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Abstract

Widespread SARS-CoV-2 infection among pregnant individuals has led to a generation of fetuses 

exposed in utero, but the long-term impact of such exposure remains unknown. Though fetal 

infection is rare, children born to mothers with SARS-CoV-2 infection may be at increased risk 

for adverse neurodevelopmental and cardiometabolic outcomes. Fetal programming effects are 

likely to be mediated at least in part by maternal immune activation (MIA). Here we review 

recent evidence regarding the effects of prenatal SARS-CoV-2 infection on the maternal, placental, 

and fetal immune response, and the implications for long-term health of offspring. Extrapolating 

from what is known about the impact of MIA in other contexts (e.g. obesity, HIV, influenza), 

we review the potential for neurodevelopmental and cardiometabolic morbidity in offspring. 

Based on available data suggesting potential increased neurodevelopmental risk, we highlight 

the importance of establishing large cohorts to monitor offspring born to SARS-CoV-2-positive 

mothers for neurodevelopmental and cardiometabolic sequelae.

The potential consequences of the SARS-CoV-2 pandemic on the next 

generation

In the U.S. alone, over 211,000 documented SARS-CoV-2 infections have occurred 

in pregnancy, resulting in more than 32,000 hospitalizations and nearly 300 maternal 

deaths (1). The number of pregnant individuals infected with SARS-CoV-2 is likely 

underestimated, as it has become evident that clinically milder infections may go 

unrecognized or unreported with the increasing use of home antigen tests (2). In fact, as 

of late February, the seroprevalence of infection-induced antibodies against SARS-CoV-2 

was over 60% in individuals age 18-49 (3). This proportion will likely continue to rise as 

the highly transmissible Omicron subvariants continue to circulate in the population in the 

setting of significant escape of vaccine-induced neutralization (4, 5).
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Pregnant women with COVID-19 are known to have worse clinical outcomes compared to 

nonpregnant women of similar age, including higher rates of intensive care unit admission 

and mechanical ventilation (6, 7). Maternal COVID-19 is also associated with obstetric 

complications impacting both mother and fetus including gestational hypertension and 

preeclampsia (8), preterm birth (9, 10), low birth weight (10), and stillbirth (11). Although 

some viral infections acquired during pregnancy can have a devastating impact on the 

developing fetus through transplacental transmission and direct fetal infection, such as 

cytomegalovirus (CMV), Zika virus (ZIKV), and Rubella (12), to date, no characteristic 

congenital syndrome has emerged after prenatal SARS-CoV-2 exposure (13–16), and 

vertical transmission of SARS-CoV-2 is rare (17–19). Consistent with these observations, 

prenatal neuroimaging of pregnancies affected by SARS-CoV-2 infection has not identified 

fetal intracranial pathology characteristic of prenatal SARS-CoV-2 exposure (20, 21). 

Although viral transmission and fetal infection is rare, placental infection has been reported, 

and in some cases may be accompanied by a destructive COVID placentitis that may 

contribute to stillbirth, fetal distress, or as yet uncharacterized impacts on the developing 

fetus and offspring outcomes (22–25).

Despite growing knowledge of the short-term consequences of COVID-19 infection 

in pregnancy on maternal and pregnancy outcomes, and the observation that most 

individuals infected with SARS-CoV-2 in pregnancy have normal obstetric outcomes, 

several key questions have emerged: (1) Are there implications for the long-term health and 

development of children born to mothers infected with SARS-CoV-2? (2) If so, what organ 

systems are most vulnerable to malprogramming in this context and how will this manifest 

in childhood/adolescence? (3) What is the potential public health impact if hundreds of 

thousands to millions of pregnancies have been exposed to SARS-CoV-2, with more 

infections occurring daily as highly transmissible subvariants continue to circulate in the 

population, even in communities with high vaccine uptake?

The intrauterine environment is a critical determinant of long-term neurologic and 

cardiometabolic health of offspring (26, 27). There is an increasing recognition that 

maternal immune activation (MIA) resulting from diverse stimuli ranging from infection 

in pregnancy, to chronic inflammatory conditions such as obesity, to maternal environmental 

exposures or stress, can impact placental and fetal immune programming (28–31). 

