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Abstract 

Medical interventions may be more effective in some types of individuals than others and identifying characteristics 
that modify the effectiveness of an intervention is a cornerstone of precision or stratified medicine. The opportunity 
for detailed examination of treatment-covariate interactions can be an important driver for undertaking an individual 
participant data (IPD) meta-analysis, rather than a meta-analysis using aggregate data. A number of recent modelling 
approaches are available. We apply these methods to the Perinatal Antiplatelet Review of International Studies (PARIS) 
Collaboration IPD dataset and compare estimates between them. We discuss the practical implications of applying 
these methods, which may be of interest to aid meta-analysists in the use of these, often complex models.

Models compared included the two-stage meta-analysis of interaction terms and one-stage models which fit multi-
ple random effects and separate within and between trial information. Models were fitted for nine covariates and five 
binary outcomes and results compared.

Interaction terms produced by the methods were generally consistent. We show that where data are sparse and there 
is low heterogeneity in the covariate distributions across trials, the meta-analysis of interactions may produce unsta-
ble estimates and have issues with convergence. In this IPD dataset, varying assumptions by using multiple random 
effects in one-stage models or using only within trial information made little difference to the estimates of treatment-
covariate interaction. Method choice will depend on datasets characteristics and individual preference.
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Introduction
Systematic reviews and meta-analyses are widely used 
within healthcare to combine relevant data from indi-
vidual clinical studies. They form an integral part of 
evidence-based medicine and aim to provide robust evi-
dence to inform policy and clinical practice. Systematic 
review with individual participant data (IPD) meta-anal-
ysis has been referred to as a ‘gold standard’ approach 
to evidence synthesis [1]. In addition to producing 

more reliable and robust summary effect estimates, an 
important reason for collecting IPD is to understand if 
particular types of patients benefit more or less from a 
treatment. This is achieved through investigating whether 
important clinical covariates, such as age, sex or previous 
medical history alter treatment effectiveness, also termed 
“effect modification” [2].

The ability to conduct this type of analysis is impor-
tant within healthcare as it underpins more personal-
ised approaches to clinical intervention by informing 
the types of individual to whom intervention is offered 
[3]. Tailoring healthcare to individuals also has potential 
to save resources, for example, restricting use to those 
individuals where it is most effective or cost effective 
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or avoiding the burden of treatment in individuals who 
derive little or no benefit.

Methods of estimating treatment—covariate interaction
Exploring effect modification involves the estimation of 
treatment-covariate interaction through the inclusion 
of interaction parameters within meta-analytic models 
[4]. This can be done through the use of meta-regression 
based on published results/aggregate data but may lack 
power and is prone to aggregation bias and confounding 
[4]. In IPD synthesis, treatment-covariate interaction can 
be estimated using either ‘two-stage’ or ‘one-stage’ meta-
analysis. Two-stage methods produce estimates of inter-
action within each trial which are then combined using 
conventional meta-analysis and either fixed or random 
effects. One-stage methods combine data from all rele-
vant trials in a single analysis using regression modelling. 
The approach does not analyse data as if they come from 
a single ‘mega-trial’, but maintains the differentiation 
between trials and accounts for the clustering of patients 
within the trials [5]. Due to this, the approach is also 
sometimes termed a ‘stratified analysis’ [3].

There has been growing consideration of methods for 
the estimation of treatment-covariate interaction, with 
debate in the literature as to how they differ, and which 
is method best to use and when. Simmonds and Higgins 
[4] first compared meta-regression, the two-stage meta-
analysis of interactions (MAOI) and a one-stage method 
and determined the power of the methods to detect treat-
ment-covariate interactions. Authors concluded that the 
power of meta-regression depends on the variation in the 
mean covariate values across studies and that statistical 
power may be lacking when studies are few. The method 
is also prone to aggregation bias and confounding. The 
power of the MAOI model depends on the variation of 
covariates within each study, whilst the one-stage model 
always has at least equal or greater statistical power com-
pared to meta-regression and the MAOI model [4].

Since then, methods have advanced and it has become 
possible to fit more complex one-stage models, including 
those with multiple random effects. There is now sug-
gestion these may be better than models that use a sin-
gle random effect [6]. Furthermore, as one-stage models 
do not automatically avoid aggregation bias when esti-
mating treatment-covariate interactions, there has been 
consideration of methods that separate within-trial and 
across-trial information. It has been recommended that 
one-stage IPD-MA consider only within-trial estimates 
to avoid biased results driven by aggregation bias [7–9].

