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Abstract

Purpose of the review: Commercial wearable biosensors are commonly used among athletes 

and highly active individuals, although their value in sports cardiology is not well established. 

In this review, we discuss the evidence for the current applications of wearables and provide our 

outlook for promising future directions of this emerging field.

Recent findings: The integration of routine assessment of physiological parameters, activity 

data, and features such as electrocardiogram recording has generated excitement over a role 

for wearables to help diagnose and monitor cardiovascular disease. Presently, however, there 

are significant challenges limiting their routine clinical use. While studies suggest that wearable-

derived data may help guide training, evidence for the use of wearables in guiding exercise 

regimens for individuals with cardiovascular disease is lacking. Further, there is a paucity of 

data to demonstrate its efficacy in detecting exercise-related arrhythmias or conditions associated 

with sudden cardiac death. Further technological developments may lead to a greater potential for 

wearables to aid in sports cardiology practice.

Summary: The ability to collect vast amounts of physiological information can help athletes 

personalize training regimens. However, interpretation of these data and separating the signal from 

the noise are paramount, especially when used in a clinical setting. While there are currently 

no standardized approaches for the use of wearable-derived data in sports cardiology, we outline 

three domains in which they could guide the care of athletes in the future: (1) optimizing athletic 

performance (2) guiding exercise in athletes with known cardiovascular disease, and (3) screening 

for cardiovascular disease.
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Introduction

Advances in digital technologies have led to the rapid uptake of commercial wearable 

biosensors (hereafter called “wearables”) among consumers in the general public, including 

athletes. At present, 20% of United States residents currently own a smart wearable 

device, with the market expected to exceed 929 million connected devices this year.1 

Wearables are relatively low-cost technology that have a wide variety of potential uses, 

including monitoring for arrhythmia and hemodynamic changes, tracking physical activity 

and calorie expenditure, as well as providing information about general health and well-

being. Furthermore, these devices can be accessed through smartphone technologies to 

provide almost instantaneous feedback about personal health metrics in real time to the user.

Many athletes and highly active individuals already use wearables (e.g., Polar chest straps 

(Polar Electro, Finland), Garmin (Garmin, USA) and Apple (Apple Inc, Cupertino, CA) 

watches) to monitor personal health metrics and quantify fitness levels and performance. 

With their rise in popularity, wearables have garnered the attention of sports cardiologists for 

their potential clinical utility. From detecting exercise-related arrhythmias and identifying 

subclinical cardiac pathology to providing information about training and recovery, the 

possible roles for wearables in cardiology practice appear broad at first glance, with the goal 

of reducing the risk of exercise-related adverse cardiac events and improving cardiovascular 

performance. However, these hopes have been tempered by a number of factors, particularly 

data accuracy and lack of actionable information. As sensor technologies mature and their 

use among the general and athlete population increases,2 it will be important for physicians 

to not only recognize their utility and benefits, but even more critically adjudicate such 

technologies to evaluate their potential and limitations. For instance, false positive alerts 

for suspected arrhythmias may cause unwarranted anxiety in asymptomatic individuals, 

generate unnecessary and costly tests, and, at worst, lead to inappropriate disqualification 

from sports participation. Furthermore, at present, there is no clear benefit of biosensors in 

relation to health care costs or utilization,3 and professional societies have raised concerns 

about the routine use of wearables for electrophysiologic monitoring in the community.4

In this review, we provide an overview of commercially available and commonly used 

wearables and discuss the evidence for their utility (or current lack thereof) among regular 

exercisers and athletes. Additionally, we discuss our outlook for promising future directions 

of this emerging field.

Types and Capabilities of Wearables

Popular wearables include chest straps, watches, wristbands, and rings5–7 (Figure 1). 