Fetoplacental programming resulting from MIA, in turn, can influence offspring risk for 

neurodevelopmental, psychiatric, and metabolic disease (32–36). Various mechanisms have 

been posited to underlie these sequelae, including perturbations to fetal organ development 

(e.g., reduced islet cell mass, cardiovascular changes leading to early-onset coronary artery 

disease), placental function, and epigenetic programming (37). While the recency of SARS-

CoV-2 limits our knowledge of its impact across generations, extrapolating from other 

contexts of maternal immune activation (MIA) suggests the potential for adverse neurologic 

and cardiometabolic consequences in offspring that will require careful monitoring (Figure) 

(38, 39).

In this review, we aim to: (1) summarize key observations regarding immune activation 

that occurs in the mother, placenta, and fetus as the result of SARS-CoV-2 infection 

during pregnancy; (2) review the connections between viral (influenza, HIV) and non-viral 
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(example case of maternal obesity) pro-inflammatory exposures, and adverse offspring 

neurodevelopmental or cardiometabolic outcomes due to malprogramming of the fetal 

brain and other organs; and (3) highlight preliminary observations of the outcomes of 

children born to women infected with SARS-CoV-2 during pregnancy. We conclude by 

suggesting methods and modalities to investigate offspring health outcomes in the setting 

of the now highly-prevalent exposure of SARS-CoV-2 infection in pregnancy. We discuss 

the importance of multidisciplinary efforts to establish robust longitudinal cohorts as well 

as the importance of cellular or biological models that can identify the imprints of immune 

activation and offspring most at risk.

Immune activation at the maternal-fetal interface in prenatal SARS-CoV-2

Maternal immune activation is a signature of SARS-CoV-2 infection in pregnancy 
regardless of disease severity

Infection with SARS-CoV-2 generates anti-viral immune responses including signaling 

through the Type I-III interferon pathways, with disruptions in the temporality and balance 

of these responses implicated in COVID-19 disease severity and progression (40–43). Early 

studies of pregnant women with COVID-19 disease have demonstrated a pro-inflammatory 

milieu, with increases in IFN-γ, IL-6, and IL-1β in the maternal circulation that correlate 

with disease severity (44, 45). A recent study of systemic cytokines in pregnant women with 

acute COVID-19 infection showed similarly increased cytokine levels, with IL-8, IL-10, and 

IL-15 elevated compared to controls in both clinically mild and severe cases (46). Data from 

a small cohort of women with first or second trimester infection versus third trimester 

infection identified elevated levels of maternal plasma IL-6 and IP-10, an interferon-

stimulated chemokine, at the time of delivery in both early and late SARS-CoV-2 infection, 

compared to SARS-CoV-2 negative controls (47). Although recovery from illness occurs 

distant from delivery in most SARS-CoV-2 infections occurring in the first and second 

trimesters of pregnancy, these data suggest that cytokine/chemokine elevations may persist 

until delivery (47). These findings parallel data from non-pregnant individuals demonstrating 

elevations in systemic pro-inflammatory cytokines including IFN-γ, CXCL10, and IL-8 

in asymptomatic individuals as many as 8 months following symptomatic SARS-CoV-2 

infection in comparison to both healthy controls, and to individuals infected with common 

coronaviruses (48). Taken together, data from these studies point to persistent, systemic 

maternal immune activation in response to SARS-CoV-2 infection, even in cases of mild 

clinical disease and sometimes in cases of remote infection. Additional studies in larger 

cohorts are warranted to confirm the degree and extent to which SARS-CoV-2 infection in 

pregnancy might lead to lasting immune perturbations.

Comprehensive profiling of the response of peripheral and placental immune cells to SARS-

CoV-2 challenge in vitro have offered insights into the unique immune imprinting that 

occurs in pregnancy (49, 50). Although the oxidative “burst” response of neutrophils and 

monocytes appears unaffected by pregnancy, pregnancy itself modulates specific cellular 

cytokine responses, with an overall diminished release of IFN-γ and IL-8 observed in 

SARS-CoV-2-exposed PBMCs from pregnant donors (46). Placental cell lines have been 

used to model how the placenta might respond to exposure to Spike protein in maternal 
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blood, and how this placental response could in turn manifest in the maternal circulation. 

