩ, Microprobe and FHC). Electrodes were low-
ered through a recording chamber implanted on top of 
the parietal bone until reaching the approximate loca-
tion of MT/MST. Single units were isolated with a win-
dow discriminator, and eccentricity, direction selectivity, 
and position of the electrode within the recorded area 
were determined. RFs of MT and MST neurons were 
mapped using a moving bar attached to the computer 
cursor. Upon implantation of the recording chamber and 
craniotomy to give access to area MT, we positioned an 
adaptor on top of the chamber containing a grid (Crist 
Instruments, TX). We then positioned a guide tube with 
an inner guide through the grid and penetrated the dura 
mater until about 2–3 mm from the point the guide tube 
touched the dura mater. We retract the inner guide and 
let the guide tube positioned on the grid. Then we used 
a Microdrive and positioned an electrode (from 70 to 
200 Micrometers shank) inside the guide tube. We then 
advanced the electrode via a hydraulic Microdrive (Kopf 
Instruments, CA). We advanced the electrode slowly 
while stopping every 150  µm to listen to the neuronal 
activity. A first layer of gray matter was labeled by listen-
ing to activation of neurons, then a silent layer indicat-
ing the white matter and finally a second layer of activity. 

Once the second layer was identified we stopped advanc-
ing the electrode and labeled that layer as putative MT. 
We then advanced the electrode in steps of 50 µm until 
recording action potentials. Then, we started the map-
ping procedure.

Mapping was conducted using a virtual bar attached to 
the computer mouse cursor. Systematic mapping of the 
entire visual field in 8 different orientations, 16 directions 
was conducted per quadrant while listening to the pat-
tern of neuronal activity and visualizing the action poten-
tials through an oscilloscope while the animal fixated a 
central fixation point. When we detected an increase 
in the firing, we concentrated on that area of the screen 
and performed an estimation of the RF boundaries using 
the bar. We drew the boundaries on a transparency we 
attached to the computer screen. Once boundaries were 
estimated, we positioned RDPs inside the RF moving in 
the neuron’s putative preferred and anti-preferred direc-
tions. We increased the size of the RDP (diameter) in 
order to estimate where the RF surround started. Then, 
we measured direction and speed tuning of the neuron 
using an array of stimuli (8 different directions: 0, 45, 90, 
135, 180, 225, 270, and 330°, 0° was the horizontal and 
to the right direction relative to the animal, speed: 2, 4, 
8, 12, 16, and 32°/s). We then estimated the preferred 
direction and speed of the neuron through online dis-
play and fitting Gaussian tuning curves. We also used 
spiral stimuli to measure the responses of neurons. The 
spiral stimuli had similar average speeds as the linear 
motion stimuli and were as follows: expansion, clock-
wise rotation + expansion, clockwise rotation, clockwise 
rotation + contraction, contraction, contraction + coun-
ter-clockwise rotation, counter-clockwise rotation, and 
counter-clockwise rotation + expansion [67]. Neurons 
were classified as MT if the receptive fields were limited 
to the contralateral visual hemifield, and if they were bet-
ter tuned to linear than to spiral motion and the receptive 
field size did not cover an entire hemifield or quadrant. 
We recorded only from those neurons showing clear 
direction selectivity during initial mapping. Throughout 
this process, we recorded from 107 MT/MST neurons 
(75 MT and 32 MST neurons).

Task
The animals were trained to selectively attend to a cued 
stimulus (the target), while directing gaze to a fixation 
point (Fig.  1A). One of the RDPs always moved in the 
neuron’s preferred direction (preferred pattern) and the 
other could move in one of 12 different directions from 
trial to trial (tuning pattern, in steps of 30°). There were 
three different experimental conditions depending on 
which stimulus on the display was attended (Fig.  1B). 
The animals were cued to attend to (1) the preferred 
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pattern (attend-preferred condition), or (2) tuning pat-
tern (attend-tuning condition). Then, 200  ms after the 
animal foveated the fixation point, a stationary RDP 
appeared as an attentional cue, indicating the location 
of the target. Once the animal pressed a lever, the cue 
moved in the target direction for 400  ms and then dis-
appeared to re-appear together with the distractor after 
an interval of 270  ms. The direction of either the tar-
get or distractor changed (15–25° for 110  ms) within a 
time window of 270–1130  ms after target and distrac-
tor onset (see [12] for the detailed information regard-
ing the change probability distribution). The task for the 
animals was to covertly attend to the target pattern and 
release a lever only in response to a direction change in 
the target within a 250–700-ms response window after 
the direction change. The animals had to ignore changes 
in the direction of the unattended pattern, which hap-
pened in 50% of the trials. Direction change occurred 
in every trial except in the fixation conditions. (3) In the 
fixation condition, the animals attended to the fixation 
point and released a lever once they detected the color 
change of the fixation point while ignoring both RDPs 
in the periphery. Only correctly completed trials were 
rewarded with a drop of juice and included in the data 
analysis. Trials where the animals failed to maintain fixa-
tion or responded outside the reaction time window were 
discarded.

Data analysis
Neurons were included in the analysis if the number of 
data points in which they were recorded from was more 
than 6. As a result, 78 MT/MST neurons were analyzed 
(53 MT and 25 MST neurons). We computed average fir-
ing rates during the interval from 200 to 1200  ms after 
the onset of the two patterns, as a function of the tun-
ing pattern’s direction relative to the direction of the 
preferred pattern. Responses after a direction change in 
the receptive field were excluded from the analysis. They 
were analyzed separately in the context of another study 
[68]. The responses of each neuron were normalized to 
the response when both RDPs moved in the neuron’s pre-
ferred direction in the attend-preferred condition and 
then averaged across neurons. The responses of both 
MT and MST neurons were pooled since the direction 
selectivity and tuning curve profiles were very similar 
between the two areas. Repeated-measures ANOVA and 
paired samples t-tests on the average normalized neu-
ronal response were conducted to examine how neuronal 
responses varied depending on experimental conditions.