In the past decade, wearables have progressed from being primarily step-counters and 

fitness-trackers, to recording both physiological and activity-related data with enhanced 

connectivity.
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Physiological Sensors

Physiological measurements that are monitored by currently available wearables include but 

are not limited to heart rate (HR), heart rate variability (HRV), respiratory rate (RR), blood 

oxygen saturation (SpO2), and skin temperature. More recent devices have the ability to 

estimate VO2max, a measure of aerobic capacity.

Measurement of Heart Rate During Exercise

In order to measure HR and SpO2, most wearables use photoplethysmography (PPG) 

technology, which is an optical volumetric assessment of blood volume changes in the 

microvasculature.8 This technology assesses small volume changes by illuminating the 

capillary bed with a small light source (such as an LED, e.g. 365 nm wavelength). The 

intensity of light transmitted through or reflected from the bed is then measured by a 

photodiode.9 Over a wide range of HR at rest, there are no detectable differences between 

a traditional vital signs monitor used in clinical settings and many commercial wearables.10 

Furthermore, commercial wearables correlate fairly well with standard electrocardiographic 

(ECG) monitoring during aerobic exercise.11 Among both healthy adult volunteers and 

patients enrolled in cardiac rehabilitation, chest strap monitors (Polar H7) have the 

best agreement with ECG (r = 0.99), whereas optically based wrist-worn HR monitors 

vary across models with generally lower accuracy (r = 0.52–0.92).11,12 Importantly, the 

performance of wrist-worn HR monitors varies with exercise modality, and overall, they 

perform poorly during elliptical trainer activity with use of arm levers (all r <0.80).11 In 

comparison of commonly used wrist-worn wearables, the Apple Watch Series III shows the 

best agreement with ECG monitoring on the treadmill at various speeds (r = 0.96), while 

other tested devices (Fitbit Iconic (Fitbit, USA), Garmin Vivosmart HR, Tom Tom Spark 

3 (TomTom, Netherlands)) have similarly lesser agreement (r = 0.89).13 It is important to 

also consider that skin color, moisture, and tattoos may affect the accuracy of wrist-worn 

monitors.14 In summary, given the variable performance across optically based wrist-worn 

monitors, data from these devices should be interpreted with caution, and chest strap 

monitors should be considered if more accurate ambulatory HR measurements during 

exercise are required for clinical or performance purposes.

More recently, smartwatches have introduced direct ECG electrode recording for heart rate 

and rhythm monitoring. Some smartwatches, such as the Apple Watch and the Fitbit Sense, 

can record a lead I-like rhythm strip by incorporating a negative and positive electrode on 

the side and back of the watch, respectively. Therefore, in order to record a single-lead 

ECG using the Apple Watch, the user simply places a finger of the contralateral hand on 

the digital crown. In addition, certain manoeuvres can be performed to obtain leads II and 

III (by moving the watch to the ankle and placing the right or left hand on the digital 

crown for lead II and II, respectively), and the precordial leads can also be acquired through 

manipulation of the device.15 This capability therefore offers individuals continuous PPG 

heart rhythm monitoring with single-lead ECG monitoring as needed.

Activity-related Sensors

In addition to physiological metrics, wearables can also precisely capture activity-related 

parameters, such as walking, cycling, running, and other activities. This capability is 

Rao et al. Page 3

Curr Treat Options Cardiovasc Med. Author manuscript; available in PMC 2022 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



facilitated through the use of biaxial or triaxial accelerometers to measure movement 

and changes in motion based on principles of inertia. Accelerometers are often used in 

conjunction with global positioning systems to assess precise positioning in space during 

movement, barometers to detect changes in altitude/elevation, and gyroscopes to measure 

angular motion.16

Respiratory Rate Sensors

PPG exhibits respiratory modulations that are used by wearables to develop algorithms 

to estimate respiratory rate.17,18 These modulations include baseline wander, amplitude 

modulation, and frequency modulation, and are well summarized here.19 In short, changes 

in tissue blood volume detected by PPG occur due to i) reduced stroke volume during 

inspiration (due to reduced intrathoracic pressure) ii) arterial vasoconstriction during 

inspiration iii) increased HR in inspiration (baroreflex-mediated response to decreased 

stroke volume). These modulations differ across demographics; for example, frequency 

modulation-based respiratory signals are of lower quality in elderly individuals.20 A plethora 

of PPG-derived RR algorithms are reported in the literature, and many wearables use these 

algorithms to provide estimates of RR.19

VO2max Estimation

Data collected from HR and activity-related sensors can be used to derive surrogate 

measurements of other physiological data such as exergy expenditure21–23 and VO2max. 

