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SUMMARY
Genetically diverse mouse populations are powerful tools for characterizing the regulation of the proteome
and its relationship to whole-organism phenotypes. We used mass spectrometry to profile and quantify
the abundance of 6,798 proteins in liver tissue from mice of both sexes across 58 Collaborative Cross (CC)
inbred strains. We previously collected liver proteomics data from the related Diversity Outbred (DO) mice
and their founder strains. We show concordance across the proteomics datasets despite being generated
from separate experiments, allowing comparative analysis. We map protein abundance quantitative trait
loci (pQTLs), identifying 1,087 local and 285 distal in the CC mice and 1,706 local and 414 distal in the DO
mice. We find that regulatory effects on individual proteins are conserved across the mouse populations,
in particular for local genetic variation and sex differences. In comparison, proteins that form complexes
are often co-regulated, displaying varying genetic architectures, and overall show lower heritability and
map fewer pQTLs.We havemade this resource publicly available to enable quantitative analyses of the regu-
lation of the proteome.
INTRODUCTION

Protein abundance in cells is regulated atmultiple levels, including

transcriptional and various post-transcriptional, translational, and

protein degradation mechanisms.3 Each of these regulatory

mechanisms can be influenced by genetic variation, as observed

across a range of organisms, including Arabidopsis,4 yeast,5,6

mice,1,7–9 and humans.10–14Genetic effects onprotein abundance

can be broadly divided into two classes: local and distal. Local

variation in the vicinity of the coding gene typically influences pro-

tein abundance by altering the rate of transcription or stability of

the transcript.15 Distal genetic variation at loci far from the coding

gene typically influences later stages of regulation, often acting

through a diffusible intermediate such as another protein. Other

modes of regulation are possible, and the local versus distal

distinction is a useful but imperfect indicator for distinguishing

translational from post-translational regulation. The complexity

of genetic regulation is compounded for proteins that form

multi-unit complexes because stoichiometry can impose varying

degrees of constraint.1,16–19 In each genetic context, proteins

can be influenced by a single locus (monogenic) or many (multi-

genic to polygenic), and effects can be additive or dominant and

may involve epistatic interactions with other loci.
C
This is an open access article und
Resource populations with high levels of genetic diversity can

be used to identify and characterize the genetic loci that affect

protein abundance. The Collaborative Cross (CC)20,21 and Diver-

sity Outbred (DO)22 mouse populations are two genetic resource

populations that are descendant from a common set of eight

inbred strains (i.e., the founder strains; short names in parenthe-

ses): A/J (AJ), C57BL/6J (B6), 129S1/SvImJ (129), NOD/ShiLtJ

(NOD), NZO/HlLtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK),

and WSB/EiJ (WSB). The founder strains represent three sub-

species of the house mouse, Mus musculus,23,24 and encom-

pass genetic variation from across laboratory and wild mice.

Each DO mouse is genetically unique with high levels of hetero-

zygosity and low linkage disequilibrium (LD) that support fine

mapping of genetic variants.25–28 CC mice consist of more

than 60 inbred strains that are homozygous at most loci

(>99%).21,29,30 They have larger LD blocks and thus lower map-

ping resolution because of fewer outbreeding generations in

their derivation than DO mice. The genomes of CC strains are

inbred and thus replenishable, enabling repeatedmeasurements

of genetically identical mice31,32 within and across experiments

as well as characterization of strain-specific phenotypes.33–35

CC strains can model human diseases; examples include coli-

tis,36 susceptibility to Ebola infection,37 influenza A virus,38
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Figure 1. Comparisons of genetic and sex effects on protein abundance among the CC, DO, and founder strains reveal strong concordance
(A) The CC strains and DO mice are descended from the same eight inbred founder strains. Mutations occur during the breeding generations of the CC and DO

mice and can become fixed in the CC strains.

(B) Venn diagram of the proteins analyzed in the CC, DO, and founder strains. The founder strains and DO samples were obtained in the same experiment,

resulting in greater overlap.

(C) Estimates of heritability of protein abundance are greater on average in the inbred CC and founder strains compared with DOmice. Vertical lines represent the

median heritability in each population.

(D–F) Sex effects for protein abundances in (D) CC versus DO, (E) CC versus founder strains, and (F) DO versus founder strains. The solid identity line and dashed

horizontal and vertical lines at 0 are included for reference. Pearson correlation coefficients (r) between the sex effects of the populations and corresponding p

values included. A breakdown of the direction of sex effects is shown for each comparison of populations. N.S. indicates proteins that did not have significant sex

effects at FDR < 0.1. c2 test of independence used to evaluate consistency of the direction of sex effects.

See also Figure S1 and Tables S1, S2, and S3.
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severe acute respiratory syndrome (SARS) coronavirus,39 and

peanut allergy.40

In this study, we quantified protein abundance in liver samples

of 116 CC mice representing female/male pairs from 58 strains

(Table S1). We previously collected proteomics data from the

livers of 192 DOmice and 32 mice representing the eight founder

strains (two animals of each sex per founder strain)1 (Figure 1A).
2 Cell Genomics 1, 100003, October 13, 2021
Both studies employed tandem mass tag (TMT) multiplexed

mass spectrometry (MS) but represent separate experiments

with differences that reflect refinements in the protocols (STAR

Methods), most notably use of a pooled bridge sample in each

TMT plex for the CC. We compare sex differences and quantita-

tive trait loci for protein abundance (pQTLs) between CC and

DOmice, finding strong conservation of sex differences and local
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pQTLsand, to a lesserdegree, distal pQTLs.Weexamineproteins

that formcomplexesandfind fewer local genetic effects.Wehigh-

light examples of protein complexes with diverse genetic archi-

tectures. We identify proteins showing unusual expression pat-

terns in specific CC strains and associate some of these with de

novo mutations in the CC strains and their phenotypic conse-

quences. Our work demonstrates the consistency of MS prote-

omicsdataacrossexperimentsandconservationof the regulation

of protein abundance across these resource populations.

RESULTS

Heritability and sex effects on proteins are shared
across the CC, DO, and founder strains
We quantified the abundance of 6,798 proteins (Table S2) in liver

tissue from 58 inbred CC strains, one female and one male per

strain. We previously reported quantification of proteins from

liver tissue of 192 outbred DO mice and 32 mice representing

the eight founder strains (two per sex per strain).1 The data for

DO and founder strains were re-analyzed for this study to ensure

that all data were processed consistently (STAR Methods), re-

sulting in quantification of 6,745 and 6,897 proteins (Table S2),

respectively. Among the 9,235 proteins detected in total, 4,503

were seen in all three populations (Figure 1B; Table S3).

We estimated protein abundance heritability (h2), which re-

flects the combined effects of genetic factors relative to the pre-

cision of protein abundance estimation (Figure 1C). Heritability

was higher on average in the CC and founder strains compared

with the DO strain, likely because of the combined effects of their

inbred genetic architecture and improved precision of the MS

measurement for the CC samples. Despite the differences in

average heritability, heritability of individual proteins was corre-

lated significantly across populations (Pearson correlation coef-

ficient [r] > 0.43, p < 2.2e�16), suggesting that the underlying ge-

netic factors are conserved.

Protein abundance can differ between sexes.1,18 We charac-

terized sex effects in the CC, DO, and founder strains (STAR

Methods; Table S3) and detected significant sex effects (false
Figure 2. Genetic effects of loci are highly consistent between CC and

(A and B) Stringently detected pQTLs (FDR < 0.1) in (A) CC and (B) DO mice. The

pQTL location. Dot size is proportional to strength of association (log-odds [LOD

(C) Venn diagram of local pQTLs detected in CC and DO mice.

(D) The correlation of haplotype effects for local pQTLs detected in CC and DO m

(E) The correlation of haplotype effects for local pQTLs detected in at least on

correlated effects (FDR < 0.1).

(F) Venn diagram of distal pQTLs detected in CC and DO mice.

(G) The correlation of haplotype effects for distal pQTLs detected in CC and DO

(H) The correlation of haplotype effects for distal pQTLs detected in at least one

(I) The 20 distal pQTLs detected in CC and DO mice. Arrows connect candidate d

pQTLs). Gene names in black represent the top candidates identified in both CC a

or DO mice, respectively. TUBGCP3, a top candidate from the CC and the stro

underlined. The red asterisk denotes PGD as a likely false positive mediator bec

(J) Mediation analysis of the Snx4 distal pQTL, an example of agreement between

mice are overlayed with mediation conditional LOD scores (gray dots). Mediation

interest with low mediation scores are labeled. Horizontal lines at a LOD score o

(K) Causal diagram consistent with the relationships revealed by QTL and media

(L) Mediation analysis of the Tubg1 distal pQTL, an example of disagreement be

(M) Causal diagram consistent with the relationships revealed by QTL and media

See also Figures S1–S3 and Tables S4 and S5.
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discovery rate [FDR] < 0.1) for 3,750 (55.2%) proteins in the

CC strains, 4,520 (67.0%) proteins in the DO mice, and 1,583

(23.0%) proteins in the founder strains. Sex-specific differences

in protein abundance were overwhelmingly in the same direction

for all populations (Figures 1D–1F). Gene set enrichment analysis

revealed that proteins related to ribosome, translation, and pro-

tein transport Gene Ontology (GO) terms were more abundant in

males,18 whereas proteins related to catabolic and metabolic

processes, including fatty acid metabolism, were more abun-

dant in females in all populations.41

Genetic regulation of proteins is shared between the CC
and DO
To identify the genetic loci that regulate variation in protein abun-

dance, we carried out pQTL mapping in CC and DO mice (Table

S4).TodeterminesignificantpQTLs,wefirstappliedapermutation

analysis42 to control the genome-wide error rate for each protein

and then applied anFDRadjustment (FDR<0.1) across proteins43

to establish a stringent detection threshold for pQTLs. Using this

stringent criterion, we identified 1,087 local and 285 distal pQTLs

in CCmice and 1,706 local and 414 distal pQTLs in DOmice (Fig-

ures 2A and 2B). We defined local pQTLs as being located within

10 Mbp of the midpoint of the protein-coding gene. Although

thiswide local windowmay result in somenearby but distal pQTLs

being misclassified as local, it accounts for the large LD blocks in

the CC strains and yields more consistent classification of local

pQTLs between CC and DO mice. We also identified a local

pQTL on the mitochondrial genome in CC mice for mt-Nd1 (Fig-

ure S1D). Stringent control of false positive rates can result in a

high rateof falsenegative results.Therefore, tocomparepQTLdis-

covery across populations, we carried out a parallel analysis with

more lenient FDR control (FDR < 0.5; Figures S1A and S1B).