We fitted the single Gaussian and sum of two Gauss-
ians models to neuronal responses, using the MATLAB 

curve fitting toolbox (Mathwork Inc., USA). The sum of 
two Gaussians model we used is equivalent to the differ-
ence-of-Gaussians model as the first Gaussian has a posi-
tive gain and the second Gaussian has a negative gain. We 
used the Akaike Information Criterion (AIC [69]) which 
penalizes model complexity (lower AIC value indicates 
better fit) to assess the relative quality of each model fit.

Human behavioral experiments
Participants
Fourteen naïve participants (5 men, 9 women), between 
the ages of 20 and 30  years completed the experiment. 
They had normal or corrected-to-normal visual acu-
ity, and normal color vision. Written informed consent 
was obtained from all participants and they were paid 
for their participation ($30 CAD per participant). The 
research was approved by York University’s Human Par-
ticipants Ethics Review Committee.

Apparatus and stimuli
Experiments were conducted in a dark room. Partici-
pants sat 57  cm from a CRT monitor (21″ View Sonic 
G225f, 1280 × 1024, 85  Hz), and their heads were sta-
bilized on a head and chin rest (Headspot, UHCOtech, 
Houston, TX). Participants wore an infrared eye tracker 
(Eyelink II, SR Research, 500  Hz, Mississauga, ON, 
Canada) monitoring the left eye position. Random dot 
patterns (RDPs) were created through MATLAB (Math-
Works, Natick, MA) and the Psychophysics Toolbox [70, 
71]. Experimental control was maintained by Presenta-
tion (Neurobehavioral Systems, Berkeley, CA).

An annular RDP consisted of two superimposed 
motion surfaces (RDP size = 15 dva (degree in visual 
angle) in diameter, inner aperture size = 6 dva in diam-
eter, dot size = 0.15 dva, 75 dots per surface). The direc-
tions of the motion surfaces changed every trial and the 
dots in each motion surface moved in the same direc-
tion (100% coherent). Directional difference between the 
two surfaces systematically varied by 10 ~ 50° (10° step). 
Motion speed was either 3°/s or 6°/s and both motion 
surfaces moved in the same speed. Dots in one motion 
surface were red (luminance: 24.67 cd/m2), and those on 
the other surface were green (24.64 cd/m2) to make par-
ticipants easily segregate them, without affecting direc-
tion repulsion [57].

Task
We tested participants under two experimental con-
ditions: divided and focused attention. In the divided 
attention condition, typical motion repulsion was meas-
ured. The RDPs were presented for 2 s once participants 
fixated a white cross centered on a screen for 200  ms. 
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Participants had to maintain the fixation until the RDPs 
disappeared; otherwise, an error message was presented, 
and the trial was randomly interleaved in the remaining 
trials. Participants were asked to view both motion sur-
faces equally to estimate their directions. During motion 
presentation, a brief directional shift (100 ms) on either 
motion surface could randomly occur in 80% of tri-
als, and then it went back to the original direction. The 
amount of shift was randomly selected from the range 
between 30 and 40° when motion speed was 3°/s, and 
between 20 and 30° when motion speed was 6°/s to equal-
ize the perceptual strength of directional shifts across dif-
ferent motion speed conditions. A shift could occur from 
650 to 1100 ms after RDP onset. Participants were asked 
to ignore this directional shift while they viewed the 
RDPs. After motion presentation, a color cue (either red 
or green) appeared for 250 ms to indicate which motion 
surface was the target in that trial. Each color cue was 
presented equally throughout the experiment. Partici-
pants reported the motion direction of the target surface 
by clicking along a white circular outline.

In the focused attention condition, after maintaining 
central fixation for 200 ms, a color cue appeared before 
the RDPs were presented to indicate which motion sur-
face should be attended. Participants were required to 
attend only to the cued motion surface (target) while 
ignoring the other surface. To make sure whether they 
selectively attended to the target surface, they clicked the 
right mouse button within 1  s after the onset of a brief 
directional shift. The directional shift could occur only on 
the target surface. If there was no shift, participants did 
not respond and waited until they viewed the white cir-
cular outline. If participants missed the shift, responded 
too late, or made a false alarm, an error message was 
presented, and the trial was discarded. They reported 
the motion direction of the target surface only when the 
attention task was successfully performed.

The attentional conditions were blocked, and par-
ticipants performed both conditions twice in a random 
order. At the beginning of each attentional condition, 
participants were given 10 practice trials whose data were 
not used, and then, they performed 100 trials as the main 
experiment (200 trials for each attentional condition, in 
total). There was a mandatory “break time” after every 25 
trials. Participants could have extra “break time” if they 
wanted.

Data analysis
We first sorted participants’ direction judgment 
responses to reduce variability in data [57]. A cor-
rect direction judgment should fall within a range 
that extended from halfway between the two motion 

directions to 45° away from the motion direction of 
the target surface. Then, motion repulsion, defined by 
the difference between the reported (perceived) and 
the actual motion direction, was calculated. Since par-
ticipants performed an additional attention task in the 
focused attention condition, only trials in which both 
directional shift detection and motion direction judg-
ment were successful were included in the analysis. 
Motion repulsions in the two attentional conditions 
were compared to quantify the attentional modulation.
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