Several formulae have been used to predict VO2max ranging from simple to complex. 

For example, the formula “VO2max = 15.3 × (HRmax/HRrest)” estimates VO2max in well-

trained men with a standard error of estimate of 0.21 l/min or 2.7 ml/min/kg.24 By contrast, 

complex mathematical modeling and machine learning techniques, namely artificial neural 

networks (ANN), use more variables such as demographic information (age, sex, height, 

weight), HR, and activity-related data to estimate VO2max with similar precision.25

Implementation of Wearables in Sports Cardiology

Wearables to Screen for Cardiovascular Disease in Athletes

In sports cardiology, wearables may play an important role in risk stratification and 

prevention of sudden cardiac death (SCD) in athletes. Intense exercise may trigger 

ventricular arrhythmias in any individual with an underlying cardiac defect associated with 

SCD. While the true incidence of SCD in athletes remains uncertain and is influenced 

by age, sex and sport, it is reported to be as high as 1:15,000 among male adolescent 

soccer players.26 Although an ambitious goal, in the future, it is conceivable that wearables 

may hold the potential to facilitate detection of otherwise undiagnosed exercise-related 

arrhythmias in athletes with underlying cardiovascular disease. More ambitious still, through 

algorithm development and refinement, future wearables may provide automated health 

event prediction, identifying at-risk athletes whom would otherwise go undetected with 

traditional screening measures. Ultimately, these advances could lead to early recognition of 

conditions associated with SCD in athletes, with the intention to subsequently modify SCD 

risk in these individuals.
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An important cause of SCD in young athletes is Long QT syndrome. Limited data suggest 

that using ECG equivalents of lead I, II, and V6, ECG tracings from the Apple Watch Series 

4 allow for adequate QT interval measurements in 85% of patients in sinus rhythm, with the 

major limitation being ECG tracing quality and T-wave amplitude.27 Although the feasibility 

of remote detection of Long QT syndrome using wearables is yet to be proven, it is plausible 

that these devices may provide an opportunity to screen large numbers of young individuals 

for this condition in the future.

While it is not currently possible, nor feasible, to use wearables to accurately screen for 

other conditions associated with SCD in athletes, a growing body of evidence suggest that 

wearables may be used to identify arrhythmias, namely atrial fibrillation. In the Apple 

Heart Study, which virtually enrolled 419,297 participants within 8 months, a PPG-based 

algorithm detected an irregular pulse in 0.52% of participants.28 Of note, only 0.16% of 

those aged between 22 to 40 years received a notification compared to 3.1% of individuals 

65 years and older. Of all study participants who had irregular pulse notifications during 

simultaneous use of an ECG patch, the positive predictive value for the irregular pulse 

notification was 84%. In the Huawei Heart Study that used smart devices to monitor the 

pulse rhythm, 424 out of 187,912 participants received a notification for suspected atrial 

fibrillation. Consistent with the findings from the Apple Heart Study, of the 62% of notified 

participants that pursued medical evaluation, the PPV of the Huawei Heart Study algorithm 

was 87%.29 Given that atrial fibrillation is more prevalent in male masters endurance 

athletes than the general population, the PPV in theory may in fact be higher in this specific 

athlete population.30

Wearables to Guide Exercise Training Regimens

Heart Rate Zone-Guided Training: Wearables provide an opportunity for individuals to 

use HR as a tool to guide training intensity. This concept may be useful in creating training 

regimens for athletes as well as developing personalized exercise prescriptions for patients 

with cardiac disease. For example, popular endurance training regimens involve long periods 

of aerobic exercise at an intensity whereby lactate production does not exceed clearance 