Simulation studies have compared these methods for 
estimating treatment-covariate interaction. Da Costa and 
Sutton [10] used simulated IPD to compare six one-stage 
models, which varied in whether or not they accounted 

for variation in between-trial interaction effects. Those 
accounting for this variation were less prone to bias and 
had more accurate standard errors [10]. These results are 
generalisable to trials using continuous outcomes. In this 
context, the research highlights the importance of sepa-
rating out with and between trial effects results. Another 
simulation study conducted by Kontopantelis [11] used 
continuous outcome data to compare one-stage mod-
els that used fixed or random treatment effects and the 
two-stage MAOI. The study found that one-stage mod-
els consistently outperformed the two-stage model when 
estimating interactions, but considered only one-stage 
models that combined within and across-study informa-
tion [11], and so did not account for aggregation bias.

Belias et al. [12] used simulated binary IPD to compare 
four models of estimating treatment-covariate inter-
action. These were meta-regression, by trial subgroup 
analysis, the MAOI model, a one-stage model (referred 
to as a ‘naïve one-stage IPD-MA’) that used only a ran-
dom treatment effect and a one-stage model that centred 
effect modifiers by their mean in each trial to account 
for potential aggregation bias. Both the one-stage mod-
els were found to have greater power than other mod-
els, were unaffected by heterogeneity levels and showed 
increased power in scenarios with aggregation bias. The 
MAOI model had less power but was unaffected by heter-
ogeneity levels and showed increased power in scenarios 
with aggregation bias. Conversely, the by-trial subgroup 
analysis lost power in scenarios where between-study 
heterogeneity was increased. Meta-regression showed 
poor power in all scenarios [12].

Using simulated data with often extreme scenarios, to 
compare methods, may not accurately reflect how the 
methods will perform in practice and rather demon-
strate how they are expected to perform in theory. Com-
parison of methods for estimating treatment-covariate 
interaction using real world datasets is limited. Stewart 
et  al. [3] used obstetric data, collected by the Perinatal 
Antiplatelet Review of International Studies (PARIS) 
Collaboration to compare one-stage models with fixed 
vs. random treatment effects and interaction effects and 
one model with separated within and across-trial treat-
ment-covariate interactions. One-stage and two-stage 
models were used to estimate treatment-covariate inter-
actions for pre-eclampsia (the main outcome). Authors 
concluded that models produced similar results but 
discussed advantages of the one-stage model, over the 
two-stage model, including greater flexibility to explore 
model structure [3].

In this paper, we use the same PARIS dataset to con-
sider and compare additional one-stage and two-stage 
models to estimate interactions, building on the work 
by Stewart et  al. [3]. We also consider more recent 



Page 3 of 9Walker et al. Systematic Reviews          (2022) 11:211 	

modelling approaches which fit multiple random effects 
and separate within and between trial information. We 
analyse five main outcomes and nine covariates in the 
PARIS dataset and examine whether different methods 
produced different results. We also explore and discuss 
the practical implications of applying these methods to a 
large IPD dataset, which will be of interest to statisticians 
and using the methods in practice.

Methods
The PARIS dataset contains IPD from 31 randomised 
controlled trials with health outcomes for 32,217 women 
and their 32,819 babies. It explores the efficacy of anti-
platelet therapy in the prevention of pre-eclampsia and 
its complications. Women were randomised to receive an 
antiplatelet therapy or a placebo [13].

We used PARIS data for five main outcomes: pre-
eclampsia, pre-term birth prior to 34 weeks, small for 
gestational age infant, foetal or neonatal death and the 
composite outcome, pregnancy with a serious adverse 
outcome (SAO). Treatment-covariate analysis for these 
outcomes considered all available binary covariates in the 
PARIS dataset.

