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Electrocardiography (ECG) is a well-known noninvasive technique in medical science that provides information about the heart’s
rhythm and current conditions. Automatic ECG arrhythmia diagnosis relieves doctors’ workload and improves diagnosis ef-
fectiveness and efficiency.1is study proposes an automatic end-to-end 2DCNN (two-dimensional convolution neural networks)
deep learning method with an effective DenseNet model for addressing arrhythmias recognition. To begin, the proposed model is
trained and evaluated on the 97720 and 141404 beat images extracted from the Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia and St. Petersburg Institute of Cardiological Technics (INCART) datasets (both are imbalanced
class datasets) using a stratified 5-fold evaluation strategy. 1e data is classified into four groups: N (normal), V (ventricular
ectopic), S (supraventricular ectopic), and F (fusion), based on the Association for the Advancement of Medical Instrumentation®(AAMI). 1e experimental results show that the proposed model outperforms state-of-the-art models for recognizing ar-
rhythmias, with the accuracy of 99.80% and 99.63%, precision of 98.34% and 98.94%, and F1-score of 98.91% and 98.91% on the
MIT-BIH arrhythmia and INCART datasets, respectively. Using a transfer learning mechanism, the proposed model is also
evaluated with only five individuals of supraventricularMIT-BIH arrhythmia and five individuals of European ST-Tdatasets (both
of which are also class imbalanced) and achieved satisfactory results. So, the proposed model is more generalized and could be a
prosperous solution for arrhythmias recognition from class imbalance datasets in real-life applications.
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1. Introduction

With the advancement of computerized and automatic
electrocardiogram (ECG) analysis, it is widely used in
detecting and diagnosing heart diseases, assisting cardiol-
ogists with long-term ECG recordings and analysis. One
significant indicator of heart disease is the detection of
heartbeats, which is an essential factor in detecting ar-
rhythmias. Arrhythmias are irregularities in heart conduc-
tion with electrical impulses, resulting in a disturbance in
heart rate (irregular rhythm) [1], which necessitates careful,
rapid, and frequent examination. In this case, automatic and
computerized systems can be more useful. A traditional
automatic arrhythmia recognition system includes (i) pre-
processing [2], (ii) features extraction such as beat seg-
mentation [3], QRS complex [4], R-peak or R-R interval [5],
wavelet transform (WT) [5], time-frequency [6], morpho-
logical learning [6], and (iii) classification such as artificial
neural network (ANN) [7], support vector machine (SVM)
[8], decision tree (DT) [9, 10], and random forest (RF) [8]
steps. However, despite a good number of shallow learning
methods (features engineering techniques) with promising
results for identifying arrhythmias from ECG signals, these
are unable to properly describe the optimal features of
signals and are prone to overfitting [11]. Furthermore,
dealing with unbalanced data while yielding satisfactory
results remains difficult [12]. Several researchers attempted
to solve these problems by optimizing classifiers’ general-
ization capabilities [13]. Due to the limited nonlinear fitting,
the learning parameters in machine learning face a challenge
during training to extract all features from ECG. As a result,
the pattern recognition performance of classifiers in tradi-
tional methods from ECG signals is typically insufficient in
the context of big data-driven [14]. Considering the afore-
mentioned challenges of machine learning approaches
[15, 16], an effective recognition method that takes a dif-
ferent approach is highly desired in arrhythmia diagnosis.

Deep learning approaches for arrhythmia recognition,
such as deep neural networks (DNNs) [17], convolution
neural networks (CNNs) [18, 19], recurrent neural networks
(RNNs) [18], long short-term memory (LSTM) [20], and
combining of these approaches [21], have recently gained
popularity [22, 23]. Aside from arrhythmia recognition,
deep learning approaches have received a lot of attention
recently in other applications, such as emotion recognition
from electroencephalography (EEG) [24–28]. Although
high-level features learned from ECG inputs of such de-
veloped deep learning models automatically perform feature
extraction and recognition, satisfactory performance of
arrhythmia diagnosis remains a challenge. 1e major factors
behind this challenge are as follows: (i) some patterns of
ECG are hard to detect in deep learning because of extensive
volume of data demanding for training the deep networks
with the target domain, even it is hard to recognize by
experienced physicians [17] in some cases, and (ii) deep
networks tends to vanishing gradient problems during
training. 1e first challenge could be addressed by a
mechanism known as “transfer learning,” in which expe-
rienced learning from the upstream dataset (large volume

dataset) is transferred into the downstream dataset (target
dataset), and pretrained weights from the upstream dataset
are used as the target dataset’s initial weights [29]. 1is
mechanism could easily solve the deep network overfitting
problem. A few contributions to the literature address the
transfer learning mechanism for detecting abnormalities in
ECG signals [30–33]. In this type of approach, there is no
requirement to develop a model from scratch.

However, the appearance of ResNet [34] in deep learning
marked a turning point in CNNmodels. ResNet’s interesting
developments include shortcut and skip connections be-
tween the front and back layers, which aid in resolving
vanishing gradient problems. Following the benefits of
ResNet, DenseNet [35] introduces an intriguing connectivity
pattern among the layers known as “dense connections” for
the further improvement of ResNet, in which feature maps
for each layer in a dense block are followed by all of its
previous layers, with direct connections from low- to high-
level layers. As a result, the second challenge of recognizing
arrhythmias with satisfactory results could be overcome by
developing a model based on the dense connections
mechanism. In this study, an end-to-end 2D CNN method
with an effective DenseNet model was proposed to recognize
arrhythmias from ECG automatically, taking into account
the potential benefits of a CNN-based DenseNet model
addressing the aforementioned challenge in cardiac ar-
rhythmia recognition. Recently, 2D CNN approaches for
arrhythmias recognition have gained popularity because of
the transformation of sequential data of beats into their
corresponding beat images, which alleviates the time strict
alignment problem of beats ignoring the score of fiducial
points. 1e duration and amplitude of various waves of an
ECG signal, such as RR intervals, QRS complex, P-wave, and
T-wave, are highly sensitive to its dynamic and morphology
features. ECG signals from time series data could be
transformed into 2D images in a variety of ways, such as
time-frequency (short-time Fourier transform (STFT) [36],
continuous wavelet transform (CWT) [37, 38], discrete
wavelet transform (DWT)), frequency spectrum, own de-
veloped python module [39].