In vitro stimulation with even low levels of recombinant Spike protein appear to generate 

a cell-type-specific response, with notable induction of IL-6, IL-1β and select chemokines 

(CCL2, CCL5, CXCL9 and CXCL10), that is augmented by treatment with recombinant 

human IFN-γ (50). The authors suggest that the interaction of placental trophoblast and 

endothelial cells with Spike protein might be partly responsible for observed systemic 

cytokine/chemokine elevations in the maternal circulation during COVID-19 infection. The 

impact of the unique biological and immune state of pregnancy on responses to SARS-

CoV-2, and how the placenta and fetus engage in crosstalk with the maternal immune system 

in the setting of infection, is complex and multifactorial (51, 52).

Placental immune activation in SARS-CoV-2 and potential for fetal impact

The placental response to maternal SARS-CoV-2 infection is an important target of 

investigation, as the placenta can not only protect against viral transmission but also plays a 

critical role in mediating biologic crosstalk between mother and fetus. In cases of significant 

placental SARS-CoV-2 viral burden and severe maternal disease, massive infiltration of 

maternal macrophages and T cells has been observed in placental villi in association with 

a cytokine/chemokine profile akin to what has been observed in COVID-19 lung tissue, 

and enrichment of genes in pathways associated with viral response to infection, Th1/Th2 

responses, and NK cell activation (53). Interestingly, placental explants exposed to SARS-

CoV-2 pseudovirus with variant Spike proteins in vitro showed heightened vulnerability to 

viral entry compared to those exposed to the parental, non-variant Spike (53). Importantly, 

even in the absence of direct viral infection of placental tissue, several studies have 

shown the potential for maternal SARS-CoV-2 infection to stimulate a placental immune 

and inflammatory response (51, 54). Increased density of fetal placental macrophages, 

i.e. Hofbauer cells, has been observed in uninfected placental samples from women with 

SARS-CoV-2 infection during pregnancy (51, 55, 56). Transcriptomic analyses have shown 

upregulation of inflammatory pathways in maternal decidual NK and T cells and in 

interferon-stimulated genes (ISGs) in the setting of maternal SARS-CoV-2 infection (51, 

54), with results implicating male sex as most strongly associated with an upregulated innate 

immune response (51). Although limited by small sample sizes and primarily limited to 

cases from unvaccinated pregnancies infected with wild type SARS-CoV-2 virus, these data 

illustrate the capability of the placenta to generate classical anti-viral responses to a de novo 
maternal respiratory pathogen, even in the absence of direct viral infection of the placental 

organ itself. Vaccination is protective against severe COVID-19 disease and provides the 

infant with protection from SARS-CoV-2 hospitalization for up to 6 months of life, thought 

to be due primarily to the transplacental transfer of anti-Spike antibodies (57–59). How the 

placental immune response to maternal SARS-CoV-2 evolves over the course of a pregnancy 

is an important area of future study, as is the impact of prior vaccination and variant strain, 

in modulating the maternal or placental immune response to infection.

Lasting immune programming observed in cord blood and fetal cells in response to 
maternal SARS-CoV-2 infection

Evidence of transplacental transmission of SARS-CoV-2 to the fetus in utero is exceedingly 

limited, even in cases with evidence of placental infection (17–19). Therefore, umbilical 
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cord blood responses in pregnancies with SARS-CoV-2 infection most often reflect a fetal 

response to maternal-placental signaling, rather than a response to direct exposure to the 

virus itself. Several studies investigating the potential fetal response to maternal SARS-

CoV-2 infection and resultant immune activation have identified key alterations in cytokine 

profiles and immune cell makeup in cord blood at delivery (46, 47, 60, 61). Increased cord 

blood cytokine levels and altered immune cell profiles, including an increased proportion of 

natural killer cells, Vδ2+ γδ T cells, and regulatory T cells have been observed in the setting 

of maternal SARS-CoV-2 (46, 60). Transcriptomic profiling of cord blood mononuclear cells 

from newborns of mothers infected with SARS-CoV-2 in the third trimester demonstrated 

upregulation of interferon-simulated gene pathways in CD14+ and CD16+ monocytes, 

consistent with an anti-viral response (61).