•	 1st pregnancy—family history of hypertensive disor-
der of pregnancy (HPD)

•	 2nd pregnancy—previous history of HPD
•	 1st pregnancy—any high risk factor*
•	 2nd pregnancy—any high risk factor*
•	 Pre-existing renal disease
•	 Pre-existing hypertension
•	 Pre-existing diabetes
•	 Previous infant SGA
•	 Multiple pregnancy

*A ‘high risk’ pregnancy was defined as a current preg-
nancy with any of the following: maternal autoimmune 
disease, renal disease, diabetes or chronic hypertension, 
or with abnormal uterine artery Doppler flow, multiple 
pregnancy, family history of HDP, or an unspecified risk 
factor as defined within the trial. Otherwise, a previous 
pregnancy with a history of any of the following: gesta-
tional hypertension, pre-eclampsia, eclampsia, foetal or 
neonatal death each of which were collected and included 
in the dataset as individual variables [13].

The number of women with and without an event 
(aggregate counts across all trials) for each outcome and 
covariate of interest, by treatment allocation are pre-
sented in Supplementary Material Table 1. Analysis origi-
nally conducted by Askie et al. [13] used participant-level 
subgroup analysis [13], an approach commonly in early 
IPD meta-analyses which produces subgroup-level effect 
estimates within study before pooling these estimates in 

meta-analyses using conventional techniques. Pooled 
estimates are compared using a test for interaction such 
as the Cochrans’ Q test.

We investigated the use of more recent methods and 
compared the estimates of treatment-covariate interac-
tion coefficients produced by the two-stage MAOI model 
and five one-stage models including those with common 
or random interaction effects [6] and one model that uses 
only within-trial information on the treatment-covariate 
interaction. These methods are described in detail in 
Table 1. The interaction estimates produced by the mod-
els, indicate the extent to which one subgroup is likely to 
benefit more or less from a treatment.

We consider only models that include a single covari-
ate. One-stage models may be extended to include mul-
tiple covariates, which would correct for any correlation 
between covariates. However, as the PARIS dataset 
reports different covariates in different trials, it was not 
possible to consider a model that include all covariates 
for these analyses.

Also, not considered are meta-regression and by-trial 
subgroup analyses, as these analyses are only useful for 
study level covariates or characteristics common across 
the trial, and therefore, hold no substantive benefit above 
conducting a convention meta-analysis using aggregate 
data [12, 15]. The two-stage participant-level subgroup 
analysis is also not considered here as the method does 
not produce a treatment-covariate interaction coefficient. 
Furthermore, comparisons using this method are made 
between subgroups within studies and so the method 
sometimes lacks the statistical power to be able to detect 
treatment-covariate interactions [3, 4].

Finally, this research has been carried out to assess the 
impact of modelling options and not to determine clini-
cal outcomes. As such, we have not calculated statistical 
power for these interaction analyses.

Results
Fifty-four outcome-covariate combinations were con-
sidered equating to 270 analyses (Figs.  1 and 2, Sup-
plementary Material Figure  1, 2, 3 and Tables  2–6). 
Figure  1 contains estimates of treatment-covariate 
interaction coefficients for the main outcome pre-
eclampsia, produced by the MAOI model and the five 
one-stage models. Figure  2 contains interaction esti-
mates for a rarer outcome, foetal or neonatal death. 
Here, no model coverage for covariate ‘family history of 
hypertensive disorder’ for the outcome foetal or neo-
natal death, due to a lack of data (Fig.  2). In general, 
analyses demonstrate that the six methods produced 
consistent estimates throughout.

Overall, few analyses showed any clear evidence of 
treatment-covariate interaction, generally having wide 
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confidence intervals. The only exceptions were history 
of hypertensive disorder for several outcomes including 
foetal or neonatal death (Fig. 2, Supplementary Material 
Figure  1, 2) and for multifetal pregnancy, small for ges-
tational age infant and pre-term birth < 34 weeks (Sup-
plementary Material Figures  2, 3). Here, interaction 
estimates were consistent with confidence intervals gen-
erally excluding the line of no effect.

In some cases, the choice of method altered the statisti-
cal significance of the interaction estimate, for example, 

for history of HPD-pregnancy with covariate pregnancy 
with a serious adverse outcome, history of HPD-preg-
nancy with covariate pre-term birth < 34 weeks and mul-
tifetal pregnancy with covariate SGA (Supplementary 
Material Figures 1, 2, 3). However, in all cases, the maxi-
mum difference in point estimate between methods was 
generally small ≤ 0.08, and the confidence intervals were 
close to the line of no effect.