Besides, some interesting contributions are introduced
in the literature addressing dense connections mechanism
for ECG classifications. Rubin et al. [40] proposed a densely
connected CNN for atrial fibrillation (AF) detection from
ECG by combining the SQI (signal quality index) algorithm
to assess the noisy instances in ECG. Importantly, this work
discussed an additional challenge of the imbalance problem
in private or publicly available arrhythmia datasets, which
may significantly impact the accuracy of arrhythmia diag-
nosis in real-life applications. Importantly, this work dis-
cussed an additional challenge of the imbalance problem in
private or publicly available arrhythmia datasets, which may
significantly impact the accuracy of arrhythmia diagnosis in
real-life applications. Some interesting contributions have
been demonstrated in the literature for resolving the chal-
lenge [12, 41–43]. We have used the weighted categorical
cost function [44] to handle the imbalanced data in this
study due to the function’s several advantages. In this study,
a novel and end-to-end 2D CNN-based deep learning
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method is proposed for cardiac arrhythmia recognition with
improved performance, taking into account the aforemen-
tioned challenges and opportunities. 1e following are the
key contributions near the end:

(i) A 2D CNN model is developed to recognize ar-
rhythmias with greater accuracy than state-of-the-
art models on imbalanced datasets.

(ii) 1e proposed model expresses model generalization
because it was tested on four datasets without
changing any hyperparameters, and the model ar-
chitecture and results are consistent.

(iii) 1is achievement is due to the use of some diverse
regularization strategies: batch normalization (BN)
[45], call-back features [46], weighted random
sampler [47], Adam optimizer [48], on-the-fly
augmentation [49], and appropriate initialization of
layers [50] of the model in the method.

1e rest of the paper is expressed as follows. 1e pro-
posed methodology is presented in Section 2 with details.
Results and discussions with study limitations and prospects
are included in Section 3. Finally, Section 4 concludes the
study.

2. Methods and Materials

2.1. Dataset Description

2.1.1. MIT-BIH Arrhythmia Database. MIT-BIH arrhyth-
mia database: 1e MIT-BIH arrhythmia database is a widely
used benchmark database for evaluating the performance of
arrhythmia detectors. It contains 48 records from 47 subjects
(25 males aged 32 to 89 and 22 females aged 23 to 89) with
30-minute two-channel ambulatory Holter ECG recordings.
1e recordings are sampled at 360Hz per channel with an
11-bit resolution over a 10mV range. Its first channel de-
scribes the upper signal, MLII (a modified limb lead II), and
its second channel describes the lower signal, modified lead
V1 (rarely as V2 or V5, and only once as V4), with electrodes
placed on the chest in both cases. In the upper signal, normal
QRS complexes are more visible. As a result, the upper signal
lead is chosen in our study. Records 102 and 104 are involved
with patient surgical dressings and records 102, 104, 107,
and 217 are involved with paced beats, so we excluded these
records from our experiment.

2.1.2. INCART 12-Lead Arrhythmia Database. INCART
contains a total of 75 annotated records extracted from the
32 Holter recordings. Every record is thirty minutes long,
holds the twelve standard leads, and is sampled at 257Hz
with varying gains from 250 to 1100 per mV. 1e records
were accumulated from the patients who were undergoing
tests on coronary artery diseases. Most of them had ven-
tricular ectopic beats, and nobody had pacemakers. ECGs
from subjects with arrhythmias, coronary artery disease,
ischemia, and conduction abnormalities were preferred for
incorporation into the database. Leads II and V1 are two of
the 12 standard leads that appear more frequently in this

dataset. In the lead II, QRS complexes are more noticeable.
As a result, lead II is chosen in this study, similar to theMIT-
BIH arrhythmia database.1e dataset is used in this study to
test the generalization of the proposed model.

2.1.3. MIT-BIH Supraventricular Arrhythmia Database.
1is database contains 78 two-lead ECG recordings with a
sampling rate of 128Hz, each with half an hour. 1e an-
notation of recordings was performed with the Marquette
Electronics 8000 Holter scanner firstly, and it was corrected
and reviewed later with a medical student. 1e original
labeling was modified in accordance with AAMI recom-
mendations. It is a supplementary dataset of MIT-BIH ar-
rhythmia that is chosen only for testing or evaluating the
performance of the proposed model in this study. Only five
records, 800, 828, 849, 867, and 873, are considered for
transfer learning, and one record, 873, is considered for
testing the performance of the proposed model.

2.1.4. European ST-T Database. 1e database includes 79
patients’ ambulatory ECG recordings from 90 annotated
snippets.1ere were 8 women and 70males, aged 55 to 84, in
the study. Each two-hour record includes two lead signals
sampled at 250 samples per second with 12-bit resolution
across a nominal 20-millivolt input range. After digitization,
the sample values were rescaled with reference to calibration
signals in the original analog recordings to ensure a uniform
scale of 200 analog-to-digital-converter units per millivolt
for all signals. Each record is documented by concise clinical
reports. 1ese reports, which are stored in the header (.hea)
files associated with each recording, summarize pathology,
medications, electrolyte imbalance, and technical informa-
tion. Two cardiologists annotated each record beat by beat,
looking for changes in STsegment and T-wave morphology,
rhythm, and signal quality. ST segment and T-wave changes
in both leads were identified (using predefined criteria that
were applied consistently in all cases), and their onsets,
extrema, and ends were annotated. Only five records, e0103,
e0121, e0202, e0413, and e0614, are considered for transfer
learning, and one record, e0121, is considered for testing the
performance of the proposed model.