We compared genetic effects between CC and DO mice by

focusing on the 4,654 proteins that were detected in both popu-

lations (Figure S1C). Among 1,427 local pQTLs detected in either

population, 636 were detected in both (Figure 2C). To determine

whether the shared local pQTLs were driven by the same genetic

variants, we compared the estimated haplotype effects at each
DO mice

pQTLs are plotted by the genomic positions of protein-coding genes against

] score).

ice.

e of the CC or DO populations. Red bars represent pQTLs with significantly

mice.

of the CC or DO populations.

rivers identified through mediation analysis to their targets (proteins with distal

nd DOmice. Red and blue gene names indicate top candidates specific to CC

nger biological candidate based on shared membership in protein families, is

ause of the true mediator being unobserved, seen in both CC and DO mice.

CC and DOmice. Panels showing pQTL LOD scores for CC (pink) and DO (blue)

scores were evaluated for all proteins genome-wide. Candidate mediators of

f 6 are included as a reference point across genome scans.

tion analysis for SNX4 and SNX7.

tween CC and DO mice, details as described above.

tion analysis for TUBG1, TUBGCP3, TUBGCP2, and NAXD.
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pQTL (STAR Methods) and found that 628 (98.7%) were signifi-

cantly positively correlated (FDR < 0.1; Figure 2D; Table S4). To

assess whether pQTLs detected in only one population are pop-

ulation specific, we compared the haplotype effects of detected

pQTLs with effects estimated at the corresponding locus in the

other population regardless of significance and found that

1,314 (92.1%) were significantly positively correlated (FDR <

0.1; Figure 2E). The concordance of local pQTLs also holds for

lenient detection (Figures S1F–S1G; Table S4). Based on these

analyses, we find that local genetic effects on proteins are highly

conserved between the CC and DO populations.

The founder strains can provide additional support for local

pQTLs in CC and DO mice (Figures S1K and S2), particularly

for those that are hard to detect because of rare alleles in CC

or DO mice (e.g., observed in three or fewer CC strains). We

selected all genes with a rare local founder haplotype that did

not have a leniently detected pQTL in CC mice, representing

2,439 genes. We correlated the haplotype effects estimated at

the locus closest to the gene transcription start sites (TSSs)

with the protein abundance in the founders (STAR Methods)

and found significant positive correlation for 194 genes (FDR <

0.1). The three populations together provide evidence of local

genetic effects at 2,905 proteins.

Of the 186 distal pQTLs detected in CC mice and 294 in DO

mice, 20 were detected in both populations, all with significantly

correlated haplotype effects (FDR < 0.1; Figure 2G; Table S4).

Overall, the distal pQTLs are weaker than the local pQTLs,1,44

which may contribute to an increased rate of false negatives.

By comparing haplotype effects for pQTLs that were detected

in only one population, we identified an additional 55 shared

distal pQTLs (Figure 2H). Based on the stringent criteria, a total

of 75 distal pQTLs had consistent effects of the total (16.3%) de-

tected in CC or DO mice compared with 19 (0.5%) for lenient

criteria (Figure S1J). The reduction in concordance for the lenient

criteria is likely due to increased numbers of false positives and

weak distal pQTLs, although it did uniquely identify a shared

distal pQTL for Ercc3 (Figure S3).

Mediators of strong distal genetic effects detected in
CC and DO mice are concordant
The genetic variants that drive distal pQTL are generally thought

to act through diffusible intermediates that are under local ge-

netic control at the pQTL. We used mediation analysis1,45–47 to

identify candidate mediators of distal pQTLs (STAR Methods;

Table S5). Mediation analysis is best used for prioritizing candi-

date mediators and, in this study, is limited to evaluating candi-

dates that exert their effects through changes in protein abun-

dance. Therefore, we cannot exclude the possibility of

mediation by proteins that were not detected, by non-coding

RNAs or by protein variants that affect function without altering

abundance. For example, in this study, PGD was found to

mediate a strong Akr1e1 distal pQTL in CC and DO mice. How-

ever, Zfp985 has been identified previously as the mediator

based on gene expression in CC mice47 but was not detected

at the protein level in this study.

We identified candidate mediators for each of the 20 shared

distal pQTLs (Figure 2I), of which only four had best candidate

mediators that differed between CC and DO mice. For example,
TUBGCP3 is the strongest candidatemediator of the distal pQTL

for Tubg1 in CCmice, but NAXD is the strongest candidatemedi-

ator in DO mice (Figures 2L and 2M). Given that Tubg1 and

Tubgcp3 (as well as Tubgcp2, which also has a co-mapping

distal pQTL) are members of the tubulin superfamily, TUBGCP3

is a strong functional candidate, suggesting that NAXD is likely a

false positive mediator in DO mice.

We also examined candidate mediators for all distal pQTLs

that were detected (FDR < 0.1) in only one of the populations

and evaluated the corresponding pQTL status (stringent, lenient,

or not detected) and mediation status (e.g., same or different) in

the other population. We found the same candidatemediator be-

tween CC and DO mice for 21 of 460 distal pQTLs mapped

across both populations, suggesting that mediation is more ac-

curate for strong distal pQTLs that are detected in both popula-

tions (Figure S1L).

Drivers of variation in the co-abundance of protein
complexes
Members of protein complexes exhibit varying degrees of co-

abundance, to which we refer as cohesiveness of the complex.

We quantify cohesiveness as the median Pearson correlation

between complex members.18 A high level of cohesiveness sug-

gests that co-regulation of protein abundances across a com-

plex is maintaining stoichiometry. We found that individual pro-

teins that are part of a complex48–50 (Table S6) are less

heritable and have fewer pQTLs than proteins that are not part

of a complex (Figures S4A–S4D). We evaluated the extent to

which members of protein complexes were inter-correlated as

well as how genetic factors and sex contribute to variation in their

joint abundance. To assess the contributions from genetic fac-

tors and sex, we performed principal-component analysis

(PCA) on the abundances of proteins for each protein complex51

and took the first principal component (PC1) as a summary

(STAR Methods). We then estimated heritability and the propor-

tion of variation explained by sex for each complex PC1.

Protein complex cohesiveness was correlated between CC

and DO mice (r = 0.68, p < 2.2e�16) (Figures 3A and 3B), and

within each population, it is correlated with complex heritability

(r = 0.28, p = 1.2e�4 in CC mice and r = 0.12, p = 0.11 in DO

mice) (Figure S4E), suggesting that cohesiveness reflects some

degree of shared genetic regulation in CCmice. Complex herita-

bility is consistently higher in CC mice than in DO mice (115 of

155 complexes, 74.2%) and is uncorrelated with complex herita-

bility in DOmice (r = 0.09, p = 0.26) (Figures 3C and 3D). This lack

of correlation between heritability of complexes for the CC and

DO mice contrasts with the highly correlated heritability of indi-

vidual proteins (r = 0.44, p < 2.2e�16). The proportion of variation

in complex abundance (as summarized by PC1) explained by

sex is correlated between CC and DO mice (r = 0.70, p <

2.2e�16; Figures 3E and 3F). Protein complexes that have

been shown previously to have sex-specific abundance in DO

mice,18 such as eIF2B, were confirmed in CC mice.

Genetic and stoichiometric regulation of the exosome
The exosome complex provides a striking example of complex-

level genetic regulation (Figures 4A–4E). It had the highest com-

plex heritability in CC mice (87.8% [81.7%–90.8%]) but very low
Cell Genomics 1, 100003, October 13, 2021 5
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Figure 3. Genetic and sex effects on protein complexes
(A and B) Complex cohesiveness, the median pairwise Pearson correlation amongmembers, for CC (red) and DO (blue) mice for 163 protein complexes. Intervals

represent the interquartile range, and points represent the overall median.

(C–F) Complex heritability (C and D) and complex sex effect size (E and F), the proportion of variance in PC1 explained by sex, are estimated using the first

principal component (PC1) from each of the protein complexes. Intervals represent 95% subsample intervals (STARMethods). The exosome, CCT complex, 26S

proteasome, and MRSS are highlighted as examples of protein complexes with unique genetic effects patterns (Figures 4, 5, 6, S5, and S6). The multi-eIF

complex and eIF2B are highlighted as complexes with large sex differences in CC and DO mice. The identity line is included for reference. Pearson correlation

coefficients (r) between CC and DO mice and corresponding p values included.

See also Figure S4 and Table S6.
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Figure 4. Stoichiometry-driven genetic effects on the exosome

(A) Abundance of EXOSC7 in male and female CC mice. Points are color coded to indicate their haplotypes at the Exosc7 locus. The seven CC strains with low

abundance of EXOSC7 have the PWK haplotype (red points) at the Exosc7 locus and are highlighted.

(B) The effects of a chromosome 9 QTL are mediated through EXOSC7 to affect variation in proteins of the exosome and two functionally related proteins, DIS3L

and ETF1.

(C) Abundances of proteins with distal pQTLs at the Exocs7 locus for female and male CC mice. Points are colored by the founder haplotype at Exosc7.