There were occasions where interaction estimates 
between methods differed more substantially, for 

Table 1  Model characteristics for one two-stage and five one-stage models for estimating treatment covariate interaction in an 
individual participant meta-analysis

𝑖 indicates the trial (1 to k), and j participants within each trial (1 to ni) yij is the participant outcome with an identity for continuous outcomes or a logit link (odds 
ratios) or log link (risk ratio) for dichotomous outcomes; xij usually takes the value one for treatment group and zero for control group; zij is value of the covariate 
for each participant. Hence, Φ𝑖 is the intercept term, θi is the treatment effect, μi the covariate effect, and γi is the treatment-covariate interaction (the parameter of 
interest)

Model Equation Modelling assumptions

Two stage model: In the first stage, maximum likelihood regression model is used within each trial (Simmonds and Higgins 2007 [4]), including a 
treatment effect and a treatment-covariate interaction term. In the second stage, the interaction effect estimates from each trial ( ̂γi ) are combined 
using conventional meta-analysis techniques (in this case, the inverse-variance meta-analysis using the DerSimonian-Laird random effect method), 
producing a summary treatment-covariate interaction estimate.

Meta-analysis of interactions (Simmonds and 
Higgins 2007 [4])

g(yij) = Φi + θixij + μizij + γixijzij ● The studies are estimating a differ-
ent, yet related interaction effects.

One-stage models: A one-stage maximum likelihood regression model includes both a treatment effect and a treatment-covariate interaction term, 
with data from all studies in the same model. The common effect version of the model is as equation for meta-analysis of interactions, except now 
the parameters are assumed common across all studies. A separate intercept term (Φ𝑖) retains distinctions between studies, avoiding the assumption 
that data arise from one ‘mega trial’

Common interaction effect: model (Tuner et al. 
2000 [14])

g yij = �i + (θ + ui) xij + µzij + γ xijzij
ui ∼ N 0, τ 2

● The true effect of the treatment is 
allowed to vary between studies.
● The true effect of the interaction is 
assumed common between studies.

Common interaction effect: model 2 (Jackson 
et al. 2018 [6])

g
(

yij
)

= (�+ vi)+ (θ + ui) xij + µzij + γ xijzij
(

ui

vi

)

∼ N

((

0
0

)

,

(

τ 2θ �

� τ 2φ

))

● The true effect of the treatment is 
allowed to vary between studies.
● The true effect of the interaction is 
common between studies.
● The random effects for the trial and 
treatment are correlated.

Common interaction effect: model 3 (Jackson 
et al. 2018 [6])

g
(

yij
)

= (�+ vi)+ (θ + ui) xij + µzij + γ xijzij
(

ui

vi

)

∼ N

((

0
0

)

,

(

τ 2θ �∗

�∗ τ 2φ

))

*λ = 0

● The true effect of the treatment is 
allowed to vary between studies.
● The true effect of the interaction is 
common between studies.
● The random effects for the trial and 
treatment are uncorrelated.

Random interaction: g
�

yij
�

= (�+ vi)+ (θ + ui) xij + µzij + (γ + wi)xijzij




ui

vi

wi



 ∼ N









0
0
0



,





τ 2θ 0 0

0 τ 2φ 0

0 0 τ 2γ









● The true effect of the treatment is 
allowed to vary between studies.
● The true effect of the interaction is 
allowed to vary between studies.
● The random effects for the trial, 
treatment and interaction are uncor-
related.

Within study model g
(

yij
)

= (�+ vi)+ (θ + ui) xij + µzij + ξxij
(

zij − zi
)

+ ηzi
(

ui

vi

)

∼ N

((

0
0

)

,

(

τ 2θ 0

0 τ 2φ

))

zi is the average covariate value in trial i, so ξ is the param-
eter for the within-trial interaction.

● The effect of the treatment and 
covariates are assumed common 
between studies.
● Only the within-study information 
on the treatment-covariate interaction 
is used, avoiding the assumption that 
the observed across-study relation-
ships do reflect the individual-level 
relationships within trials.
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example, for the outcome foetal or neonatal death and 
covariate renal disease (Fig.  2). For this analysis, the 
greatest difference in the treatment-covariate interac-
tion coefficient between methods was 1.06, between the 
common interaction effect: model two (OR 1.1 (95% CI 
0.40–3.00)) and the aggregation bias: within study model 
(OR 2.16 (95% CI 0.48–7.78)). Estimates for the latter 
model were more uncertain (Fig. 2). Differences in inter-
action estimates produced by the random interaction 
effect model were also noted for several outcomes with 
the covariate multifetal pregnancy (Figs. 1 and 2, Supple-
mentary Material Figures 1 and 3).