2.2. Method Overview. Herein, an arrhythmia recognition
framework is made. To begin, annotated data from the MIT-
BIH arrhythmia, St. Petersburg INCART 12-lead, MIT-BIH
supraventricular arrhythmia, and European ST-T database
datasets are selected to categorize the arrhythmias into four
classes of interest.1e raw data instances are then segmented
into available beats and transformed into RGB (Red, Green,
and Blue) images via the preprocessing step. 1e proposed
method makes use of the transformed images as input. 1is
framework’s model architecture is based on the structure
(DenseNet) in [35] to perform recognition. 1ree dense
blocks are created in this model, each with five inner layers,
followed by a transition layer to extract the features from our
preprocessed images. Finally, preprocessed images are
classified as N, S, V, and F (based on AAMI) with two fully
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connected (FC) layers and a softmax classifier. Based on
AAMI recommendations, the class mappings of all datasets
are as follows: (1) N-normal, (2) V-ventricular ectopic, (3)
S-supraventricular ectopic, (4) F-fusion, and (5) Q-un-
known. Because of the involvement of paced and unclas-
sified beats, the Q class is not considered in this study. 1e
overall method includes three subsections: (1) data pre-
processing, (2) feature extraction and recognition based on
the proposed DenseNet model, and (3) model evaluation.
We have evaluated the proposed method with the strategies
(experiments): E1-experiment 1 (5-fold stratified cross-val-
idation (CV) on MIT-BIH dataset), E2-experiment 2 (5-fold
stratified CV on INCART dataset, for the generalization
purpose of the proposedmodel), E3-experiment 3 (MIT-BIH
as the training and MIT-BIH supraventricular arrhythmia is
only for evaluation), E4-experiment 4 (INCART as the
training and MIT-BIH supraventricular arrhythmia is only
for evaluation), E5-experiment 5 (learned experiences from
MIT-BIH arrhythmia dataset by the proposed model are
transferred into MIT-BIH supraventricular arrhythmia
dataset using transfer learning mechanism), and E6-exper-
iment 6 (learned experiences from INCART dataset by the
proposed model are transferred into MIT-BIH supraven-
tricular arrhythmia dataset), E7-experiment 7 (MIT-BIH as
the training and European ST-T database is only for eval-
uation), E8-experiment 8 (INCART as the training and
European ST-T database is only for evaluation), E9-exper-
iment 9 (learned experiences from MIT-BIH arrhythmia
dataset by the proposedmodel are transferred into European
ST-T dataset using transfer learning mechanism), and E10-
experiment 10 (learned experiences from INCART dataset
by the proposed model are transferred into European ST-T
dataset). In the transfer learning mechanism, learned
knowledge from a large volume of dataset is transferred into
a small volume of dataset (target dataset, which is unseen)
during the evaluation. 1e developed model is fine-tuned in
this mechanism by randomly initializing the weights of FC
layers remaining the same target classes (N, S, V, and F).
Transfer learning is a promising technique for dealing with
the challenge of large volume training datasets in deep
learning. As a result, the technique is more useful in real-
world applications, particularly in remote health monitoring
sensor devices. 1e complete framework with the stratified
K-fold cross-validation of the proposed method for E1, E2,
E3, E4, E7, and E8 is demonstrated in Figure 1(a). However,
the model is in only evaluation mode in the case of E3, E4, E7,
and E8 and tested with the MIT-BIH supraventricular (E3
and E4) and European ST-T (E7 and E8) datasets. Figure 1(b)
illustrates the workflow of the proposed method using a
transfer learningmechanism in the case of E5, E6, E9, and E10.

2.3. Data Preprocessing. Following segmentation, 1D ECG
signals are transformed into 2D RGB beat images, fed as
input to the developed 2D DenseNet model, segregating
various characteristics in the images. Every record in our
chosen datasets contains the signals, annotation, and header
files for the ECG signals. After downloading the data for each
dataset, the annotation file is obtained from these files using

Python’s Glob module. 1e individual heartbeats are then
segmented from the QRS complexes of ECG signals by
slicing each beat using the R-peak wave detection algorithm.
1is algorithm is more accurate than others in the literature
[19]. Once R-peaks are detected, a single beat is traced by
taking into account 250ms (90 sampling points) before and
after the R-peak.1e distance is sufficient to represent a beat
while excluding neighbor heartbeats from an ECG signal
[51]. 1is study’s datasets do not all have the same sampling
frequency. As a result, the dataset records must be resampled
before segmentation. We completed the beats segmentation
task using the WFDB Toolbox and the Biosppy Python
module at a sampling frequency of 250Hz. A CSV file of
heartbeat sequences for each beat category was received.1e
Python Matplotlib module and OpenCV are used to convert
the segmented beats from the CSV files into their equivalent
RGB images of 128128 pixels. Finally, for the four class
labels, we received 97720 (N-87311, S-2706, V-7080, and
F-623) and 141404 (N-129585, S-1712, V-10001, and F-106)
extracted beat images from the MIT-BIH and INCART
datasets, respectively. 1e total of 10244 (N-9797, S-368,
V-64, and F-15) and 1673 (N-1622, S-13, V-23, and F-15)
beat images for five (800, 828, 849, 867, and 873) records and
one (873) record are received from the MIT-BIH supra-
ventricular dataset, respectively. Besides, the European ST-T
dataset yielded 44169 (N-43516, S-168, V-364, and F-121)
and 10828 (N-10595, S-79, V-91, and F-63) beat images for
five (e0103, e0121, e0202, e0413, and e0614) records and one
(e0121) record, respectively. Figure 2(a) shows the seg-
mentation of beats, while Figures 2(b) to 2(f ) show the
transformed beats images. 1e transformed images are fed
into the developed model for feature extraction. A high-level
feature vector is generated from these extracted features, and
arrhythmia recognition is performed using a softmax
classifier.

2.4. Features Extraction Based on Proposed DenseNet and
CNN Classifier. Deep learning approaches, particularly
several CNNs, have recently emerged as the dominant
techniques for image classification [52]. CNNs carry out
convolution operations between kernels and tensors. RGB
images are used as the input to the developed model. As a
result, it should have three channels to represent the in-
tensities of three primary colors (red, green, and blue). 1e
kernels in the convolution operation can be considered as
the filters that detect edges, shapes, and other patterns in the
input ECG beat images. One major flaw in CNNs is that
information may disappear while training the network, a
phenomenon known as the “vanishing gradient problem,” as
the network’s layers become deeper. 1ough there are
several primary approaches to solving the problem, such as
layer-wise pretraining and proper activation function se-
lection, dense connections in the DenseNet [35] are a
promising mechanism compared to such approaches.
DenseNet provided state-of-the-art performance with no
degradation despite stacking hundreds of layers. 1is ar-
chitecture signifies that the CNNs are deeper and more
effective. 1e DenseNet architecture consists of a series of
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dense blocks and transition layers [35]. Transition layers
facilitate the downsampling, which is required to change the
size of features map in CNNs. DenseNet’s architecture
differs from other CNNs in that it allows for more narrowing
layers, which is controlled by a hyperparameter called
“growth rate” k. Each layer holds a k features map at its
output. In this study, the minimal optimum configuration
consists of three dense blocks, each of which contains five
convolutional layers with nonlinear activation functions,
ReLUs, and BN, followed by a transition layer, depicted in
Figure 3. Each convolutional layer generates 32 feature maps
(number of output channels), which are concatenated to all

previous convolutional feature maps in the depth direction.
Figure 4 illustrates the concept indicating the reused feature
maps from all the preceding layers in a dense block with five
layers. For instance, the input channel of the second con-
volutional layer is 32 (first convolutional layer output), but
the input channel of the third convolutional layer is 64
(32∗2� 64 for the two prior convolutional layers) and
generates 32 output channels, and so on. 1e produced
feature map through the convolving of learnable filters/
output channel numbers across the input images is fed to
ReLU, a nonlinear activation function. 1e convolution
output channel number as the base value is set to 32. No

ECG Signals from MIT-BIH
Supraventricular, and

INCART Datasets

Transformed
Images

Features Vector

Predicted Class Label
Scores (N, S,V F)

So�max
Classifier

Features Extraction based
on Proposed DenseNet

Model

Data Acquisition and
Transformation into 2D Beat

Images

(a)

ECG Signals from MIT-BIH
and

INCART Datasets

Transformed
Images

Weights
Transfer

Features Vector
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Scores (N, S,V F)

So�max
Classifier

Data Acquisition and
Transformation into 2D Beat
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Fine-tuning the Model
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MIT-BIH

Supraventricular
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Data Acquisition and
Transformation into 2D

beat Images

Transformed
Images

(b)

Figure 1: 1e workflow of the proposed method (a) with stratified K-fold cross-validation (in case of E3, E4, E7, and E8, the model is in only
evaluation mode); (b) using transfer learning mechanism (in case of E5, E6, E9, and E10).
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further significant enhancement is achieved with greater
channel numbers, dense blocks, and transition layers. 1is
probably happened due to the small volume of preprocessed
images during training the network compared to ImageNet.