(D) The genome scan for PC1 of protein abundances in the exosome complex for CC mice (light red) overlayed with the mediation conditional LOD scores (gray

dots). Mediation scores were evaluated for all proteins genome-wide. Proteins with low mediation scores are labeled. The horizontal line at a LOD score of 6 is

included as reference point across genome scans.

(E) The exosome PC1 plotted asmales versus females for the CC strains. Points are colored by the founder haplotype at Exosc7. The black dashed line is the best

fit line between males and females for the complex PC1, based on all 58 CC strains. The gray dashed line shows the best fit line excluding the seven CC strains

with the PWK haplotype at Exosc7.

See also Figure S5.
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heritability in DO mice (0.0% [0.0%–34.8%]). Low abundance of

EXOSC7 in the presence of a local PWKgenotype in CCmice ap-

pears to be the main driver of exosome complex abundance.

Seven CC strains are homozygous for the PWK haplotype at

this locus, whereas in the DO cohort, there were no mice homo-

zygous for the PWK haplotype (Figure S5D). Among the DOmice

with one copy of the PWK haplotype, there is no reduction in the

abundance of the exosome complex, which suggests that the

PWK haplotype effect on Exosc7 is recessive (Figure S5E). We

also note that inbred founder PWKmice have lowEXOSC7 abun-

dance (Figure S5F). Mediation analysis identifies EXOSC7 as a

candidate distal regulator of the complex as well as the function-

ally related genes Dis3l and Etf1. These two genes were not

included in the complex annotations, but our findings suggest

that they are maintained in stoichiometric balance with the anno-

tated complexmembers. The complex heritability (withDis3l and

Etf1 now included) was 91.9%, and after removing the seven CC
strainswith the PWKhaplotype at Exosc7, it was reduced but still

high at 65.1% (Figure 4E), indicating the presence of additional

genetic factors that affect the abundance of the exosome.

Secondary genetic effects on the chaperonin-
containing T (CCT) complex
Previously we reported that the CCT complex was stoichiometri-

cally regulatedby lowabundance ofCCT6Awhen theNODhaplo-

type is present.1 TheCCT complex (Figures S6) has high heritabil-

ity in DO mice (83.2% [68.8%–99.6%]) and in CC mice (51.6%

[41.6%–65.2%]) (Figures 3C and 3D). The DO sample includes

19 (9.9%)mice homozygous for the NOD haplotype (Figure S6C).

TheCCstrains, six ofwhicharehomozygous forNODat theCct6a

locus (Figure S6D), replicate this distal pQTL for the complex

members Cct4, Cct5, Cct8, and Tcp1, although CCT6a itself

was not detected in the CC samples. The effect of the pQTL at

Cct6a in CC mice drives less of the overall variation in the CCT
Cell Genomics 1, 100003, October 13, 2021 7
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complex. A secondary genetic effect mediated through CCT4 is

revealed in CC mice corresponding to high abundances in the

presence of NZO or PWK haplotypes at Cct4. The complex heri-

tability (including all complex members) was 56.8%. After

excluding CC strains with the NOD haplotype at Cct6a and NZO

orPWKhaplotypes atCct4, heritability of thecomplex abundance

is 44.9% (Figure S6H), indicating that, as with the exosome, addi-

tional genetic effects contribute to CCT complex abundance.

Independent genetic effects on the subcomplexes of the
26S proteasome
The 26S proteasome is composed of a 20S proteasome catalytic

core (PSMA and PSMBproteins) that, in the constitutive form, in-

corporates subunits PSMB5, PSMB6, and PSMB7 and is cap-

ped by two 19S regulators (composed of the PSMC and

PSMD proteins). The constitutive form can be modified by re-

placing the PSMB subunits with the three immunoproteasome-

inducible subunits (PSMB8, PSMB9, and PSMB10) and the

19S regulators with the 11S regulators, composed of PSME pro-

teins52 (Figure 5A). The immunoproteasome is a highly efficient

form of the proteasome that is predominantly, but not exclu-

sively, expressed in immune cells.53

This alternation between two different forms of the proteasome

is apparent in the correlations among the inducible and immune

components in the CC, DO, and founder strains (Figures 5B, 5C,

and 5I). Individual mice appear to predominantly express one of

the proteasome forms, as suggested by the anti-correlation be-

tween the constitutive and inducible components. Across the

founder strains, this dynamic appears to be regulated genetically,

with theWSB, AJ, B6, and NZO strains expressingmore immuno-

proteasomecomponentsand theother founder strains expressing

more of the constitutive components (Figures S7). In CC and DO

mice, we identified genetic variation that controls the balance be-

tween PSMB6 (constitutive) and PSMB9 (immunoproteasome)

(Figures 5F and 5G). The WSB haplotype at Psmb9 drives higher

PSMB9 abundance as well as lower abundance of its constitutive

analogPSMB6, confirmed throughmediation analysis (Figures 5H

and 5I). The Psmb9 local pQTL only appears to drive the balance

betweenPSMB9andPSMB6anddoesnotdirectlyaffect theother

interchangeable members of the proteasome (PSMB5, PSMB7,

PSMB8, and PSMB10), which do not map strong pQTLs. The

distinct correlation patterns among the interchangeable compo-

nents suggests that they are still co-regulated across the three

populations.

Some of the other non-interchangeable components of the

26S proteasome are regulated by genetic variation independent

of the Psmb9 locus. We identified a strong local pQTL for Psmd9

that is present in CC and DO mice and does not affect other

members of the 19S regulator (Figures 5D and 5E), which ex-

plains the lack of cohesiveness of PSMD9 with the rest of the

proteasome, as noted previously in these DO mice.18

Polygenic regulation of the mitochondrial ribosomal
small subunit (MRSS)
TheMRSS is highly cohesive in CC and DOmice (Figures 3A, 3B,

6A, and 6B). Complex heritability is also high in CC (73.4%

[67.3%–79.1%]) and DO (44.8% [22.2%–70.6%]) mice. Despite

its high complex heritability, we detect few pQTLs for individual
8 Cell Genomics 1, 100003, October 13, 2021
members of the complex. One exception isAuh, which has a local

pQTL in CC and DO mice (Figures 6E and 6F). AUH is not a core

member of the MRSS but has been associated with it54 and is

included in the annotations. AUH’s local pQTL and lack of cohe-

sionwith thecoreMRSSproteins indicate that it is regulatedsepa-

rately from thecoreMRSS. Similarly, RPS15andPPME1were an-

notated with the complex but not correlated with the core

proteins, suggesting that they are also not co-regulated with the

MRSS. MRPS27 and MRPS28, on the other hand, were missing

from the annotations and are thus not included in Figure 6, but

we found them to be highly cohesive with the core MRSS. For

the core MRSS proteins, CC strains have an overall abundance

that is highly strain specific, as represented in the complex PC1

and even for individual proteins (r = 0.82 between males and fe-

males for the complex PC1and r= 0.76 forMRPS7). Furthermore,

the variation across CC strains is highly continuous (Figures 6C

and 6D). This distribution contrasts with the bimodal abundance

pattern for the exosome complex, which is drivenmostly by a sin-

gle strong pQTL (Figure 4E), suggesting that many loci with small

effects influence the overall abundance of the MRSS.

CC strain-specific variation affects protein abundance
Inbred mouse strains accumulate mutations that can have

phenotypic consequences.55–58 New mutations have arisen

and become fixed in the CC strains29,30 (Figure 1A), which may

affect protein abundance. We confirmed functional effects on

protein abundance for genes with CC strain-specific deletions,

including the 80-kbp deletion in CC026 that includes theC3 cod-

ing gene and a 15-bp deletion in the Itgal gene (Figures 7A and

7B) that occurred in CC042 and has been shown to increase sus-

ceptibility to tuberculosis59 and Salmonella.60

We estimated strain-specific abundance levels for every pro-

tein detected in CC mice and identified CC strains where the

male and female had a distinctly low or high abundance of a

given protein (|Z score | > 2.5; STAR Methods), which we refer

to as strain-specific protein outliers. In total, we identified

5,907 strain-specific protein outliers representing 4,267 proteins

across all 58 CC strains. Of these, 67 strain-specific protein out-

liers occur in strains with a unique genetic variant in or near the

coding gene.30 Furthermore, not all genes with a strain-specific

protein outlier and matching strain-specific genetic variants

were associated with low protein abundance, as is the case for

the deletions; we observed high abundance associated with

strain-specific variants, such as Sash1, which harbors a novel

SNP allele in CC058 (Figure 7C).

Outlying protein abundancepatterns specific to aCC strainmay

represent larger biological pathway dynamics that result from the

strain’s genetic background. We defined sets of proteins for each

strain based on having low or high strain-specific protein outliers

and observed strain-specific enrichments for biological functions

based on GO and KEGG pathway terms (Table S7). In CC013,

we observed increasedabundance in proteins related to the innate

immune system (Figure 7D), leukocytes, and other immune sys-

tem-related GO terms. CC013 possesses a unique SNP allele in

Hcls1 that was associatedwith increasedHCLS1 abundance (Fig-

ure 7E), a gene involved in myeloid leukocyte differentiation that

may contribute to the high abundance of these immune-related

proteins. During the process of tissue collection, it was noted that
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Figure 5. Genetic control of the constitutive and inducible forms of the 26S proteasome

(A) The 26S proteasome is composed of multiple subcomplexes: the 20S proteasome catalytic core (PSMA and PSMB proteins) and 19S regulator (PSMC and

PSMD proteins) for the constitutive form and the inducible immunoproteasomes (PSMB8, PSMB9, and PSMB10) with their 11S regulator (PSME proteins).

(B and C) The Pearson correlations of the 26S proteosome proteins in (B) CC and (C) DO mice. Black boxes were added to highlight correlations between the

constitutive and inducible components.

(D and E) PSMD9 genome scan in (D) CC and (E) DO mice. The horizontal line at a LOD score of 6 is included as reference point across genome scans.