The possibility that maternal SARS-CoV-2 might generate a sustained fetal immune 

response with onset remote from delivery has been demonstrated by two studies. One 

study of umbilical cord cytokine and chemokine profiles in pregnancies with early (first 

and second trimester) and late (third trimester) maternal SARS-CoV-2 infection identified 

IL-6, IP-10 and IL-8 elevations, with IL-8 levels elevated only in cases of early infection, 

suggesting the possibility of a sustained fetal inflammatory response (47). A second 

study identified an immune priming effect of SARS-CoV-2 even with infection remote 

from delivery, demonstrating significantly increased cytokine production by neonatal cord 

blood immune cells exposed to maternal infection, whether recent/ongoing or remote from 

delivery. Production of both IFN-γ and TNF by subpopulations of neonatal cord blood 

immune cells subject to polyclonal stimulation was significantly increased in pregnancies 

exposed to maternal SARS-CoV-2 infection in both early and late gestation. While only 

recent or ongoing maternal infection was associated with increased neonatal CD4+ cells 

expressing IL-17, IL-17-producing γδ T cells were significantly increased in both remote 

and recent maternal infection, compared to never-infected mothers (60). Maternal and fetal 

IL-17 production has been demonstrated to be associated with autism-like phenotypes 

in offspring, and thus may be an important mechanistic link between maternal immune 

activation, fetal programming, and adverse neurodevelopmental outcomes in offspring (62). 

Taken together, these lines of evidence suggest that maternal SARS-CoV-2 infection may 

leave a lasting immune imprint on the fetus, even when infection occurs remote from 

delivery and in the absence of transplacental viral transmission. The impacts of SARS-

CoV-2 virus strain, maternal vaccination status, fetal sex, gestational age of infection, 

exposure to anti-viral therapies, host genetics, and other potentially immune-modulating 

factors, on fetal development in the setting of SARS-CoV-2 infection during pregnancy are 

not known and will be important to assess in future studies.

The potential consequences of the SARS-CoV-2 immune imprint on infant 

and child health and development

A growing body of literature has linked immune activation at the maternal-fetal 

interface – in response to both viral and non-viral exposures – with lasting offspring 

neurodevelopmental and cardiometabolic consequences. This framework is instructive in 
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understanding the potential impact of SARS-CoV-2 infection on the health and disease 

liability of the next generation.

Maternal immune activation is linked to adverse neurodevelopment in offspring

Multiple lines of evidence support the concept that MIA itself plays a mechanistic role in the 

development of neurodevelopmental or behavioral abnormalities in exposed offspring (63–

65). Epidemiologic studies have consistently linked maternal bacterial or viral infections 

in pregnancy, including both seasonal and pandemic H1N1 influenza infections, with an 

increased risk in offspring for a variety of neurodevelopmental or psychiatric comorbidities, 

including schizophrenia, autism spectrum disorder, and cognitive delay, substance use 

disorders, and disordered eating (66–74). Specifically, as an acute and self-limited viral 

infection that does not cross the placenta but can cause a notable maternal inflammatory 

response, the 2009 H1N1 influenza pandemic may be an instructive parallel to SARS-

CoV-2. Pregnancies affected by influenza also have higher rates of preterm birth and 

low birth weight, paralleling birth outcomes seen with maternal COVID-19 (75, 76). A 

cohort study of offspring born to women infected with H1N1 influenza identified modest 

associations between maternal infection and delayed psychomotor development at 6 months 

(77).

Human epidemiologic and observational cohort studies are limited in their ability to 

elucidate mechanisms, and thus animal models have been used to seek insights into the 

mechanistic pathways by which MIA might drive adverse programming of the fetal brain. 

As an illustrative example, evidence from a Rhesus macaque model has demonstrated 

decreased gray and white matter volumes at 1 year in pregnancies exposed to maternal 

influenza infection, suggesting direct impact of MIA on offspring brain structure (78). 