1e convolutional layers are the prime components of
CNNs, where major functions of CNNs are performed.
Large filter 7× 7 is considered at the starting of the model in
the convolution layer with a spatial downsampling of

v (t)

v (t)

Rj-1 Rj Rj+1

TRj-1 TRj TRj+1
t

N

(b)

SSegmentation
a single beat

90 sampling points
before Rj

(a)
t

144 sampling points
after Rj

V

(d) (e)

F

(f)

Q

(c)

Figure 2: ECG signal representation such as (a) heartbeat segmentation demonstration, (b) normal beat, (c) supraventricular ectopic beat,
(d) ventricular ectopic beat, (e) fusion beat, and (f) unknown beat.

Input

Extracted
Beat Images
(128x128)

C
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Dense Block 1: [3x3] 5 Convolutions

Predicted Output

F
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So�m
ax Layer (1x4)

Linear Layer

Transition Layer

Transition Layer

Transition Layer

Dense Block 3: [3x3] 5 Convolutions

Dense Block 2: [3x3] 5 Convolutions

Figure 3: 1e proposed DenseNet model structure with three dense blocks.
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striding of 2 to conceal the inconsequent features from
images. In the preprocessed images, the desired features
appear in the narrow part of the full image. And hence, the
subsequent convolution layers in the dense blocks with a
small size of 3× 3 and no spatial downsampling are chosen
to extract the locally replicated features. As a result, the
computational cost of the model is reduced. 1e employed
ReLUs in the dense blocks and transition layers help to
suppress vanishing gradient problems during training. BN
[45] layers are used to accelerate the training. As a result, the
learnable parameters converge with the imminent possible
time of training. It also suppresses the sensitivity and interior
covariate shift of training in the direction of weight ini-
tialization. 1is is one kind of regularization technique to
reduce overfitting during the training phase. 1e weights
during training are made with the gradient-based back-
propagation mechanism.

As shown in Figure 3, a transition layer is embodied after
each block as the adjacent two blocks that minimize the

computational complication with a bottleneck structure. It
reduces the dimension of the feature map by removing the
learnable parameters. 1e transition layer receives activa-
tions from all of the dense block’s preceding kernels. It
consolidates them using convolution and pooling opera-
tions. Its primary functions are convolution and pooling.
Conv., BN, ReLU, and average pooling layers are included in
each transition layer. Each transition layer’s average pooling
layer calculates the average for each patch of feature maps
and extracts average spatial high-level features. It also serves
as a translation-invariant to help filters and kernels detect
the morphological shapes of input images. No learnable
parameters are produced from this layer. 1e output shape
of the last pooling layer in the final transition layer is
64×16×16 with a kernel size of 2× 2 and stride of 2, as
shown in Table 1. 1e convolutional layer with a 1× 1 kernel
size in the transition layer is used to capture the information
across the channel features and deliver the identical output
feature maps of 32 in the convolutional layer for the next

CONV1 CONV2 CONV3 CONV4 CONV5

Dense Block

(a)

Transition Block

C
onvolution Layer

Average Pooling Layer

(b)

Figure 4: (a) Internal structure of a dense block, where every convolutional layer receives the outputs from all prior layers as the input, and
(b) structure of a transition block.
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block, which goes through the average pooling layer with
subsampling. 1e transition layer can also play the com-
pression preface to control the model size by a factor θ, called
compression in the 0< θm≤ 1 range. If a dense block has m
feature maps, the following transition layer produces θm
output feature maps. In our experiment, we have fixed θ � 1
to keep the number of feature maps unchanged across the
transition layers. After passing all blocks and transition
layers, the feature map of the last average pooling layer is
reduced to 64×16×16, which goes to linear layers for the
classification. 1e output of the linear layer contains the
high-level model ascertainment. 1ese layers learn the
features vector so that the softmax layer can properly rec-
ognize the preprocessed images. 1e final linear layer’s
output channel numbers are set to the required number of
classes and fed through the softmax activation function for
the final predicted labels. In our study, two linear layers are
used to ensure that the model learns input patterns correctly.
Finally, at the model’s end, a softmax layer is included to
recognize the arrhythmia labels using numerical processing.

2.5. Cost Function andEvaluationMetrics. 1e cost function
or cross-entropy loss is used to assess how well a model is
trained. It represents the difference between training
samples and predicted labels, thus scoring the training loss.
It bridges the gap between measured labels and targets. 1e
function displays the training efficiency of a model. A
gradient-descent-based optimizer with a learning rate
controls the loss of cost function. Adagrad, Adam, and
Adadelta are a few well-known optimizers. Adam optimizer
function is used in our experiment, which gets to the
optimal points faster than others [48]. 1is weighted

categorical cost function is better suited to dealing with
imbalanced data [44, 53]. 1e MIT-BIH, INCART, MIT-
BIH Supraventricular, and European ST-T datasets are
more unbalanced. As a result, we chose this function in our
study to address the class biasing issue. Let w represent the
vector weights of the prescribed classes, with a large wi

value corresponding to a high penalty applied to the in-
correct label predictions. 1e weighted categorical cost
function is as follows:

CE � −
1
D

􏽘

D

j

􏽐
C

i

witijlogpji. (1)

where D represents the training samples, and C narrates the
class numbers. As for the example, if tj holds the class i, tji � 1
and pji will be the predicted probability; otherwise, tji � 0.

1e performance of our proposed method is evaluated
with four metrics: precision, recall, F1-score, and accuracy,
which are expressed in (2) to (5) [54–56], where TP, FP,
TN, and FN are the true positive, false positive, true
negative, and false negative, respectively. TP represents the
beat recognition result in which positive is represented as
positive, whereas FN represents the result in which positive
is represented as negative. TN, on the other hand, defines
the beat identification result in which the negative is
evaluated as negative, whereas FP defines the result in
which the negative is evaluated as positive. 1e recall and
precision parameters could be used to specify the model’s
sensitivity and exactness. F1-score is used to capture the
accuracy by summing up the recall and precision for every
predicted class sample. Finally, accuracy assesses the
method performance across all beat classes. 1e metrics
equations are as follows:

Table 1: 1e developed DenseNet model’s internal architecture, including relevant hyperparameters. ReLU, BN, fully connected, and
softmax layers are not shown here.