(F and G) PSMB6 genome scan in (F) CC and (G) DO mice overlaid with mediation conditional LOD scores (gray dots) for all proteins, with PSMB9 highlighted.

(H) The abundance of PSMB6 is plotted against the abundance of PSMB9 for CC mice. Horizontal and vertical bars represent means ± 2 standard deviations.

Points and bars are colored by the founder haplotype at Psmd9. The dashed line is the best fit line between PSMB6 and PSMB9.

(I) CC strains with the WSB haplotype at Psmd9 have greater abundance of PSMB9 relative to its constitutive analog PSMB6.

See also Figure S7.
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CC013 had a unique liver phenotype characterized by white gran-

ules throughout the tissue.Weexaminedadditionalmice toconfirm

this (Figure 7F) andhypothesize that the liver granulesare related to

an excess of immune-related proteins. Additional CC strains (Fig-

ures S8C–S8E) with multiple outlier proteins that are functionally

related include CC007 (Figure 7G), which has low- and high-abun-

dance proteins in mitochondrial respiratory complex I. The replen-

ishable inbred CC strains capture these dynamics and allow
deeper interrogationof uniquestrain-specificnetworksof function-

ally related proteinswith perturbed abundance and a better under-

standing of their phenotypic consequences.

DISCUSSION

We carried out proteomics profiling of mice from the CC and DO

strains and their founder strains. Despite the challenges imposed
Cell Genomics 1, 100003, October 13, 2021 9
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Figure 6. Polygenic regulation of the mitochondrial ribosomal small subunit (MRSS)

(A and B) The Pearson correlations of the MRSS in (A) CC and (B) DO mice.

(C and D) MRPS7 (*) abundance (C) and PC1 of protein abundances from the MRSS core (black box) (D) plotted as males versus females for the CC strains. The

dashed lines represent the best fit lines between males and females for MRPS7 and complex PC1.

(E and F) Genome scans for AUH (**), a protein affiliated with the mitochondrial ribosome that is largely uncorrelated with core members of the complex, reveal a

local pQTL detected in (E) CC and (F) DO mice. Horizontal lines at a LOD score of 6 are included as a reference point across genome scans.
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by separate experiments and the relative nature of MS prote-

omics,61 the data provided consistent results that supported

comparative analysis. Genetic regulation of the proteome in

the liver is highly conserved across these distinct but related ge-

netic reference populations. The concordance is exceptionally

strong for local genetic regulation and sex differences but also

for distal genetic effects strongly detected in both populations.

Discordance between CC and DO mice can often be attributed

to chance differences in allele frequencies or to dominance ef-

fects that manifest differently in the inbred versus outbred pop-

ulations, similar to what has been observed in Drosophila for

gene expression.62 Mediation analysis of distal pQTLs identified

many of the same candidate mediators in CC and DOmice. Pro-

teins that form complexes are generally less affected by local ge-
10 Cell Genomics 1, 100003, October 13, 2021
netic regulation compared with other proteins. Complexes dis-

played a wide range of cohesiveness that was more highly

conserved across populations than complex heritability; never-

theless, genetic effects on protein complexes can manifest in

remarkably different ways. The CC strains enable discovery of

extreme strain-specific abundance of individual proteins and of

functionally related groups of proteins, which can be recaptured

and studied further because inbred strains are replenishable.

Implications
Protein complex members are often synthesized in propor-

tions that are consistent with stoichiometric balance.17 Ge-

netic perturbations of one or more member proteins can intro-

duce imbalances that need to be compensated, typically



Figure 7. Strain-specific genetic variants affect protein abundance and influence larger protein networks

(A–C) Abundance for (A) C3, (B) ITGAL, and (C) SASH1 in female and male CC mice with the outlier strain highlighted.

(D) Abundance of proteins related to innate immune response are shown for female and male CC mice with the outlier strain CC013 indicated.

(legend continued on next page)
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through degradation pathways that recycle unassembled

units of protein complexes. In this way, a genetic variant

that severely reduces transcription of a gene and, conse-

quently, the protein abundance of a single complex member

can have effects that propagate through the entire complex

and be detected as a shared distal pQTL, as was the case

for the exosome and CCT complexes. At the other extreme,

the abundance of a highly cohesive complex such as the

MRSS can be heritable with few or no detectable pQTLs,

which is consistent with polygenic regulation by multiple

small-effect loci. Even the exosome and CCT complex display

significant residual heritability after accounting for their large-

effect pQTL, indicating that polygenic effects on complex

abundance are pervasive.

We observed some inconsistent results between CC and DO

mice using the PC1 to estimate complex heritability and sex ef-

fects. This is likely due to differences in how the main axes of

variation differ, suggesting that a single summary measure is

insufficient to capture the behavior of many complexes. Exam-

ination of the entire correlation matrix of protein complexes can

reveal a more detailed picture of the regulatory structure, such

as internal heterogeneity in the relative balance of components.

For example, our analysis of the 26S proteosome reveal known

subcomplexes and individual proteins that are regulated inde-

pendently. In addition, our analysis of the MRSS highlights

some shortcomings of current protein complex definitions

that can potentially be corrected based on the correlation

structure in shotgun proteomics data.

De novo mutations specific to individual CC strains are

clearly responsible for outlying abundance patterns for some

proteins, but we identified a large number of such outliers,

and it seems implausible that the majority of these would be

due to mutations. Based on the functional similarity of protein

outliers within specific strains, we propose that these represent

perturbations of interacting networks of proteins, whether they

are due to de novo mutations or to multi-locus allelic combina-

tions that are fixed in specific CC strains. Epistasis, particularly

among interacting proteins, could contribute to these CC

strain-specific networks. Regardless of their underlying origin,

CC strains with single or functional groups of protein outliers

can serve as models for further investigation of biological

mechanisms and disease.

Limitations of study
Our study has insufficient power to reliably detect and charac-

terize small distal genetic effects, which likely contributes to

the reduced concordance of distal pQTLs between CC and DO

mice. This study also highlights some of the caveats of mediation

analysis. Successful mediation analysis requires that the true

mediator is present in the data and that its effects are mediated

through variation in abundance and not through other functional

changes in the protein. A protein that is correlated with the true
(E) Abundance for HCLS1 in female andmale CCmice with the outlier strain CC01

of the specified protein.

(F) CC013 has a unique liver phenotype characterized by white granules, indicat

(G) Abundance of proteins related to themitochondrial respiratory chain complex I

See also Figure S8 and Table S7.
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but unobserved mediator may be identified incorrectly as a

candidate mediator. In addition to unobserved proteins, other

factors, such as non-coding RNAs that could mediate distal

pQTLs, may not be measured for a given experiment. Proteins

with strong local pQTLs can appear to be mediators, as was

likely the case for mediation of the Tubg1 distal pQTL through

NAXD in DO mice. Comparison of mediation analysis across in-

dependent genetic experiments can correct and refine candi-

date mediators.

Outlook
Unbiased profiling of the proteome provides a unique window

into the molecular processes that are active in cells and tissues,

a view that is complementary to and often more directly relevant

to function than transcriptome profiling. Although many proteins

are responsive to transcriptional regulation, they can also be

regulated by a variety of post-translational mechanisms. Anal-

ysis of proteomics data in genetically diverse populations pro-

vides causal perturbations in the form of genetic variation that

introduce variability in protein abundance across all levels of

regulation. Genetic mapping and correlation analyses can iden-

tify co-regulated proteins and key drivers that regulate other pro-

teins and protein complexes. Technologies that measure protein

abundance are developing rapidly but are already capable of

delivering accurate and reproducible data. Together with the

demonstrated consistency of genetic effects on proteins across

distinct but related mouse resource populations, this suggests

that we can extrapolate findings across these genetic reference

populations with some confidence. Resource data such as

described here can be co-analyzed with future data through

meta-analyses; for example, comparing genetic effects across

different tissues. These findings suggest that imputation of

locally regulated proteins could be an option when direct

profiling of proteins is not available.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
3 ind

ed w

are
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Mice

d METHOD DETAILS

B Mouse genotyping, founder haplotype reconstruction,

and gene annotations

B Sample preparation for proteomics analysis

B Offline basic pH reversed-phase (BPRP) fractionation
icated. Point color corresponds to the founder haplotype at the gene locus

ith a red arrow.

shown for female andmale CCmicewith the outlier strain CC007 indicated.



Article
ll

OPEN ACCESS
B Liquid chromatography and tandem mass spectrom-

etry

B Mass spectra data analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Filtration of peptides that contain polymorphisms

B Protein abundance estimation from peptides

B Heritability estimation

B QTL analysis

B QTL significance thresholds

B Defining local/distal status of QTL

B Consistency of QTL between the CC and DO

B Consistency of local QTL in the CC with the founder

strains

B Mediation analysis

B Sex effects on protein abundance analysis

B Protein complex analysis

B Strain-specific outlier proteins

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

xgen.2021.100003.

ACKNOWLEDGMENTS

We thank Kwangbom Choi, Andrew Deighan, and Isabela Gerdes Gyuricza of

the Churchill lab for helpful discussions and encouragement throughout the

course of this project. We thank Lauren J. Donoghue of the University of North

Carolina at Chapel Hill, JohnW. Keele of the United States Department of Agri-

culture, Paul L. Maurizio of the University of Chicago, and Bryan C. Quach of

the Research Triangle Institute for reading and providing feedback on the

manuscript. This work was supported by grant funding from the National Insti-

tutes of Health (NIH): F32GM134599 to G.R.K.; U19AI100625, P01AI132130,

and R01ES029925 to F.P.-M.d.V. and M.T.F.; R01GM067945 to S.P.G.; and

R01GM070683 to G.A.C.