In other animal models of MIA, exposing pregnant animals to various infectious mimics 

(Poly(I:C), mimicking viral infection with dsRNA, and lipopolysaccharide, mimicking 

gram-negative bacterial infection) and other non-infectious insults (maternal high fat diet, 

prenatal stress) has also led to changes in offspring brain and behavior (33, 79). Common 

brain and behavioral abnormalities have been observed in offspring following in utero 

exposure to LPS, influenza, Poly(I:C), and maternal IL-6 administration, suggesting that 

maternal immune activation, rather than any specific pathogen stimulus, is evoking the 

neurodevelopmental phenotypes (35, 80, 81). Aberrant programming of fetal microglia 

toward a pro-inflammatory phenotype (63), dysregulated placental serotonin and other 

neurotransmitter signaling pathways (82, 83), fetal brain mitochondrial dysfunction and 

oxidative stress, and epigenetic modifications (79) have all been implicated as mechanisms 

whereby MIA directly impacts the developing fetal brain (84).

Whether the degree or extent of immune activation observed in maternal SARS-CoV-2 

infection is sufficient to meaningfully increase fetal risk is not known, but evidence 

from models of MIA suggest this possibility. Elevated maternal levels of canonical 

pro-inflammatory cytokines including IL-6 and IL-1β, which are increased in maternal, 

placental, and fetal samples in some cases of maternal SARS-CoV-2 infection (44–47, 

54), have also been consistently linked to adverse offspring neurodevelopment including 

early cognitive and behavioral changes as well as overt neuropsychiatric pathology (82, 
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85–90). Changes in immune cell composition and transcriptional programming in response 

to maternal SARS-CoV-2 exposure might also drive increased fetal brain vulnerability. For 

example, MIA models have linked maternal Th17 cells and their effector cytokine, IL-17A, 

to offspring risk for autism spectrum disorder, and severe COVID-19 infection has been 

associated with elevations in Th17 cells in peripheral blood as well as significantly increased 

IL-17A levels (62, 91). Emerging evidence supports the prominent role of tissue-resident, 

fetal-derived immune cells – macrophages and mast cells, in particular – in mediating 

lifelong offspring pathology in multiple organ systems, including the brain, in response 

to prenatal exposures including MIA (92). Maternal obesity, another exposure associated 

with MIA, has been demonstrated to prime both fetal brain microglia and fetal placental 

macrophages (Hofbauer cells) toward a highly correlated pro-inflammatory phenotype 

(93, 94), and multiple lines of evidence link maternal obesity to increased offspring 

neurodevelopmental and psychiatric risk (95). Given the observed alterations in fetal 

placental macrophage (Hofbauer cell) density (51, 55, 56), and transcriptomic alterations 

in maternal macrophage and cord blood immune cell programs observed in response to 

prenatal exposure to SARS-CoV-2 (54, 61), it is plausible that altered macrophage/monocyte 

priming in the setting of maternal SARS-CoV-2 confers significant risk for the developing 

fetal brain.

Maternal immune activation predisposes to cardiometabolic disease in offspring

Mounting evidence indicates that MIA may contribute to the pathogenesis of long-term 

cardiometabolic sequelae in exposed offspring (38). In an animal model of maternal 

systemic inflammation, offspring whose mothers were administered the bacterial cell 

wall product lipopolysaccharide (LPS) during pregnancy to induce an acute non-specific 

inflammatory response exhibited higher body weight, enhanced adiposity, lower lean mass, 

and impaired glucose tolerance in adulthood (96, 97). Placentas from LPS-treated animals 

exhibited impaired trophoblast invasion, deficient maternal spiral artery remodeling, and 

altered uteroplacental perfusion, which may in part underlie these adverse outcomes (98). In 

utero exposure to maternal IL-6 – a key cytokine involved in the pathogenesis of severe 

COVID-19 (99) – similarly has been shown to lead to metabolic and endocrinologic 

derangements including hypertension and dysregulation of the hypothalamic-pituitary-

adrenal axis in animals of both sexes (100).