(commonly referred to as Zone 2) coupled with high-intensity interval training (HIIT), 

which involves repeated, short bouts of high intensity efforts. For many individuals, specific 

training intensities can be most accurately ascertained by performing a cardiopulmonary 

exercise test. Once these intensities are determined, the correlated heart rate at the given 

intensity can be used as a proxy to guide future training sessions. For athletes without 

access to a cardiopulmonary exercise test, both heart rate zone- and HIIT training can be 

estimated, with specific zones determined as a percentage of predicted maximal heart rate 

for an individual.

In addition, providing safe exercise recommendations for athletes with coronary artery 

disease or conditions associated with SCD is an important, challenging, and evolving area 

of sports cardiology. While the American Heart Association and the American College 

of Cardiology recommendations for many of these conditions include restricting athletes 

to low intensity (i.e., Class IA) competitive sports,31 recent updates recommend a more 

liberal approach, especially when the relationship between exercise and the progression of 
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disease/risk of SCD remains unclear.32 It follows that wearables, through the potential to 

provide real-time objective feedback to patients during exercise, may help ensure adherence 

to certain training intensities. Importantly, a wearable-based strategy for athletes with known 

cardiovascular disease demands demonstration of the accuracy of the device and of the 

clinical safety and utility in patients in a clinical trial. Perhaps the growing interest of 

home-based cardiac rehabilitation for patients with underlying cardiovascular disease may 

result in demonstrating the accuracy, safety, and efficacy of wearables in this population.33

As mentioned earlier, the accuracy of wrist-worn HR monitors varies considerably, 

especially during exercises that involve significant arm movement. Thus, when counseling 

athletes on HR-guided training regimens, or providing heart rate guided exercise 

prescriptions for individuals with underlying cardiac conditions, it is important to understand 

the accuracy limitations of wearables, with the most accurate guidance likely to result from 

the use of a chest strap monitor.

Heart Rate Variability-guided Training: In addition to HR metrics, wearable devices 

present an opportunity to provide objective data related to internal workload and recovery. 

While external workload is defined as the output exerted by an athlete (generally quantified 

based on biomechanical movements quantified through acceleration and velocity), internal 

workload represents the physiological response to the external load. Internal workload is 

commonly measured using wellness questionnaires aimed at gauging the athlete’s response 

to prior workouts as well as recent levels of stress, recovery, and/or sleep.34,35 Internal 

workload also comprises of subjective scaled assessments during exercise (e.g rating of 

perceived exertion (RPE) using the Borg’s or Foster’s Scale). RPE and the duration of the 

training session helps to guide sports scientists to quantify the internal workload of the 

athlete during a particular workout. These metrics can then be used by training and coaching 

staff to determine whether there is sufficient recovery between training sessions (Table 1). 

In competitive sports, it is well established that recovery is important to prevent injury and 

training plateaus. Overreaching, and possibly overtraining may develop when there is a lack 

of balance between training load/stress and recovery (Figure 2).36

Due the subjective nature of wellness questionnaires and RPE, objective data from 

wearables may be used to complement these assessments in order to more accurately 

determine the internal workload profile of athletes. Specifically, variations in skin 

temperature and RR from baseline circadian patterns, as well as the measurement of HRV 

in particular are increasingly being used as an objective marker of internal workload and 

recovery by wearable devices. HRV represents changes in patterns of the autonomic nervous 

system and may function as a holistic assessment of training, sleep, nutrition, psychological 

and emotional stress. Kiviniemi et al studied whether the use of daily HRV measurements 

as part of an endurance training strategy could result in a better training response compared 

to a pre-defined training program in healthy, moderately fit male endurance athletes.37 

Using a Polar S810i heart rate monitor, HRV was calculated each morning using Polar 

software. When HRV decreased, training intensity for that day was decreased compared to 

the previous day. When HRV increased or remained the same, training intensity increased. 