Dense blocks Layers name Output size Kernel size # Filters Stride Padding
Primary convolution layer Conv2d-1 128×128 7× 7 64 2 3

Dense_Block-1

Conv2d-4 128×128 3× 3 32 1 1
Conv2d-6 128×128 3× 3 32 1 1
Conv2d-9 128×128 3× 3 32 1 1
Conv2d-12 128×128 3× 3 32 1 1
Conv2d-15 128×128 3× 3 32 1 1

Transition layer -1 Conv2d-19 128×128 1× 1 128 1 0
AvgPool2d-22 64× 64 2× 2 128 2 0

Dense_Block-2

Conv2d-25 64× 64 3× 3 32 1 1
Conv2d-27 64× 64 3× 3 32 1 1
Conv2d-30 64× 64 3× 3 32 1 1
Conv2d-33 64× 64 3× 3 32 1 1
Conv2d-36 64× 64 3× 3 32 1 1

Transition layer -2 Conv2d-40 64× 64 1× 1 128 1 0
AvgPool2d-43 32× 32 2× 2 128 2 0

Dense_Block-3

Conv2d-46 32× 32 3× 3 32 1 1
Conv2d-48 32× 32 3× 3 32 1 1
Conv2d-51 32× 32 3× 3 32 1 1
Conv2d-54 32× 32 3× 3 32 1 1
Conv2d-57 32× 32 3× 3 32 1 1

Transition layer -3 Conv2d-61 32× 32 1× 1 64 1 0
AvgPool2d-64 16×16 2× 2 64 2 0
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precision �
TP

TP + FP
. (2)

recall �
TP

TP + FN
. (3)

F1−score � 2 ×
precision × recall

precision + recall
�

2TP

2TP + FP + FN
. (4)

Accuracy �
TP + TN

TP + FP + TN + TF
. (5)

2.6. Experimental Details. All experiments are carried out in
PyTorch open-source framework on Windows 10 with Intel
Corei5-7400 CPU @ 3.00GHz, 8GB RAM, and an NVIDIA
GeForce RTX 2070 graphic card with 8GB memory. For
proper initialization, an intelligent weight initialization
mechanism for the available layers in the model is required,
which aids the model in alleviating biasing. Layer weights
could be expressed as kernels and groups of kernels that
form a single layer. 1e proposed model employs the
Kaiming normal distribution [50] to initialize the weights in
all convolution layers. All BN layers’ biases and weights are
initialized with the constants 0 and 1, respectively. 1e
Xavier initializer and a constant 0 are used to initialize the
weights and biases of fully connected layers, respectively.
1e primary goal of using these initializers is to balance the
gradients scale across all kernels. 1e performance of a
model is highly dependent on the training to testing sets
ratio. As a result, the random split technique is used to
partition the entire set of preprocessed images into a vali-
dation set. 1e K-fold cross-validation strategy is used to
train and evaluate the model. A validation set is typically
required to confirm whether or not the model has achieved
sufficient accuracy using the training and testing set ratio
settings in the training module. Without the validation set,
the model could have become overfit. In the hold-out
evaluation strategy, K-fold cross-validation is a promising
technique for resolving such changing issues as training and
testing set ratio. In this strategy, the samples are randomly
grouped into the total k-fold, and k splits are generated. We
used stratified 5-fold cross-validation in our study. As a
result, in each split, one fold serves as the validation or
testing set, while the remaining four folds serve as the
training set. In this case, 10% of the total extracted beat
images are preserved for testing, while the remaining 90%
are used for model training, resulting in a training and
testing splitting ratio of 9 :1.5-folds reducing the compu-
tation cost while increasing the likelihood of samples from
each class entering each fold. Furthermore, a stratified
K-fold ensures that samples from each class enter each fold,
reducing the class imbalance problem more effectively than
K-fold.1e initial learning rate and batch size are set to 0.001
and 32. To optimize the cross-entropy loss, a gradient de-
scent optimizer with a learning rate scheduler is required. In
this study, the Adam optimizer [48] with the PyTorch
REDUCELRONPLATEAU scheduler is chosen to achieve

the desired performance. If the validation loss becomes a
plateau for 5 consecutive epochs, the learning rate is reduced
by 0.1. During the training process, a weighted random
sampler [47] is also used to ensure the representativeness of
the equal samples from each class. To achieve the optimal
training time, an appealing regularization technique called
early stopping [46] is used. If the validation loss remains
constant for the next eight epochs, the training is terminated,
and the overfitting is reduced. In the training module, the
transformed 2DRGB images are simply rotated randomly by
6 degrees before being converted into tensors; this technique
is known as “on-the-fly augmentation” of data. 1is is also a
likely factor in reducing model overfitting during training.
Finally, the delivered accuracy of our proposed method in E1
and E2 on the extracted beat images from the MIT-BIH and
INCART arrhythmia datasets is 99.80% and 99.63%, re-
spectively. Furthermore, E3, E4, E5, E6, E7, E8, E9, and E10
achieve accuracy of 99.70%, 99.94%, 99.70%, 99.87%,
99.90%, 99.95%, 99.87%, and 99.95%, respectively.

3. Results and Discussion

3.1. Classification Results. In this study, extracted heartbeat
images from ECG signals from four publicly available im-
balanced datasets are used to detect arrhythmias in cardiac
patients. It is attempted to improve the detection perfor-
mance by looking into issues where the developed CNN
models for arrhythmia recognition are incompetent. A
confusion matrix, depicted in Figure 5(a), could express the
performance details of all metrics on the MIT-BIH ar-
rhythmia dataset (E1). 1e confusion matrix is non-
normalized row-wised. 1e entries in the diagonal correctly
represent beat recognition, while the entries in the off-di-
agonal express the beat misclassification rate. 1e rows of
Figure 5(a) show that the 87150N, 7061V, 2691 S, and 620 F
beats are correctly classified out of 87311, 7080, 2706, and
623 beats, respectively. Only 161N, 19V, 15 S, and 3 F beats
are incorrectly classified. Despite class imbalance issues in
the MIT-BIH arrhythmia dataset, it indicates the intended
accuracy in each class. 1e overall accuracy, F1-score, recall,
and precision achieved in standard testing are 0.9980,
0.9891, 0.9996, and 0.9834, respectively. Table 2 shows a
summary of all metrics (average accuracy, precision, recall,
and F1-score) from the confusion matrix (shown in
Figure 5(a)) received in E1. 1is table clearly shows that the
average values for all metrics are close to the overall values,
indicating that the developed training module for testing the
experiments has generalized. 1e average accuracy, F1-score,
recall, and precision achieved are 0.9990, 0.9892, 0.9963, and
0.9823. 1e table also shows that the F beat identification
precision is low compared to other beats, resulting in a lower
F1_score. Figure 5(b) depicts the loss curves used in this
experiment for model training and testing. 1e training loss
curve is nearly stable after 61 epochs, whereas the testing loss
curve changes abruptly at the start and is nearly stable after
61 epochs, analogous to the training loss curve. 1e model is
halted after 123 epochs due to the use of an early stopping
feature during training and evaluation, even though the total
number of epochs is set to 200. As a result, the developed
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model efficiently completes the training and evaluation
process without encountering any overfitting issues. In this
experiment, the minimum validation loss is 0.0233. Finally,
we can say that the model produced the desired level of
achievement on our preprocessed images from theMIT-BIH
arrhythmia dataset.