Epidemiological evidence from prior influenza pandemics suggest an association of prenatal 

infection with long-term offspring cardiometabolic outcomes, though conclusions are mixed, 

and these studies are not without significant limitations. Individuals born during the 1918 

influenza pandemic were found to have higher rates of self-reported cardiovascular disease 

at 60 to 82 years old (101). A more recent study from an observational cohort of offspring 

born to women infected with either seasonal or 2009 H1N1 pandemic influenza revealed an 

increased likelihood of overweight at 30–80 months of follow-up, suggesting the potential 

for increased cardiometabolic differences even earlier in life (76), potentially indicative of in 

utero programming effects.

As a viral infection characterized by persistent immune activation in the absence of 

placental infection or transplacental transmission (102), human immunodeficiency virus 
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(HIV) infection in pregnancy provides a human model by which to understand the 

downstream sequelae of MIA on offspring cardiometabolic health. Analogous to COVID-19, 

rates of vertical transmission of HIV infection are low (103), and thus outcomes can be 

specifically considered among the predominant subset of offspring with perinatal HIV 

exposure without infection (perinatal HIV-exposed uninfected, or PHEU). As in the case 

of COVID-19, preterm birth and low birth weight are more common in those with PHEU 

as compared to the general population (104). Also similar to COVID-19, blood from infants 

with PHEU has been shown to display marked elevations in inflammatory cytokines (e.g., 

IL-8) (46, 105, 106). Whereas data on cardiometabolic outcomes with in utero exposure 

to COVID-19 are lacking, infants and children with PHEU have been found to exhibit 

perturbed insulin sensitivity (107), dyslipidemia (108), high blood pressure (109, 110), and 

cardiac dysfunction (109), in comparison to HIV-unexposed individuals. Furthermore, in 

the oldest-aged cohort of adolescents and young adults with PHEU versus well-matched 

controls studied to date, in utero HIV exposure conferred an increased odds of obesity later 

in life (111). Notably, in this study, lower maternal CD4+ T cell count during pregnancy was 

associated with higher BMI among adolescents and young adults with PHEU, underscoring 

a potential biologic link between maternal HIV-associated immune dysregulation and the 

pathogenesis of metabolic disease in offspring (111). Intriguingly, reductions in T cell 

subsets including CD4+ T cells are a hallmark of COVID-19 (46), and thus careful 

monitoring of BMI trajectories and metabolic outcomes in offspring with in utero exposure 

to SARS-CoV-2 may be warranted.

In addition to prenatal HIV and influenza exposure, maternal obesity provides another 

instructive case study of MIA in pregnancy and offspring cardiometabolic risk. As the 

most common non-infectious cause of MIA, maternal obesity is characterized by a state 

of chronic low-grade immune activation that may predispose to adverse cardiometabolic 

health outcomes in offspring (112–114). In large epidemiologic studies, individuals born 

to mothers with obesity have been shown to be at higher risk of obesity (115), increased 

adiposity (116), nonalcoholic fatty liver disease (117), insulin resistance (118), high blood 

pressure (119), dyslipidemia (120), and cardiovascular disease (121). Animal models 

have further elucidated the biologic basis for these findings, demonstrating enhanced 

adipogenesis (122), impaired myogenesis (123), and reduced hepatic expression of insulin 

signaling proteins in exposed offspring (124). While obesity is characterized by alterations 

to the intrauterine milieu that extend beyond immune programming effects, correlations 

between C-reactive protein (CRP) levels in pregnant women with obesity and indices of 

adiposity among their infants and children suggest that the link between maternal BMI and 

adverse metabolic sequelae in offspring is at least partially mediated by MIA (125, 126).

While the molecular mechanisms by which MIA programs adverse cardiometabolic 

outcomes in offspring remain an area of active investigation, current evidence suggests 

that systemic maternal inflammation may modulate the immune response in the placenta 

and key fetal metabolic tissues, which in turn may impact cardiometabolic health of 

the child/adolescent. For example, placentas from mothers with obesity have been found 

to exhibit macrophage accumulation with enhanced expression of the pro-inflammatory 

cytokines TNF-α, IL-1, and IL-6 (127). Pregnancies complicated by obesity also have been 

shown to manifest lower placental efficiency (fetal-placental weight ratio) and fetal oxygen 
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concentration, suggesting that placental inflammation may interfere with normal placental 