The aggregation bias: within-study model and the 
MAOI model more commonly produced estimates that 
differed from the one-stage models, which ‘amalgamate’ 

within trial and across-trial information. For example, 
those produced for the covariate diabetes (Figs. 1 and 2). 
These differences, however, were not always consistent 
between the MAOI and aggregation bias: within study 
model (Figs. 1 and 2) and estimates generally had wider 
confidence intervals than those produce by the one-stage 
common interaction effect models.

When producing estimates using the MAOI, within-
study regression models would not converge within trials 
where there were low to zero events or where all partic-
ipants within a trial all had the same event status for a 
given covariate. These trials dropped out of the analysis 
and therefore, in some cases, the number of trials con-
tributing to the meta-analysis of interactions and to one-
stage models differed. This was sometimes coupled with 

Family history of hypertensive disorder

History of hypertensive disorder

Any high risk factor in 1st pregnancy

Any high risk factor in 2nd pregnancy

Renal disease

Diabetes

Hypertension

Multifetal pregnancy

Previous small for gestational age infant

0.25 0.50 1.0 2.0 4.0
Treatment covariate interaction coefficient (1.0 indicates the line of no effect)

Meta−analysis of interactions

Common interaction effect model 1

Common interaction effect model 2

Common interaction effect model 3

Random interaction effect

Within−study model

Fig. 1  Estimates of treatment-covariate interaction for the outcome pre-eclampsia
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observed differences in estimates, for example, with the 
outcome baby death and covariate renal disease (Fig. 2), 
where only two studies converged within the MAIO 
analyses compared to five in the one-stage model. In 
eight instances, the one-stage models produced esti-
mates of treatment-covariate interaction, whereas the 
meta-analysis of interaction failed to converge across any 
trial and produced no estimate (Supplementary Material 
Tables 2–5).

Discussion
Previous comparison of one-stage and two-stage meth-
ods of meta-analysis for estimating treatment-covariate 
interaction have used simulated data [10, 11]. We have 
compared these methods using IPD to understand how 
the methods perform in practice. We considered five 
main outcomes and nine covariates in the PARIS dataset. 

For the majority of analyses, the MAOI model and five 
one-stage model produced very similar estimates of 
treatment-covariate interaction coefficients, aligning 
with findings of previous research [3, 4].

Generally, the choice of analytic method had very lim-
ited impact on the estimate of treatment-covariate inter-
action and very rarely produced differences such as, 
altering the statistical significance of an estimate, which 
would lead to differing conclusions.

In some analyses, the MAOI model and the within-
study model produced point estimates that differed 
substantially from those produced by other methods 
(Fig.  2). These models synthesise only the within-study 
information to examine treatment-covariate relationship 
and avoid making inference about individual relation-
ships within trials, based on the observed across-study 
relationships (trials may differ in ways other than the 

Family history of hypertensive disorder

History of hypertensive disorder

Any high risk factor in 1st pregnancy

Any high risk factor in 2nd pregnancy

Renal disease

Diabetes

Hypertension

Multifetal pregnancy

Previous small for gestational age infant

 0.25  0.50  1.0  2.0  4.0  8.0 16.0
Treatment covariate interaction coefficient (1.0 indicates the line of no effect)

Meta−analysis of interactions

Common interaction effect model 1

Common interaction effect model 2

Common interaction effect model 3

Random interaction effect

Within−study model

Fig. 2  Estimates of treatment-covariate interaction for the outcome fetal or neonatal death
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covariate under examination). As such, both of the meth-
ods avoid aggregation bias.

Most one-stage models do not automatically avoid 
aggregation bias when estimating treatment-covariate 
interactions. As such, comparing of the results from one-
stage models with those from the MAOI model and the 
within study model might reveal erroneous estimates 
produced by the one-stage models methods that aggre-
gate both within-trial and across-trial information. How-
ever, in our analyses, the MAOI model and the within 
study model did not produce differences with the one-
stage models consistently, suggesting it may not be a real 
effect driving these differences. As differences were more 
common for outcomes where events were rare, it is more 
likely that the observed differences in results are attribut-
able to limited data where the meta-analysis of interac-
tions model lacks power [4].