AUTHOR CONTRIBUTIONS

Conceptualization, M.T.F., S.P.G., and G.A.C.; methodology, G.R.K., T.Z.,

S.P.G., and G.A.C.; software, G.R.K., D.T.P., and M.V.; investigation, G.R.K.

and T.Z.; resources, T.Z., J.A.P., T.A.B., P.H., G.D.S., F.P.-M.d.V., M.T.F.,

and S.P.G.; data curation, G.R.K., T.Z., and M.V.; writing – original draft,

G.R.K., T.Z., and G.A.C.; writing – review & editing and visualization, G.R.K.;

supervision, S.C.M., M.T.F., S.P.G., and G.A.C.; funding acquisition, F.P.-

M.d.V., M.T.F., S.P.G., and G.A.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 5, 2020

Revised: April 1, 2021

Accepted: May 10, 2021

Published: August 30, 2021

REFERENCES

1. Chick, J.M., Munger, S.C., Simecek, P., Huttlin, E.L., Choi, K., Gatti, D.M.,

Raghupathy, N., Svenson, K.L., Churchill, G.A., and Gygi, S.P. (2016).

Defining the consequences of genetic variation on a proteome-wide scale.

Nature 534, 500–505.

2. R Core Team (2018). RSoftware2018 (R Foundation for Statistical

Computing).
3. Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein

abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet.

13, 227–232.

4. Fu, J., Keurentjes, J.J., Bouwmeester, H., America, T., Verstappen, F.W.,

Ward, J.L., Beale, M.H., de Vos, R.C., Dijkstra, M., Scheltema, R.A., et al.

(2009). System-widemolecular evidence for phenotypic buffering in Arabi-

dopsis. Nat. Genet. 41, 166–167.

5. Picotti, P., Clément-Ziza, M., Lam, H., Campbell, D.S., Schmidt, A.,
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Chemicals, peptides, and recombinant proteins

Pierce Protease Inhibitor Tablets Thermo Fisher A32963

Pierce Phosphatase Inhibitor Mini Tablets Thermo Fisher A32957

Trypsin Protease MS grade, Frozen Thermo Fisher 90305R200

Lys-C, Mass Spectrometry Grade Wako Chemicals Barcode#4987481427648

TMT10plex Isobaric Label reagent Set plus

TMT11-131C Label Reagent

Thermo Fisher A34808

Critical commercial assays

Pierce BCA Protein Assay Kit Thermo Fisher 23227

Deposited data

CC liver proteomics ProteomeXchange (http://www.

proteomexchange.org)

PXD018886

DO and founder strain liver proteomics Chick et al.1; ProteomeXchange (http://

www.proteomexchange.org)

PXD002801

Processed data (e.g., proteins, peptides,

genotypes) and code to generate all results

and figures

https://doi.org/10.6084/m9.figshare.

12818717

N/A

CC liver proteomics QTL Viewer https://qtlviewer.jax.org/viewer/FerrisCC N/A

DO liver proteomics QTL Viewer https://qtlviewer.jax.org/viewer/

SvensonHFD

N/A

Experimental models: Organisms/strains

Mouse: A/J The Jackson Laboratory JAX: 000646

Mouse: C57BL/6J The Jackson Laboratory JAX: 000664

Mouse: 129S1/SvImJ The Jackson Laboratory JAX: 002448

Mouse: NOD/ShiLtJ The Jackson Laboratory JAX: 001976

Mouse: NZO/HlLtJ The Jackson Laboratory JAX: 002105

Mouse: CAST/EiJ The Jackson Laboratory JAX: 000928

Mouse: PWK/PhJ The Jackson Laboratory JAX: 003715

Mouse: WSB/EiJ The Jackson Laboratory JAX: 001145

Mouse: J:DO The Jackson Laboratory JAX: 009376

Mouse: CC001/Unc UNC Systems Genetics Core N/A

Mouse: CC002/Unc UNC Systems Genetics Core N/A

Mouse: CC003/Unc UNC Systems Genetics Core N/A

Mouse: CC004/TauUnc UNC Systems Genetics Core N/A

Mouse: CC005/TauUnc UNC Systems Genetics Core N/A

Mouse: CC006/TauUnc UNC Systems Genetics Core N/A

Mouse: CC007/Unc UNC Systems Genetics Core N/A

Mouse: CC008/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC009/UncJ UNC Systems Genetics Core N/A

Mouse: CC010/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC011/Unc UNC Systems Genetics Core N/A

Mouse: CC012/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC013/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC015/Unc UNC Systems Genetics Core N/A

Mouse: CC016/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC019/TauUnc UNC Systems Genetics Core N/A
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Mouse: CC021/Unc UNC Systems Genetics Core N/A

Mouse: CC023/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC024/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC025/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC026/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC027/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC029/Unc UNC Systems Genetics Core N/A

Mouse: CC030/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC031/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC032/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC033/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC035/Unc UNC Systems Genetics Core N/A

Mouse: CC036/Unc UNC Systems Genetics Core N/A

Mouse: CC037/TauUnc UNC Systems Genetics Core N/A

Mouse: CC038/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC039/Unc UNC Systems Genetics Core N/A

Mouse: CC040/TauUnc UNC Systems Genetics Core N/A

Mouse: CC041/TauUnc UNC Systems Genetics Core N/A

Mouse: CC042/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC043/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC044/Unc UNC Systems Genetics Core N/A

Mouse: CC045/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC046/Unc UNC Systems Genetics Core N/A

Mouse: CC049/TauUnc UNC Systems Genetics Core N/A

Mouse: CC051/TauUnc UNC Systems Genetics Core N/A

Mouse: CC053/Unc UNC Systems Genetics Core N/A

Mouse: CC055/TauUnc UNC Systems Genetics Core N/A

Mouse: CC057/Unc UNC Systems Genetics Core N/A

Mouse: CC058/Unc UNC Systems Genetics Core N/A

Mouse: CC059/TauUnc UNC Systems Genetics Core N/A

Mouse: CC060/Unc UNC Systems Genetics Core N/A

Mouse: CC061/GeniUnc UNC Systems Genetics Core N/A

Mouse: CC062/Unc UNC Systems Genetics Core N/A

Mouse: CC071/TauUnc UNC Systems Genetics Core N/A

Mouse: CC072/TauUnc UNC Systems Genetics Core N/A

Mouse: CC075/Unc UNC Systems Genetics Core N/A

Mouse: CC078/TauUnc UNC Systems Genetics Core N/A

Mouse: CC079/TauUnc UNC Systems Genetics Core N/A

Mouse: CC080/TauUnc UNC Systems Genetics Core N/A

Mouse: CC081/Unc UNC Systems Genetics Core N/A

Mouse: CC082/Unc UNC Systems Genetics Core N/A

Software and algorithms

Bioconductor Bioconductor https://bioconductor.org; RRID:

SCR_006442

clusterProfiler Yu et al.63 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html;

RRID: SCR_016884

ensimplR https://github.com/churchill-lab/ensimplR N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

evd https://cran.r-project.org/web/packages/

evd

N/A

intermediate https://github.com/churchill-lab/

intermediate

N/A

intermediate2 https://github.com/duytpm16/

intermediate2

N/A

lme4 Bates et al.64 https://cran.r-project.org/web/packages/

lme4/index.html; RRID: SCR_015654

pcaMethods Stacklies et al.51 https://www.bioconductor.org/packages/

release/bioc/html/pcaMethods.html

QTL Viewer webtool https://github.com/churchill-lab/qtlapi N/A

R The R Project https://www.r-project.org; RRID:

SCR_001905

R/qtl2 Broman et al.65 https://github.com/rqtl/qtl2; RRID:

SCR_018181

Other

Complex Database Ori et al.49 http://doi.org/10.1186/

s13059-016-0912-5; Table S6

DO founder haplotype dosages

(genoprobs)

Chick et al.1 http://doi.org/10.1038/nature18270

SQLite CC founder variant database https://doi.org/10.6084/m9.figshare.

5280229.v3

N/A

Waters 100mg Sep-Pak Waters WAT036820

Orbitrap Fusion Thermo Fisher N/A

Orbitrap Fusion Lumos Thermo Fisher N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact Gary Churchill (gary.

churchill@jax.org).

Materials availability
The CC strains used in this study (key resources table) are available from the UNC Systems Genetics Core (https://csbio.unc.edu/

CCstatus/index.py?run=availableLines). Many of the strains are also available from the Jackson Laboratory.

Data and code availability
The mass-spec proteomics data for the CC liver samples reported here have been deposited in ProteomeXchange (http://www.

proteomexchange.org/) via the PRIDE partner repository (ProteomeXchange: PXD018886). This study also makes use of existing,

publicly available liver proteomics data from the DO and founder strains (ProteomeXchange: PXD002801).1

All analyses were performed using the R statistical programming language (v3.6.1).2 The analysis pipeline used to generate the

results, starting from the raw data, scripts to process the raw data, the processed data, and scripts to analyze the processed

data and generate the figures, has been made publicly available (figshare: https://doi.org/10.6084/m9.figshare.12818717).

All processed data and pQTL results are also available for download and interactive analysis from the QTL Viewer webtool (https://

github.com/churchill-lab/qtlapi) for both the CC (https://qtlviewer.jax.org/viewer/FerrisCC) and DO (https://qtlviewer.jax.org/viewer/

SvensonHFD).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
We received pairs of young mice from 58 CC strains from the UNC Systems Genetics Core Facility between the summer of 2018 and

early 2019. Mice were singly housed upon receipt until eight weeks of age. More information regarding the CC strains can be found at

https://csbio.unc.edu/CCstatus/index.py?run=availableLines.
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Mouse studies were performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. All mouse studies at University of North Carolina at Chapel Hill (UNC) (Animal Welfare

Assurance #A3410-01) were performed using protocols approved by the UNC Institutional Animal Care and Use Committee (IACUC)

in a manner designed to minimize pain and suffering in infected animals. Any animals that exhibited severe disease signs was eutha-

nized immediately in accordance with IACUC approved endpoints. Mice were kept on a 12h:12h light:dark cycle, with temperature

maintained between 68�F and 74�F and 30% and 70% humidity. Mice were provided unrestricted access to food (LabDiet(R) Select

Verified Rodent Diets 5V0F - Select Rodent 50 IF/6F auto) andwater. Micewere fasted for 6 h before euthanasia and tissue collection.