function and maternal-fetal exchange (128). Beyond influencing the function of the placenta, 

maternal and placental immune activation may lead to alterations in the fetal immune 

response that persist over the life course (129), which in turn may predispose to systemic 

insulin resistance and other cardiometabolic sequelae (130). Moreover, as shown in animal 

models, inflammation within key metabolic organs including skeletal muscle can occur 

following in utero exposure to MIA, which in turn may dysregulate metabolic processes 

including insulin signaling and adipogenesis (131). Other alterations to the intrauterine 

milieu in maternal obesity may also be relevant in the context of SARS-CoV-2, including 

altered free fatty acid trafficking between mother and fetus resulting in lipotoxicity of the 

placenta and downstream fetal organs, and perturbed maternal secretion of key hormones 

including insulin (113, 132, 133), which will require further study in this context.

Early and preliminary signals of adverse outcomes in children exposed to prenatal SARS-
CoV-2

Based on compelling evidence that MIA contributes to multi-systemic morbidity in 

offspring, dedicated studies of neurologic and cardiometabolic outcomes among cohorts 

with in utero exposure to maternal COVID-19 are urgently needed. Although data remain 

limited, preliminary evidence suggests the possibility of adverse neurodevelopmental 

outcomes in infants and young children exposed to SARS-CoV-2 in utero, and/or born 

during the COVID-19 pandemic (134–138). Two studies available on pre-print servers 

that lack a non-infected comparator group identified developmental delay in 10% of 

infants exposed to maternal SARS-CoV-2 in utero by 12 months of age (138) and 

deficits in the social-emotional domain of neurodevelopmental testing at 3 months of 

age (137). A report of over 7,700 infants born during the COVID-19 pandemic to 

both SARS-CoV-2 infected and non-infected mothers identified an association between 

maternal SARS-CoV-2 exposure and offspring neurodevelopmental diagnosis at 12 months, 

including developmental disorders of motor and speech and language function (139). 

In addition, while the association between maternal SARS-CoV-2 exposure and child 

neurodevelopmental diagnosis by age 1 was enhanced by preterm delivery, modeling 

demonstrated that the increased risk for neurodevelopmental morbidity was not fully 

explained by prematurity, suggesting a more specific mechanism of effect than simply 

SARS-CoV-2 contributing to pregnancy complications. Not all studies have suggested 

definite associations between maternal SARS-CoV-2 infection and early indicators of 

adverse child neurodevelopment, however. A recently published cohort study of 255 

infants did not find a significant association between maternal SARS-CoV-2 infection and 

differences on any Ages & Stages Questionnaire subdomain score at 6 months of age 

(140). Interestingly, the same study reported that both SARS-CoV-2 exposed and unexposed 

infants born during March-December 2020 had significantly lower gross motor, fine motor 

and personal-social subdomain scores compared to a historic cohort of infants born before 

the pandemic. Continuing to follow children exposed to SARS-CoV-2 in utero and their 

contemporaneous, unexposed counterparts will be critical in dissecting these complex 

exposures and differential and/or additive impacts of varied in utero exposures on offspring 

outcomes.
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Longitudinal cohorts and cellular models to understand offspring risk

To our knowledge, no specific data are available regarding cardiometabolic health outcomes 

in babies born to mothers with prenatal COVID-19. Nonetheless, preterm birth and low 

birth weight – which are both known to occur at a higher frequency among babies with 

in utero exposure to COVID-19 (9, 10) – have been linked to heightened risk of chronic 

diseases in adulthood including obesity, type 2 diabetes mellitus, and cardiovascular disease 

(141–143). Given the potential magnitude of the impact, with as many as 20 million children 

exposed to SARS-CoV-2 in utero annually (84), developing large, diverse multi-center and 

multi-national cohorts of exposed children to follow their longer-term neurodevelopmental 

and cardiometabolic outcomes will be key to elucidating offspring risk.