A maximum of two consecutive high-intensity exercise days and resting days were allowed, 

and rest was prescribed after 9 consecutive days of training regardless of HRV that day. 
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Despite similar training frequencies (6 times per week) and fewer high-intensity workouts 

(3/week vs 4/week in the pre-defined training program), athletes who followed an HRV-

guided training protocol had significantly greater changes in their maximal running velocity 

achieved on maximal exercise testing, and a greater (but not statistically significant) increase 

in VO2peak. The same group performed a similar analysis on both men and women.38 

While the findings were consistent with previous observations in men, women in the HRV-

guided group had similar improvements in cardiovascular performance with a lower training 

load. These findings are supported by subsequent studies showing greater improvement in 

athletic performance using HRV guided training regimens.39,40 It is important to note that 

there are several limitations pertaining to the accuracy of wearables to measure HRV. Some 

studies assessing the effectiveness of HRV guided training use a 7-day rolling average of 

root mean square of successive differences (RMSSD) between normal heartbeats because it 

is thought that this is more sensitive to detect changes in the training status compared with 

single-day measurements.41 Taken together, despite the limitations in obtaining accurate 

HRV data and the challenges in interpreting its significance, it is plausible wearable-derived 

HRV can help guide training regimens to provide marginal gains in performance.

Collaborate to Compete: Integrating Basic Science and Sports Cardiology

Further advances in material science, manufacturing, and data analytics will generate more 

data for the user and physician and at a lower cost, making wearables a ubiquitous item, 

much like the personal computer of the past and smartphones of today.42 All devices 

in the market today leverage silicon-based process technology. Silicon chips are now 

able to be made very thin (~50 um) and can be stacked in three dimensions to enable 

complex sensing, signal processing, data storage and communication capabilities in a 

small unit volume.43,44 Silicon technology can also be integrated in epidermal sensors. 

Recently, nanomaterial-based flexible sensors have garnered increased attention due to 

their interaction with the human body. These materials can be attached onto clothing45 

or applied directly on skin for real-time monitoring of various physical, chemical, biological, 

and environmental signals,46–49 thus making them extremely promising for sports-related 

applications.50 Such developments can enable the measurement of biochemical markers, 

such as sodium, potassium, lactate, cortisol and other physiological markers related to 

exercise. Gatorade (in collaboration with Epicore Biosystems) recently commercialized the 

Gx Sweat Patch, an epifluidic calorimetric system that wicks eccrine sweat and measures 

whole body sweat rate, hydration status, and sodium loss. Whether the real-time assessment 

of these analytes provide clinically meaningful data that can contribute to the assessment 

and monitoring of sports cardiology patients remains to be determined.

Conclusion

Athletes are continually searching for new approaches to efficiently maximize performance 

while reducing injury burden. An ever-increasing ability to collect physiological information 

can help with this mission through personalizing training regimens and making athletes 

aware of the importance of recovery. For sports cardiologists and athletes alike, it will 

be of paramount importance to understand how best to interpret and use the plethora of 

information and separate the signal from the noise. As technologies mature, and exercise 
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recommendations for athletes with cardiac conditions become less restrictive, wearables 

may be an important tool to both monitor the safety of exercise in athletes with cardiac 

conditions as well as detect, and even predict, de novo disease. While there currently are 

no standardized approaches or guidelines to implementing the use of wearable-derived data 

in sports cardiology practice, we envision three domains in which they could guide care of 

athletes: (1) screening for cardiovascular disease, (2) improving cardiovascular performance, 

and (3) guiding exercise in athletes with known cardiovascular disease (Figure 3).
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Figure 1. 
Commercially available wearable sensors for physiological and biochemical monitoring
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Figure 2. 
Relationship between workload, team fitness, and team performance. (a) Hypothetical 

relationship between training loads, fitness, injuries, and performance. Inadequate and 

excessive training loads could result in increased injuries, reduced fitness, and poor team 

performance. (b) Interpreting and applying training load data to assess the likelihood of 

subsequent injury. Modified and used with permission from Gabbett et al.35
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Figure 3. 
Potential clinical utility for wearables in sports cardiology practice.
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Table 1.