METHOD DETAILS

Mouse genotyping, founder haplotype reconstruction, and gene annotations
The 116 CC mice were genotyped on the Mini Mouse Universal Genotyping Array (MiniMUGA), which includes 11,125 markers.66

Founder haplotypes were reconstructed using a Hidden Markov Model (HMM), implemented in the qtl2 R package,65 using the

‘‘risib8’’ option for an eight founder recombinant inbred panel. Heterozygous genotypeswere omitted, and haplotype reconstructions

are limited to homozygous states, smoothing over a small number of residual heterozygous sites that remain in the CC mice. The

genotyping and haplotype reconstruction for the DO mice were previously described;1 briefly, genotyping was performed on

MegaMUGA (57,973 markers),67 and founder haplotypes were reconstructed using the DOQTL R package.68

Ensembl version 91 gene and protein annotations were used in the CC, whereas version 75 was previously used in the DO and

founder strains data. If the gene symbol or gene ID differed for a protein ID between versions 75 and 91, we updated them to version

91 in the DO and founder strains. When comparing results (e.g., heritability, sex effects, and pQTLs) between the CC, DO, or founder

strains, we merged based on protein ID. For comparing the more complicated mediation analysis, we allowed matches based on

mediator gene symbol rather than mediator protein ID if the target protein IDs matched.

Sample preparation for proteomics analysis
We analyzed liver tissue in the CC tomatch the previously collected liver data in the DO and founder strains. Sample preparation and

mass spectr (MS) analysis for the DO and founder strains were previously described.1 Singly housed CCmice had their food removed

six hours prior to euthanasia and tissue harvest. Tissues were dissected, weighed, and snap frozen in liquid nitrogen. Pulverized CC

liver tissue were syringe-lysed in 8 M urea and 200 mM EPPS pH 8.5 with protease inhibitor and phosphatase inhibitor. BCA assay

was performed to determine protein concentration of each sample. Samples were reduced in 5 mM TCEP, alkylated with 10 mM

iodoacetamide, and quenched with 15 mM DTT. 200 mg protein was chloroform-methanol precipitated and re-suspended in

200 mL 200 mM EPPS pH 8.5. The proteins were digested by Lys-C at a 1:100 protease-to-peptide ratio overnight at room temper-

ature with gentle shaking. Trypsin was used for further digestion for 6 hours at 37�C at the same ratio with Lys-C. After digestion,

50 mL of each sample were combined in a separate tube and used as the 11th sample in all 12 tandem mass tag (TMT) 11plex.

100 mL of each sample were aliquoted, and 30 mL acetonitrile (ACN) was added into each sample to 30% final volume. 200 mg

TMT reagent (126, 127N, 127C, 128N, 128C, 129N, 129C, 130N, 130C, 130N, and 131C) in 10 mL ACN was added to each sample.

After 1 hour of labeling, 2 mL of each sample was combined, desalted, and analyzed using MS. Total intensities were determined in

each channel to calculate normalization factors. After quenching using 0.3% hydroxylamine, 11 samples were combined in 1:1 ratio

of peptides based on normalization factors. The mixture was desalted by solid-phase extraction and fractionated with basic pH

reversed phase (BPRP) high performance liquid chromatography (HPLC), collected onto a 96well plate and combined for 24 fractions

in total. Twelve fractions were desalted and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Offline basic pH reversed-phase (BPRP) fractionation
We fractionated the pooled TMT-labeled peptide sample using BPRP HPLC.69 We used an Agilent 1200 pump equipped with a de-

gasser and a photodiode array (PDA) detector. Peptides were subjected to a 50-min linear gradient from 5% to 35% acetonitrile in

10mM ammonium bicarbonate pH 8 at a flow rate of 0.6 mL/min over an Agilent 300Extend C18 column (3.5 mmparticles, 4.6mm ID,

and 220 mm in length). The peptide mixture was fractionated into a total of 96 fractions, which were consolidated into 24, from which

12 non-adjacent samples were analyzed.70 Samples were subsequently acidified with 1% formic acid and vacuum centrifuged to

near dryness. Each consolidated fraction was desalted via StageTip, dried again via vacuum centrifugation, and reconstituted in

5% acetonitrile, 5% formic acid for LC-MS/MS processing.

Liquid chromatography and tandem mass spectrometry
Mass spectrometric data were collected on an Orbitrap Fusion Lumos mass spectrometer coupled to a Proxeon NanoLC-

1200 UHPLC. The 100 mm capillary column was packed with 35 cm of Accucore 50 resin (2.6 mm, 150Å; ThermoFisher Scientific).

Peptides were separated using a 2.5 h gradient of 9�35% acetonitrile gradient in 0.125% formic acid with a flow rate of �400nl

min�1. The scan sequence began with an MS1 spectrum (Orbitrap analysis, resolution 120,000, 350�1400 Th, automatic gain con-

trol (AGC) target 5E5, maximum injection time 50 ms). SPS-MS3 analysis was used to reduce ion interference.71,72 The top 10 pre-

cursors were then selected for MS2/MS3 analysis. MS2 analysis consisted of collision-induced dissociation (CID), quadrupole ion

trap analysis, automatic gain control (AGC) 1E4, NCE (normalized collision energy) 35, q-value < 0.25, maximum injection time
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60 ms), and isolation window at 0.5. Following acquisition of each MS2 spectrum, we collected an MS3 spectrum in which multiple

MS2 fragment ions are captured in the MS3 precursor population using isolation waveforms with multiple frequency notches. MS3

precursors were fragmented by HCD and analyzed using the Orbitrap (NCE 65, AGC 3E5, maximum injection time 150ms, resolution

was 50,000 at 400 Th).

Mass spectra data analysis
Mass spectra were processed using a Sequest-based pipeline.73 Spectra were converted to mzXML using a modified version of

ReAdW.exe. Database search included all entries from an indexed Ensembl database version 90 (downloaded:10/09/2017). This

database was concatenated with one composed of all protein sequences in the reversed order. Searches were performed using

a 50 ppm precursor ion tolerance for total protein level analysis. The product ion tolerance was set to 0.9 Da. TMT tags on lysine

residues, peptide N termini (+229.163 Da), and carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifi-

cations, while oxidation of methionine residues (+15.995 Da) was set as a variable modification.

Peptide-spectrum matches (PSMs) were adjusted to FDR < 0.01.74,75 PSM filtering was performed using a linear discriminant

analysis (LDA), as described previously,73 while considering the following parameters: XCorr, DCn, missed cleavages, peptide

length, charge state, and precursor mass accuracy. For TMT-based reporter ion quantitation, we extracted the summed

signal-to-noise (S:N) ratio for each TMT channel and found the closest matching centroid to the expected mass of the TMT re-

porter ion. For protein-level comparisons, PSMs were identified, quantified, and collapsed to a peptide FDR < 0.01 and then

collapsed further to a final protein-level FDR < 0.01, which resulted in a final peptide level FDR < 0.001. Moreover, protein assem-

bly was guided by principles of parsimony to produce the smallest set of proteins necessary to account for all observed peptides.

PSMs with poor quality, MS3 spectra with TMT reporter summed signal-to-noise of less than 100, or having no MS3 spectra were

excluded from quantification.76

QUANTIFICATION AND STATISTICAL ANALYSIS

Filtration of peptides that contain polymorphisms
Peptides that contain polymorphisms are problematic for protein quantification in genetically diverse samples because the variant

peptides cannot be quantified simultaneously. Polymorphisms can result in reduced intensity or non-detection events for peptide

isoforms that do not match the reference mouse genome. This in turn can affect protein abundance estimation from peptides and

can either obscure the signal of a true pQTL or create a false local pQTL. Therefore, we filtered out polymorphic peptides based

on the genome sequences of the founder strains. We further confirmed the presence of the expected polymorphisms by examining

the distribution of peptide intensities across samples from the founder strains.

To determine whether peptides with polymorphisms matched their expected allele distribution pattern, the peptide data was stan-

dardized within batches and adjusted for batch effects. Each peptide was scaled by a sample-specific within-batch scaling factor:

~ypep k
i =

ypep k
i

qi
, where ypep k

i is the intensity of peptide k for mouse i, qi =

P
K
ypep k
i

max
l ˛ B½i�

ð
P

K
ypep k
l

Þ, K is the set of all peptidesmeasured for mouse

i, and B½i� is the set of samples included in batch i. For the CC samples, a pooled bridge sample was included in each batch and

provided an additional standardization across batches: ~~y
pep k

i = log2

0@~ypep k
i

+ 1

~ypep k
b½i� + 1

1A, where b½i� represents the bridge sample from the

batch of mouse i. For the DO and founder strain samples that did not include bridge samples, ~~y
pep k

i = log2ð~ypep k
i + 1Þ. A log trans-

formation was applied to peptide intensities.

Batch effects were removed from the processed peptide data using a linear mixed effect model (LMM) fit with the lme4 R pack-

age.64 Peptides unobserved for all samples within a batch were recorded as missing (NA). If greater than 80% of samples were

missing for a polymorphic peptide, it was removed from the batch correction step and the subsequent evaluation. The following

model was fit to peptide intensity data for the CC mice:

~~y
pep k

i = m + xTi; covarbcovar + ustrain½i� + ub½i� + εi Equation 1

where m is the intercept, bcovar are the fixed effects of covariates, xTi; covar is the i
th row of the covariate designmatrix, ustrain½i� is the effect

of the strain of sample i, ub½i� is the effect the batch of sample i, and εi is the error for sample i with εi � Nð0; s2Þ. The strain and batch

effects were estimated as random effects: ustrain � Nð0; It2StrainÞ and ub � Nð0; It2bÞ. For the CC and founder strains, sex was included

as a covariate. A similar model was fit for the DO mice but with no strain effect and diet was included as a covariate along with sex.