While such cohorts will be critically important to our understanding, as we wait for 

offspring outcomes that may not become apparent for a decade or more, animal and 

cellular models may offer a more rapid assessment of potential offspring risk. Although 

animal models of SARS-CoV-2 in pregnancy have been used to characterize differences in 

the immune response between pregnant and non-pregnant dams (144), no studies to our 

knowledge have investigated offspring developmental outcomes using these models. While 

there are some data to suggest that hamster models of SARS-CoV-2 infection are most 

similar to humans (145), the impact of MIA on offspring brain and behavior has been most 

extensively characterized in rodents and non-human primates, which may be more favorable 

models for future work in this area.

Cellular models have historically been used to bridge a mechanistic gap between animal 

model studies and human epidemiological or cohort studies. Models that use primary 

human cells have the advantage of retaining epigenomic and other programming effects 

of the intrauterine environment. For example, microglia are resident brain macrophages 

whose function and programming may be critical in mediating many of the adverse 

neurodevelopmental outcomes noted in offspring after MIA (146). In a cross-disciplinary 

collaboration, our group has adapted protocols previously used to differentiate microglia-like 

cells from individual patient-derived peripheral blood mononuclear cells (147), to generate 

personalized microglial-like cellular models from umbilical cord blood mononuclear 

cells (148). These models can be used to characterize microglia descriptively (e.g. 

immunocytochemistry/marker expression, transcriptomics), to assess microglial-mediated 

functions such as synaptic pruning which may underlie many neurodevelopmental disorders, 

and to screen novel and repurposed therapeutic compounds if a phenotype is identified. 

Another promising candidate cell type for such models is Hofbauer cells, fetal placental 

macrophages which can be isolated from the placenta after delivery and differentiated (149). 

Hofbauer cells share a common yolk-sac origin with microglia, and thus their programs 

may reflect the exposures and developmental processes of fetal brain microglia (94). This 

is just one example of how personalized cellular models can be used to provide a direct 

and relatively rapid means of characterizing the impact of in utero exposures for a specific 

individual.
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Conclusions

Direct placental infection is unlikely to be the leading driver of observable differences in 

health outcomes of children born to women infected with SARS-CoV-2 during pregnancy. 

Rather, the impact of SARS-CoV-2 on the next generation, if any, will likely be best 

understood by probing how maternal immune activation might alter cellular programs 

within the fetoplacental unit, and linking such programmatic alterations with long-term 

outcomes of offspring. Protective factors, or factors that might re-establish balance toward 

a non-infected phenotype, will be critical to identify, as will the potential for additive risk 

with multiple immune-activating maternal exposures, such as the common combination 

of maternal SARS-CoV-2 infection, obesity, and preeclampsia. Longitudinal cohorts will 

be essential to discovering the clinical impact, if any, of both dramatic and subtle 

immunological shifts that occur during fetal life, and this knowledge can be augmented with 

cellular models to help elucidate mechanism and generate data sooner, given the substantial 

time horizon required to characterize many outcomes of interest.
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Figure. Maternal SARS-CoV-2 infection may drive maternal and fetoplacental immune 
activation, with subsequent potential for adverse offspring health outcomes.
Recent studies demonstrate maternal and fetoplacental immune activation in response to 

maternal SARS-CoV-2 infection. Selected impacts of SARS-CoV-2 infection on maternal 

and placental immune activation are detailed on the left panel. Mechanisms implicated 

in fetal brain and organ programming in response to infectious and non-infectious immune-

activating prenatal exposures – which may parallel maternal immune activation in SARS-

CoV-2 - are illustrated in the central blue box and include alterations in: placental nutrient 

(including fatty acid) transport, epigenetic modifications in fetal organs (e.g. brain, liver, 

white adipose tissue, skeletal muscle), placental serotonin/neurotransmitter production, 

tissue mitochondrial dysfunction, and tissue-specific macrophage reactivity (e.g., fetal brain 

microglia, placental macrophages, cardiac and liver macrophages, blood). Although longer-

term outcomes of infants and young children born to pregnant individuals with COVID-19 

infection have not yet been described, some early reports suggest immune dysregulation 

and increased neurodevelopmental risk. Maternal-fetoplacental immune activation in other 

non-SARS-CoV-2 contexts (e.g. obesity, other viral infections) has been linked to multiple 

other adverse health outcomes in offspring such as those depicted in the right panel. Figure 
created with BioRender.
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