A confusion matrix was used to figure out the perfor-
mance details of all matrices on the INCART arrhythmia
dataset (E2), shown in Figure 6(a). According to the rows of
the confusion matrix, the 129124N, 9964V, 1685 S, and
106 F beats are correctly classified out of 129585, 10001,
1712, and 106 beats, respectively. Only 461N, 37V, and 27 S
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Figure 5: (a) Confusion matrix from MIT-BIH arrhythmia dataset in E1, and (b) training and testing loss curve for E1.

10 Computational Intelligence and Neuroscience



Table 2: A summary of metrics from confusion matrix depicted in Figure 5(a).

Accuracy(%) Precision (%) Recall (%) F 1score (%)
N 99.81 N 99.97 N 99.82 N 99.90
S 99.96 S 99.08 S 99.45 S 99.26
V 99.86 V 98.32 V 99.73 V 99.02
F 99.97 F 95.53 F 99.52 F 97.49
Average 99.90 Average 98.23 Average 99.63 Average 98.92
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Figure 6: (a) Confusion matrix from INCART arrhythmia dataset in E2, and (b) training and testing loss curve for E2.
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beats are incorrectly classified; all F beats are correctly
classified. It also expresses the desired accuracy in each class
despite the INCART dataset’s class imbalance issues. 1e
overall accuracy, F1-score, recall, and precision achieved in
standard testing are 0.9963, 0.9891, 0.9942, and 0.9894,
respectively. Table 3 shows a summary of all metrics (average
accuracy, precision, recall, and F1-score) from the confusion
matrix (shown in Figure 6(a)) received in E2. It is also clear
from this table that the average values for all metrics are close
to the overall values. Average accuracy, F1-score, recall, and
precision obtained are 0.9981, 0.9897, 0.9942, and 0.9854,
respectively. 1e table also shows that the precision for V
beat identification is low in comparison to other beats,
resulting in a lower F1-score. Figure 6(b) depicts the loss
curves for the model’s training and testing. 1e training loss
curve is nearly stable near 75 epochs, whereas the testing loss
curve changes abruptly at the beginning and remains nearly
stable after 75 epochs, analogous to the training loss curve.
Despite the fact that the epoch is set to 200, the model stops
at 193 epochs.1emodel successfully completes the training
and evaluation process with no overfitting issues. In this
experiment, the minimum validation loss is 0.0234. As a
result, the model achieved the desired level of accuracy on
our preprocessed images from the INCART arrhythmia
dataset. 1e delivered results of all the measured matrices
and minimum validation loss from both experiments are
depicted in Table 4. From Tables 2–4, it is observed that the
average and overall values for all measured metrics in both
experiments are almost the same despite data and features
variability of ECG signals in both datasets (MIT-BIH and
INCART). 1is also indicates the generalization of the
proposed model.

1e graphs for the three matrices such as accuracy, F1-
score, and recall in E1 and E2, respectively, are shown in
Figures 7(a) and 7(b). It is clear from these graphs that the
values of these matrices grew as the number of epochs in-
creased and became nearly steady from 61 epochs in E1
(Figure 7(a)) and 75 epochs in E2 (Figure 7(b)). 1e initial
changes in the graphs are sudden since it takes some time for
the testing samples to adapt to the trained model.

1e trained model on MIT-BIH in E1 and INCART in E2
is also tested in E3 and E4, respectively, with MIT-BIH
supraventricular. 1e reached evaluated average values of all
performance metrics (average accuracy, precision, recall,
and F1-score) in E3 and E4 are figured out by the achieved
confusion matrices, demonstrated in Figures 8(a) and 8(b),
respectively. A summary of all reached metrics from the
confusion matrices depicted in Figures 8(a) and 8(b) is il-
lustrated in Table 5. 1e obtained average accuracy, F1-score,
recall, and precision from Figure 8(a) are 0.9985, 0.9639,

0.9992, and 0.9375, respectively, whereas from Figure 8(b),
the reached average accuracy, F1-score, recall, and precision
are 0.9997, 0.9919, 0.9998, and 0.9844, respectively. 1e
overall achieved accuracy, F1-score, recall, and precision in E3
are 0.9970, 0.9639, 0.9992, and 0.9375 respectively, while in
E4, the overall reached accuracy, F1-score, recall, and precision
are 0.9994, 0.9919, 0.9998, and 0.9844, respectively, dem-
onstrated in Table 6. Tables 5 and 6 show that the average
and overall values for all measured metrics in both exper-
iments are almost identical, which also expresses the gen-
eralization of the proposed model.

1e trained model on MIT-BIH (E1) and INCART (E2)
datasets is scored by E5 and E6, respectively, with MIT-BIH
supraventricular using a transfer learning mechanism. 1e
reached evaluated average values of all performance metrics
(average accuracy, precision, recall, and F1-score) in E5 and E6
could be figured out from the achieved confusion matrices,
demonstrated in Figures 9(a) and 9(b), respectively. A
summary of all metrics from the confusion matrices
depicted in Figures 9(a) and 9(a) is illustrated in Table 7.1e
average accuracy, F1-score, recall, and precision in E5 are
0.9983, 0.9892, 0.9927, and 0.9859, respectively, whereas in
E6, the reached average accuracy, F1-score, recall, and pre-
cision are 0.9994, 0.9955, 0.9970, and 0.9939, respectively.
1e overall achieved accuracy, F1-score, recall, and precision
in E5 are 0.9970, 0.9892, 0.9927, and 0.9859, respectively. In
contrast, the overall reached accuracy, F1-score, recall, and
precision are 0.9987, 0.9954, 0.9971, and 0.9939, respectively
in E6, demonstrated in Table 8. From Tables 7 and 8, it is also
observed that the average and overall values for all measured
metrics in both experiments are nearly identical, indicating
that the proposed model is generalizable. 1e loss curves
(training and testing) for E5 are shown in Figure 10(a). 1e
curves are almost stable to 40 epochs. 1e model is halted at
only 72 epochs due to the use of early stopping feature in our
developed training and testing module. It is also observed
from Figure 10(a) that the developed model completes the
training and validation process without facing any over-
fitting issues with the minimum validation loss of 0.0236. A
similar scenario is also observed in Figure 10(b) for E6,

Table 3: A summary of metrics from confusion matrix depicted in Figure 6(a).