The batch effects, estimated as best linear unbiased predictors (BLUPs) using restricted maximum likelihood estimates (REML),77

were subtracted from each peptide measurement:
~~~y
pep k

i = ~~y
pep k

i � bub½i�.
For peptides expected to contain a polymorphism, we fit local genetic effects based on the haplotype at the marker closest to the

TSS of the gene to which the peptide maps,
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~~~y
pep k

i = m + local½i� + xTi; covarbcovar + ukinship
i + εi Equation 2

where locali is the effect of the local haplotype on peptide k for sample i, ukinshipi represents a random kinship effect to account for

overall genetic relatedness, and all other terms as previously defined. For the CC mice, local½i�= pT
i blocal where pT

i is the founder

haplotype probability vector at the marker closest to the gene TSS (e.g., ordering the founder strains as AJ, B6, 129, NOD, NZO,

CAST, PWK, and WSB, pT
i = ½0 1 0 0 0 0 0 0� for a CC mouse i that is B6/B6 at the locus). For the DO, local½i� = dT

i blocal where dT
i

is the founder haplotype dosage vector, scaled to sum to zero, at the marker closest to the gene TSS (e.g.,

dT
i = ½0:5 0:5 0 0 0 0 0 0� for a DO mouse i that is AJ/B6 at the locus). For the founder strains, locali = xTi; strainblocal where xTi; strain is

the founder strain incidence vector for mouse i (e.g., xTi;strain = ½0 1 0 0 0 0 0 0� for a B6 mouse). blocal is an eight-element vector of

founder haplotype effects, fit as a random effect: blocal � Nð0; It2localÞwhere I is an 838 identity matrix and t2local is the variance compo-

nent underlying the local effects. The kinship effect is included for the CC and DOmice andmodeled as ukinship � Nð0; Gt2GÞwhereG

is a realized genomic relationship matrix and t2G is the variance component underlying the kinship effect, accounting for population

structure.78–81 Here we used a leave-one-chromosome-out (LOCO) G, in which markers from the chromosome the peptide is pre-

dicted to be located on are excluded fromG estimation in order to avoid the kinship term absorbing some of local½i�.82 We then calcu-

lated rpoly = corðbb local; qÞ, the Pearson correlation coefficient between bb local, the BLUP of blocal and q, the incidence vector of the B6

haplotype among the founder strains (e.g., q= ½01000000� for a peptide that contains a B6-specific allele that is missing in the other

founder strains). Sets of peptides with polymorphisms were defined based on having rpoly>0:5 for each of the CC, DO, and founder

strains, to be excluded from further analysis because they would bias protein abundance estimation.

Protein abundance estimation from peptides
Protein abundances were estimated from their component peptides after filtering out polymorphic peptides. The abundance for

protein j is calculated as yprot ji =

P
M
ypep m
i

1i;m

qi
where M is the set of peptides that map to protein j, 1i;m is the indicator function that

peptide m was observed in mouse i, and qi is the scaling factor previously defined.73 Similar to the previously described peptide

normalization in the CC mice, proteins were scaled relative to the bridge sample and log-transformed: ~yprot ji = log2

 
yprot j
i

+ 1

yprot j

b½i� + 1

!
.

For the DO and founder strains, there was no bridge sample, and proteins were instead normalized as: ~yprot ji = log2ðyprot ji + 1Þ.
Batch effects were removed from the protein data using the LMM described for the peptide data (Equation 1). If more than 50%

of samples were missing a protein, it was removed from further analysis in order to avoid false downstream findings. Batch effects,

estimated as BLUPs, were then removed: ~~y
prot j

i = ~yprot ji � bub½i�.

Heritability estimation
We estimated heritability for all proteins in the CC, DO, and founder strains. The heritability model is similar to Equation 2, but for

proteins instead of peptides and without the local½i� term:

~~y
prot j

i = m + xTi; covarbcovar + ukinship
i + εi Equation 3

where terms are as previously defined. The genomic relationship matrix G – corresponding to the kinship term ukinship � Nð0; Gt2GÞ
for the CC and DO – is estimated from all markers, i.e., non-LOCOG – because there are no other genetic factors in the model. In the

founder strains,G= XstrainX
T
strain where Xstrain is the founder strain incidence matrix. Sex was modeled as a covariate for all three pop-

ulations, and diet as well in the DO. Heritability is then calculated as h2 =
t2
G

t2
G
+ s2

. The estimate in the DO is for the narrow sense her-

itability, representing the contributions of additive genetic effects. For the CC and founder strain mice, the estimate represents broad

sense heritability, incorporating non-additive genetic effects, due to the presence of replicates.

QTL analysis
In the CC and DO mice, we performed a genome-wide pQTL scan for each protein, testing a QTL effect at positions across the

genome, using a model similar to Equation 2:

~~z
prot j

i = m + QTLm½i� + xTi; covarbcovar + ukinship
i + εi Equation 4

where ~~z
prot j

i is the standard normal quantile returned by the inverse cumulative distribution function of the normal distribution on

the uniform percentiles defined by the ranks of ~~y
prot j

, i.e., the rank-based inverse normal transformation (RINT)83 of protein j for

individual i,QTLm½i� is the effect of the putative QTL at markerm on protein j for individual i, equivalent to the local½i� term in Equation 2

for the CC and DO mice, and all other terms as previously defined. The kinship effect was fit based on the LOCO G specific to the

chromosome ofmarkerm. We used RINT for the QTL analysis to reduce the influence of extreme observations that can produce false
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positives, particularly when they coincide with a rare founder haplotype allele. This is of particular concern in the CC sample of 58

unique genomes. To test the QTL term, the model in Equation 4 is compared to a null model excluding QTLm, summarized as the

log10 likelihood ratio (LOD) score.

The QTL model in Equation 4 was also used for variant association mapping at specific pQTL identified through the haplotype-

based analysis by adjusting the QTLm½i�term:QTLv½i� = pT
i;vbQTL, where pT

i;v is the marginal variant allele probability vector for variant

v, which is calculated by collapsing and simplifying the underlying founder haplotype probabilities based on variant genotypes in the

founder strains (SQLite variant database: https://doi.org/10.6084/m9.figshare.5280229.v3).

For the CC mice, we mapped pQTLs based on strain averages where ~~z
prot j

i is the average of ~~y
prot j

male; strain i and
~~y
prot j

female; strain i followed

by RINT across the strains. Founder haplotype probabilities were reconstructed at the level of individual mice and averaged for strain-

level mapping. No covariates were includedwhenmapping on strain averages.We triedmapping pQTLs in theCCmice on individual-

level data, which returned largely consistent results, but notably fewer and weaker pQTLs. In the CC, we also mapped pQTLs to the

mitochondrial genome and Y chromosome by testing whether the founder origin of the mitochondria or Y chromosome was asso-

ciated with protein abundance. We fit Equation 4, treating the mitochondrial genome or Y chromosome as a single locusQTLY ½i� and
QTLMT ½i�, respectively, using the non-LOCO G for the kinship effect. The founder strain of origin for the Y chromosome was deter-

mined for all CC strains. For the mitochondrial genome, six strains (CC031, CC032, CC041, CC051, CC059, CC072) possessed am-

biguity between AJ and NOD, which we encoded as equal probabilities ðpT
i;MT = ½0:5 0 0 0:5 0 0 0 0�Þ.

QTL significance thresholds
We estimated significance thresholds for pQTLs using permutations.42 We accounted for missing data by performing 10,000 permu-

tations of the normal quantiles for each level of observedmissingness in the CC andDOmice (ranging from 0 to 50%). Genome scans

of the permuted data used the model in Equation 4, excluding covariates and the kinship term. We first applied a genome-wide error

rate correction across marker loci and then applied an FDR correction to account for testing multiple proteins.43 We modeled the

maximum (genome-wide) LOD scores from the permutation scans using a generalized extreme value distributions (GEV)84,85 specific

to each level of missingness, to compute genome-wide permutation p-value for each protein:

pprot j
perm = 1� FGEV ; nNA ½prot j�ðmax LOD½prot j�Þ Equation 5

where FGEV ; nNA ½prot j� is the cumulative density function for the GEV fit from the permutations of quantiles with nNA number missing

values, corresponding to the number missing for protein j, and max LOD½prot j� is the maximum LOD score from the genome scan

of protein j. We then used the Benjamini-Hochberg (BH) procedure86 to calculate FDR q-values across the permutation p-values,

and applied interpolation to find the permutation p-value that corresponds to FDR < a: pinterp
perm; a where a ˛ [0.1, 0.5]. Significance

thresholds on the LOD scale, specific to FDR < a and nNA missing data points, were calculated: l
nNA
FDR < a = F�1

GEV ; nNA
ð1 �

pinterp
perm; FDR < aÞwhere F�1

GEV ; nNA
is the inverse cumulative density function for the GEV with nNA missing data points. As a final step

to reduce random variation between sets of permutations, we regressed the estimated thresholds for a population and FDR level

on the number of missing data points nNA, and created a table of fitted thresholds: blnNAFDR < a for a ˛ [0.1, 0.5] for both the CC and

DO mice. Whether a pQTL met FDR < a significance, the threshold corresponding to a with the nNA for protein j was used. For refer-

ence, bl0FDR < 0:1 = 7:96and bl0FDR < 0:5 = 6:33 in the CC, and bl0FDR < 0:1 = 7:86and bl0FDR < 0:5 = 6:41 in the DO.

Defining local/distal status of QTL
Detected pQTLs were classified as local if their position was within 10 Mbp upstream or downstream of the middle of the coding

gene. If they did not fall within this local window, they were classified as distal. The broad local window was used because the

CC have larger LD blocks than the DO due to fewer outbreeding generations. With a narrower definition, it would be more likely

to have ‘‘distal’’ pQTL in the CC that align and have consistent effects with ‘‘local’’ pQTL in the DO. On the other hand, this lenient

definition of local may absorb some distally acting pQTLs that happen to be within 10 Mbp the gene on which they act.

Consistency of QTL between the CC and DO
We evaluated the consistency of local and distal pQTLs between the CC and DOby comparing their haplotype effects. We first had to