Subjective and Objective Methods used to Quantify Internal Workload. RPE: Rating of Perceived Exertion 

(RPE); Training Impulse Response (TRIMP); Workload (WL); D = duration of training session in minutes; 

HRex is average heart rate of the exercise; session, HRrest is resting heart rate; HRmax is maximal heart rate.

Method Description Equation: Internal WL =
Wearables 
Exists to 
Measure?

Subjective Measures

Borg’s RPE 
Scale

Scale from 6–20 with increases in workout intensity correlating 
with increased score Session RPE * Duration (minutes) No

Foster’s RPE 
Scale

Scale from 1–10 with increases in workout intensity correlating 
with increased score Session RPE * Duration (minutes) No

Objective Measures

Banister 
TRIMP

Length of the session (in minutes) multiplied by an intensity 
factor defined for both men and women

D * (A * ΔHR * exp(B * ΔHR))
A = 0.64 (men); 0.86 (women)
B = 1.92 (men); 1.67 (women)
ΔHR = (HRex – HRrest)/(HRmax – HRrest)

Yes

Morton’s 
TRIMP

Similar to Banister’s TRIMP model, except gives greater 
weight to high-intensity training

D * (A * ΔHR * 2.718exp(B * ΔHR))
A = 0.64 (men); 0.86 (women)
B = 1.92 (men); 1.67 (women)
ΔHR = (HRex – HRrest)/(HRmax – HRrest)

Yes

Edwards 
TRIMP

Summation of the HR zone score method. Product of the 
cumulated training duration (in minutes) for 5 heart rate zones 
multiplied by a coefficient relative to each zone
Zone 1: 50%−60% HRmax

Zone 2: 60%−70% HRmax

Zone 3: 70%−80% HRmax

Zone 4: 80%−90% HRmax

Zone 5: 90%−100% HRmax

duration in zone 1 * 1 +
duration in zone 2 * 2 +
duration in zone 3 * 3 +
duration in zone 4 * 4 +
duration in zone 5 * 5

Yes

Lucia TRIMP

Individually determined lactate thresholds and the onset of 
blood lactate [La] accumulation. The duration spent in each 
of three heart rate zones (zone 1: below the ventilator 
threshold; zone 2: between the ventilator threshold and 
the respiratory compensation point and zone 3: above the 
respiratory compensation point) is multiplied by a coefficient 
(k) relative to each zone (k = 1 for zone 1, k = 2 for zone 2, and 
k = 3 for zone 3) and the adjusted scores are then summated

duration in zone 1 * 1 +
duration in zone 2 * 2 +
duration in zone 3 * 3

Yes

Stagno 
TRIMP

Modified version of the Banister’s TRIMP to quantify training 
load based on the direct measurement of the athletes’ [La] 
profile.

D * ΔHR * 0.1225 * exp (3.9434 × ΔHR) Yes

LacTRIMP

Training load is calculated through [La] concentration. Three 
intensity zones were adopted (zone 1: [La] ≤ 2, zone 2: 2 > 
[La] < 4, zone
3: [La] ≥ 4). A relative coefficient was attributed to each zone 
(k = 1, for zone 1; k = 2, for zone 2; and k = 3, for zone 3). The 
LacTRIMP was calculated by the sum of the multiplications of 
the times spent in the different zones by the coefficient relative 
to each zone

duration in zone 1 * 1 +
duration in zone 2 * 2 +
duration in zone 3 * 3 +
duration in zone 4 * 4

No
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