Accuracy (%) Precision (%) Recall (%) F 1score (%)
N 99.63 N 99.96 N 99.64 N 99.80
S 99.98 S 99.53 S 98.42 S 98.97
V 99.65 V 95.60 V 99.63 V 97.57
F 99.99 F 99.07 F 100.0 F 99.53
Average 99.81 Average 98.54 Average 99.42 Average 98.97

Table 4: 1e comparison of all evaluation metrics and validation
loss for both experiments.

Evaluation matrices/validation loss E 1 E 2

Recall 0.9963 0.9942
F 1-score 0.9891 0.9891
Accuracy 0.9980 0.9963
Precision 0.9834 0.9894
Minimal validation loss 0.0233 0.0234
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where the loss curves almost remained stable from 60
epochs. 1e model is halted at 78 epochs with the same
minimum validation loss.

1e trained model on MIT-BIH in E1 and INCART in E2
is evaluated with the European ST-T database in E7 and E8,

respectively. 1e achieved confusion matrices, as seen in
Table 9, quantify the reached evaluated average values of all
performance metrics (average accuracy, precision, recall,
and F1-score) in E7 and E8. In E7, the overall accuracy, F1-score,
recall, and precision are 0.9990, 0.9664, 0.9802, and 0.9523,
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Figure 7: Graphs for the three matrices such as accuracy, F1-score, and recall in (a) E1 and (b) E2.
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respectively, whereas in E8, the overall accuracy, F1-score,
recall, and precision are 0.9995, 0.9802, 0.9865, and 0.9742.
Using a transfer learning technique, the trained models on
the MIT-BIH (E1) and INCART (E2) datasets were further
scored by E9 and E10 using the European ST-T database,
respectively. 1e achieved confusion matrix, shown in Ta-
ble 10, could be used to determine the evaluated average
values of all performance indicators (average accuracy,
precision, recall, and F1-score) in E9 and E10. When

comparing to E9, the overall attained accuracy, F1-score, re-
call, and precision in E9 are 0.9987, 0.9839, 0.9912, and
0.9733, respectively, while these are 0.9995, 0.9901, 0.9959,
and 0.9847 in E10. Figure 11(a) depicts the loss curves
(training and testing) for E9. 1e curves are nearly stable
after 40 epochs. Because of the early stopping feature, the
model is halted after only 72 epochs. It is also clear from
Figure 11(a) that the developed model successfully com-
pletes the training and validation processes with a validation
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Figure 8: Reached confusion matrix in (a) E3 and (b) E4.
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loss of 0.0236. A similar scenario is shown in Figure 11(b) for
E10, where the loss curves are nearly stable after 85 epochs
and the model is stopped at 78 epochs with the same
minimum validation loss.

3.2. Discussions. In this section, we will first discuss the
issues of why our proposed deep approach provides satis-
factory results in arrhythmia recognition. First, deep CNNs
have learned the dominant features with their convolution
layers, and the outcome is investigated with the resulting
classifier. Furthermore, the class activation map from the
CNN-based models could be easily reached for the visual
analysis compared to RNN and LSTM employed for the
sequential modeling. Visual analysis is a significant factor in
medical diagnosis. Second, the most crucial stage of the
experiment is segmenting and transforming ECG signals
into beat images, where R-peak detection or beat segmen-
tation is reached based on a well-known and influential
algorithm (Pan-Tompkins) on the arrhythmia datasets.
1ird, DenseNet architecture has some inspirable benefits
compared to other CNN architectures, such as being easy to
train by delivering the promoted stream of information,
reusing features, fewer parameters to train, and alleviating
vanishing gradient problems. Forth, some diverse mecha-
nisms are used such as early stopping [46] and on-the-fly
augmentation [49] that help to stop overfitting of the model,
weighted random sampler [47] to reduce the class imbalance
problem, Adam optimizer [48] to converge the model
quickly with the minimum validation loss, and proper
initialization of model layers [50]. In addition, data im-
balance problems negatively affect the performance of a
model. So, in this study, we have used a simple class
weighting strategy to resolve the issue of data imbalance.1e
smaller the class size scores, the more considerable the class

weight from the training samples. 1at class weight is uti-
lized to measure the weighted loss during training so that
loss from the smaller class is more significant than the larger
class. 1e strategy is also more apparent from our expressed
used loss function in Section 2.5. Previously, some re-
searchers attempted to resolve the class imbalance problem
in different ways. Al Rahhal et al. [41] addressed a scenario to
handle the data imbalance problem using the focal loss
technique [42]. An interesting study by Rajesh and Dhuli
[12] with three-level data preprocessing approaches: ROU
(random oversampling and undersampling), DBB (distri-
bution-based balancing), and synthetic minority over-
sampling technique with random undersampling
(SMOTE+RU) was observed to handle the data imbalance
problem. Our employed cross-entropy loss function can also
handle such data imbalance issues. It is demonstrated in [57]
that, without using the class weighting strategy, the model’s
performance is not improved with only focal loss. Moreover,
many prior promising models in this sense demand enor-
mous in-depth domain ideas for the preprocessing and
feature extraction. On the other hand, our proposed method
needs the minimum skill in preprocessing and feature ex-
traction while obtaining better performance even compared
to deep learning approaches, as demonstrated in Table 11.
1e developed model extracts desirable activation on in-
tensity, edge, and shape of the peak of our preprocessed beat
images. 1e background is not so important here because
extracted beats appear only in a small portion of the image.
1e satisfactory performance of the developed model rep-
resents the learned features from the images after training.
1e model is well correlated and embedded with the desired
classes concerning the high dimensional (mapped in two
dimensions) feature space, which is more evident from the
confusion graph and evaluated matrices. So, we are as-
suming that the averaging procedure of representation
performs well. 1e morphological and dynamic character-
istics of all datasets are analogous despite data and features
variability of ECG signals, and identical experimental
dealing is performed on all datasets. Furthermore, the
reached performance results on all datasets with the de-
veloped model are almost identical, as illustrated in Tables 2
to 10. 1is expresses the generalization of the developed
model.