The MAOI model and the within-study model, 
should, in theory, be the most unbiased methods as they 
avoid the use of across-study information, which may 
lead to erroneous inference, should differences in mean 
covariate values exist across studies [7–9]. In analyses 
like ours, where trial populations are sufficiently simi-
lar to one another that aggregation bias does not pose 
a great issue, there may be a case to include across-trial 
information, which would improve the power of the 
interaction estimate compared to within-trial informa-
tion alone [8].

Pragmatically, issues arose when implementing the 
MAOI method, with regression models within study 
failing to converge. Applying this method to large IPD 
datasets where outcome events are rare and there are 
few participants with particular clinical covariates may 
be difficult in practice. This is because participants with 
and without both the covariate and the outcome are 
needed to produce a within-study estimate using the 
MAOI method. Zero cell counts for binary outcomes can 
be overcome by using continuity correction, where 0.5 is 
added to cells in the available 2 × 2 table. However, this 
approach should be applied with caution as it has previ-
ously been shown to influence the magnitude of the effect 
estimates and their variances [5].

For one-stage models methods that aggregate both 
within-trial and across-trial information, our analyses 
generally showed little difference between estimates. Pre-
vious work has suggested that using models with mul-
tiple random effects produce more accurate estimates 
than those with single random effects [6]. We noted 
differences in the interaction estimate produced by the 
random interaction model for analyses that included 
the covariate multifetal pregnancy. Here, few trials had 
enough data to estimate the interaction (multifetal preg-
nancies were generally low across trials < 50). Adding a 

random effect on the interaction needs some within-trial 
interaction data to estimate the heterogeneity, and so, in 
these analyses, the models became unstable and the esti-
mates uncertain.

One-stage and two-stage models examining treatment-
covariate interactions are each associated with advan-
tages and disadvantages. For example, the meta-analysis 
of interactions method comes with the ability to produce 
forest plots enabling easier visualisation of the contri-
bution that each study makes to the summary effect 
estimate. This may be useful during preliminary investi-
gations. Software environments such as R with increas-
ingly available pre-written code means that the level of 
statistical expertise required to implement the methods 
is now similar between two-stage and one-stage models, 
despite some previous suggestion that one-stage models 
are computationally more complex [3].

Different models make different assumptions about 
the effect of parameters on the interaction estimate, and 
although this did not greatly alter estimates in this work, 
when considering which method to use, it is important 
to consider the appropriateness of assumption in the 
context of your data, alongside the practicality of apply-
ing the models. As we have demonstrated, it is important 
to consider ‘covariate heterogeneity’ or the heterogeneity 
in the covariate distributions across studies. To do this, 
we recommend cross-tabulating the number of events 
occurring in covariate groups for outcomes of interest 
prior to data-analyses. If covariate heterogeneity is low, 
then meta-analysis of interactions models may fail to 
converge, and estimates produced by such models may 
be unstable. In this case, a one-stage model would be 
the preferable choice. Should covariate heterogeneity be 
high, then the meta-analysis of interactions will likely be 
comparable to the one-stage model [4] and wider factors 
may be considered when choosing between methods.

Limitations
Our analyses used a 1/0 coding for the treatment vari-
able. Other authors have suggested that a + 0.5/− 0.5 
coding would be preferable to ensure a common variance 
for treatment and control groups and improve maximum 
likelihood estimation [6, 16], particularly in random 
effect models where trials are few and the estimation of 
correlation between two random effects is problematic 
[14]. Alternatively a ‘study-specific centering’ (coding 
1/0 minus the study-specific proportion of participants 
in the treatment group) could have been applied that can 
reduce the downward bias of between-study variance 
when using maximum likelihood estimation [16].

To further understand which methods perform best in 
practice, a wider range of real-world applications includ-
ing those which consider continuous covariates is needed.
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Conclusion
In this empirical example, varying assumptions within 
the one-stage model made little difference when estimat-
ing treatment-covariate interaction. As trial populations 
were sufficiently similar, aggregation bias did not pose a 
great issue, and as such, applying models that separate 
within and between study information did not hold sub-
stantive value. As the methods are capable of producing 
differing results in some circumstances, it is important to 
pre-specify method choice in a study protocol, to avoid 
post hoc testing which attempts to achieve statistical 
significance.
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