define pQTLs that were detected in both the CC and DOand thus pair them for effect comparison. Local pQTLswere paired based on

simply having matching protein IDs. For distal pQTLs, we also required the pQTL positions to be within 10 Mbp of each other.

Haplotype effects were estimated at the pQTL marker using the model in Equation 4. To stabilize the effects, they were modeled

as a random effect: bQTL � Nð0; It2QTLÞ, where t2QTL is a variance component underlying the haplotype effects of the pQTL. We

then estimated the haplotype effects as BLUPs ð~bQTLÞ. To declare pQTLs consistent between the CC and DO, we evaluated

whether their haplotype effects were significantly positively correlated: pr
QTL =PrðrQTL >0Þ where rQTL = corð~bCC

QTL;
~b
DO

QTLÞ and

rQTL

ffiffiffi
6

p ð1� r2QTLÞ
�1 � tð6Þ. To account for multiple testing, we used the BH procedure on the p-values for correlated effects and

declared pQTLs with qr
QTL<0:1 as consistent between the CC and DO.
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Haplotype effects for a pQTL are fit at a specific marker. Selecting which marker for effect comparison is complicated by the fact

that the CC and DO have different sets of markers and the genomic coordinates of the peak LOD scores also vary. When comparing

pQTLs detected in both populations, we fit the Equation 4 model at the markers with the highest LOD score specific to each pop-

ulation. When comparing pQTLs that were detected in only one population, we selected the marker in the population that failed

to map the pQTL that was closest to the marker in the population that detected it.

Consistency of local QTL in the CC with the founder strains
If the genetic effects on a protein are primarily local, the relative abundances for a protein in the founder strains shouldmatch the local

pQTL effects observed in the CC and DO. We evaluated the consistency of local pQTLs in the CC with the founder strains, using an

approach similar to howwe compared pQTL effects between the CC and DO. For the founder strains, rather than fitting pQTL effects

ð~bQTLÞ, we fit the founder effects as random terms (as described for the local term in Equation 2 for the founder strains) summarized as

BLUPs ð~bFounders

strain Þ. We then calculated the Pearson correlation between local pQTL effects in the CC and founder effects in the

founder strains: rlocal = corð~bCC

QTL;
~b
Founders

strain Þ. As when comparing QTL effects between the CC and DO, we then tested rlocal> 0,

and corrected for multiple testing through the BH procedure.

Mediation analysis
For each distal pQTL (lenient threshold) in the CC or DO populations, we performed a mediation analysis which involved a scan anal-

ogous to the QTL genome scans. Instead of scanning through genetic markers as putative QTLs, we scan through proteins as pu-

tative mediators of a given distal pQTL. The model is

~~z
prot t

i = m + QTL½i� + xTi; covarbcovar + mediatorq½i�+ εi Equation 6

where QTL½i�is as defined for QTLm½i�in Equation 4 but fixed at the peak marker m of the distal pQTL for target protein t and condi-

tioned on protein q, withmediatorq½i� representing its effect on protein t for individual i, and all other terms as previously defined. The

effect of the mediator is modeled as mediatorq½i� = bprot q
~~z
prot q

i , where bprot q is the regression coefficient for the mediator protein q

and ~~z
prot q

i is the RINT quantity of protein q for individual i. The likelihood of Equation 6 model is compared to a null QTL model that

excludes the QTLi term, producing a mediation conditional LOD score. The mediation model is fit for all proteins as individual me-

diators, excluding protein t, resulting in a mediation scan.

We assume that most of the proteins evaluated as candidates are not true mediators of the pQTL and thus the distribution of medi-

ation conditional LOD scores approximates a null distribution, roughly centered around the LOD score of the distal pQTL that was first

detected.We calculate the z-scores of themediation conditional LOD scores and then define strong candidatemediators of the pQTL

for protein t as proteins with zmed
q < �4, where zmed

q is the z-score of the mediation LOD score for candidate mediator protein q. The

rationale being that when testing theQTL term in Equation 6, if themediator containsmuch of the information from the pQTL, its pres-

ence in both the alternative and null models will result in a large drop in the LOD score of the detected pQTL. For a protein to be

declared as a candidate mediator of the distal pQTL, we required that themediator TSS bewithin 10Mbp of the pQTLmarker. Strong

mediators that were not near the pQTL often represent proteins that are correlated with the target protein t, which are often co-regu-

lated members of a protein complex or pathway.

Sex effects on protein abundance analysis
Proteins that exhibited differential abundance between the sexes, i.e., sex effects, were identified using an LMM similar to the her-

itability model (Equation 3) for the CC, DO, and founder strains, but instead testing the significance of the sex coefficient:

~~y
prot j

i = m + bMalexi; Male + xTi; covarbcovar + ukinship
i + εi Equation 7

where bMale is the effect on protein j of being male, xi; Male is an indicator variable of being male, and all other terms as defined

previously. Other covariates and the specification of ukinshipi for the different populations are the same as described for

heritability.

A p-value for the sex effect was calculated by comparing the model in Equation 7 to a null model without the sex effect through the

likelihood ratio test (LRT): pprot j
sex = PrðX > bc2

prot jÞ where Prð:Þ denotes the c2
ð1Þ probability density function and bc2

prot j is the observed

LRT statistic for protein j. The LMM was fit with the qtl2 R package,65 using maximum likelihood estimates (MLE) for parameters

rather than REML, which are more appropriate for asymptotic-based significance testing of fixed effects. Proteins with significant

sex effects were selected based on FDR < 0.1 using the BH procedure.86

We performed gene set enrichment analysis using the clusterProfiler R package.63 We defined gene sets based on qsex < 0.01

and split them further into subsets based on having higher abundance in males or higher abundance in females. We used the

quantified proteins in each population as the background gene set. Hypergeometric tests for enrichment of GO and KEGG

terms were performed with FDR multiple testing control.87 Enriched GO and KEGG terms were selected based on having

qset < 0:1.
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Protein complex analysis
We assigned proteins to protein complexes using annotations.49 For each protein complex, we quantified how tightly co-abundant,

i.e., cohesive, the members are, by calculating the median pairwise Pearson correlation for each protein with the other members of

the complex. We summarized cohesiveness within a complex by recording the median and interquartile range across the median

correlations for the individual proteins.

To assess whether genetic factors or sex regulated protein complexes, we estimated the complex heritability and complex sex

effect size based on the PC1 from PCA51 of the abundances of the proteins annotated to the complex. We first filtered out proteins

with local pQTLs (FDR < 0.5) or strong distal pQTLs (FDR < 0.1) to minimize the influence of proteins with independent genetic effects

in order to focus on the shared effects on a protein complex. We also regressed out effects of covariates from the individual proteins

prior to PCA in order to keep the PC1 summary from reflecting their effects. To estimate complex heritability, we removed the effect of

sex in the CC, and both sex and diet in the DO. For complex sex effect size, we removed the effect of diet from the DO. We estimated

complex heritability using the model in Equation 3, with no covariates and the complex PC1 as the response variable.

To estimate the complex sex effect size: f2
sex = 1�

�P
i

e2i

����MA

�
=

�P
i

e2i

����M0

�
where

P
i

e2i
��MA is the sum of squared residuals

(SSR) under the alternative model (Equation 7) and
P
i

e2i
��M0 is the SSR under the null model (Equation 7 excluding sex effect). In-

terval estimates for complex heritability and complex sex effects represent 95% subsample intervals. We randomly sampled without

replacement 80% of the CC and DO data 1,000 times and estimated the complex heritability and complex sex effects for each sub-

sample as well as the 2.5th and 97.5th quantiles across the subsamples.We estimated summaries for protein complexes that had four

or more proteins observed in the CC or DO, after removing proteins with local pQTLs (FDR < 0.5) or distal pQTLs (FDR < 0.1), thus

limiting the potential that the PC1 reflected a strong pQTL not shared by other members of the complex.

Strain-specific outlier proteins
To identify proteins with low or high abundance characteristic to individual CC strains, we fit the following LMM:

~~y
prot j

i = m + bMalexi; Male + ustrain½i� + εi Equation 8

with all terms as previously defined. Effects for all CC strains for each protein j ðbuprot j
strainÞ were estimated as BLUPs, which were then

transformed to z-scores per protein ðzprot jstrainÞ. We defined a strain-specific protein outlier to be a protein j in CC strain i for which���zprot jstrain i

���>2:5. This represents a lenient threshold because we aim to cast a wide net and identify interesting characteristics of CC

strains, potentially due to subtle effects across many proteins. We intersected the strain outliers with known CC strain-specific ge-

netic variants based onCC strain identity and the annotated coding gene,30 identifying variants that likely have local effects on protein

abundance.

For each CC strain i, we defined sets of proteins that had consistently low, high, and extreme (low or high) abundance

based on their strain effects: U
high
strain i = fprot j : zprot jstrain i >2:5gc j, Ulow

strain i = fprot j : zprot jstrain i < � 2:5gc j, and Uextreme
strain i =

fprot j :
���zprot jstrain i

���>2:5gc j, respectively. We then tested whether the CC strain-specific outlying proteins were enriched in GO and

KEGG terms ðqset <0:1Þ.

ADDITIONAL RESOURCES

All processed data and pQTL results are also available for download and interactive analysis from the QTL Viewer webtool (https://

github.com/churchill-lab/qtlapi) for both the CC (https://qtlviewer.jax.org/viewer/FerrisCC) and DO (https://qtlviewer.jax.org/viewer/

SvensonHFD). All these resources are also listed in the key resources table.
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