We have compared our findings with [12, 36–39, 58,
59, 61, 62] in Table 11, where the authors employed almost
similar approaches with our works in case of 2D CNN. In the
table, we have only placed the results from E1 and E2. 1e
results demonstrate that our developed DenseNet outper-
forms compared to others. It represents the effectiveness of
the developed model. F1-score is an effective performing
metric compared to accuracy on imbalanced datasets, jus-
tifying the sensitivity and exactness of a model, where recall
and precision are summed up as the harmonic mean. It is
observed from the table that the scores of all measured
metrics in both experiments on MIT-BIH and INCART
datasets, respectively, are almost identical, which indicates
the generalization of the proposed method. From Table 11, it
is also shown that all 2D CNN approaches deliver better
results compared to 1DCNN as well as hand-crafted features

Table 5: A summary of all evaluatedmetrics from confusionmatrix
depicted in Figures 8(a) and 8(b).

Accuracy (%) Precision (%) Recall (%) F 1score (%)
For E 3
N 99.70 N 100.0 N 99.69 N 99.85
S 100.0 S 100.0 S 100.0 S 100.0
V 100.0 V 100.0 V 100.0 V 100.0
F 99.70 F 75.00 F 100.0 F 85.71
Average 99.85 Average 93.75 Average 99.92 Average 96.39
For E 4
N 99.94 N 100.0 N 99.94 N 99.97
S 100.0 S 100.0 S 100.0 S 100.0
V 100.0 V 100.0 V 100.0 V 100.0
F 99.94 F 93.75 F 100.0 F 96.77
Average 99.97 Average 98.44 Average 99.98 Average 99.19

Table 6: 1e comparison of all reached metrics in E3 and E4.

Evaluation matrices E 3 E 4

Recall 0.9992 0.9998
F 1-score 0.9639 0.9919
Accuracy 0.9970 0.9994
Precision 0.9375 0.9844
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engineering techniques. We have also tested our proposed
method in 1D CNN form (with time series data) following
experiments 1 and 2. 1e achieved results in both experi-
ments are poor compared to all experiments (E1–E10) in 2D
CNN. 1e reached accuracies are 97.56% and 97.65%, re-
spectively, following E1 and E2. 1D CNNs are less versatile
than 2D CNNs. So, the transformation mechanism of se-
quential data of beats into their equivalent beat images is a
promising strategy. Indeed, it is not practicable to thor-
oughly compare our study with the previous studies because

various strategies are used in the preprocessing stage and
model designing. R-R intervals or R-peaks, duration, and
amplitude of the QRS complex of ECG are highly sensitive to
its dynamic and morphology. 1e transformation-based
method reduces the problem of strict time alignment; it
ignores the scoring of fiducial points of heartbeats. 1e
nonlinear and nonstationary characteristics of ECG heart-
beats due to the heart’s episodic/irregular electrical con-
duction are the significant factors behind such problems.
Moreover, heartbeat-based arrhythmias are classified mainly
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Figure 9: Reached confusion matrix in (a) E5 and (b) E6.
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into two categories, (i) tachycardia and life-threatening
ventricular fibrillation that need early diagnosing and
treatment with the defibrillator, and (ii) non-life-threatening
arrhythmias but require further treatment. AAMI divides
non-life-threatening arrhythmias into five classes (N, S, V, F,
and Q), where each beat category significantly differs in
morphology from others and holds some subclasses with
various shapes that introduce a massive challenge for
physicians to diagnose manually. 1e N class includes
normal (N), right bundle branch block (RBBB), left bundle
branch block (LBBB), atrial escape (e), and nodal (junc-
tional) escape (j) beats; S class includes aberrant atrial
premature (a), supraventricular premature (S), nodal
(junctional) premature (J), and atrial premature (A) beats; V
class includes ventricular escape (E) and premature ven-
tricular contraction-PVC (V) beats; F class only includes the
only fusion of normal and ventricular (F) beats; Q class
includes paced (/), unclassified (Q), and fusion of normal
and paced (f) beats but this class is not considered in our
study due to the involvement of paced and unclassified beats.
Moreover, an automatic diagnosis with deep learning
methods compensates the manual interpretations effectively
and efficiently and visual errors of physicians with reduced
workloads and medical costs. Our study of automatic ar-
rhythmia recognition is based on AAMI recommendations
and provides the desired outcomes. It is observed from the
confusion matrix graphs in Figures 5(a), 6(a), 8, and 9 and
Tables 9 and 10 that N is more noticeable compared to the
remaining beats; again V and S beats are more remarkable
than F. It exposes that their ratios are misbalancing, but the
proposed method classifies each category properly without
biasing towards their majority class.

Experiments 3, 4, 7, and 8 show that the proposed model
is only tested with two different unseen datasets (MIT-BIH
supraventricular and European ST-T) after training with
MIT-BIH and INCART datasets. 1e outcomes of both
experiments are satisfactory, which expresses the model’s
effectiveness. As a result, the proposed method could
prosper in wearable devices such as medical bracelets,
wristwatches, and vests for instantaneous cardiac condi-
tions. It could also be a booming approach in telemedicine
due to its lightweight compared to fundamental DenseNets
(DenseNet-121, DenseNet-169, DenseNet-201, and Dense-
Net-264) [35]. 1e lightweight of the proposed model also
indicates its more usefulness in storage constraint devices
such as mobile, portable/wearable healthcare devices.
Transfer learning is becoming popular nowadays due to
handling the challenge of huge data demanding for deep
model training (the most private and publicly available
datasets are currently of small volume). In this approach, the
model is not trained from scratch, so it helps to reduce the
overfitting problem of a deep model [32] and enhance the
computational efficiency. 1e mechanism could also be a
prosperous solution for storage constraint devices in real-life
applications. We evaluated our proposed method using this
mechanism in experiments 5, 6, 9, and 10. We achieved
satisfactory findings by considering only five records/indi-
viduals from a different dataset. We have also evaluated the
proposed model with ten records/individuals from the same
dataset and received almost the same results, which also
expresses the model’s generalization.

However, there are a few open challenges instead of
achieving satisfactory results with our proposed method.
First is the intrapatient paradigm in E1, E2, E3, E4, E7, and E8,
where the same patient heartbeats are likely to arrive in
training and testing sets. 1is circumstance may lead to
biased results. 1e patient-specific study could be the solu-
tion to this challenge. Second, arrhythmia recognition based
on a single beat has some limitations to a few extents as the
relevant distinction. Short segments from the ECG signals or
adaptive beat size length segmentation could be the inter-
pretation of this issue. 1ird, there is no doubt that it is
computationally intensive, so it is more applicable for offline
applications in medicals and clinics compared to resource
constraint devices. A method’s computational efficiency
varies with the hardware configuration of the utilized PC.
Deep learning-based methods require high computational
complexity compared to morphological-based techniques.
Hence, these are slower in real-life applications [63]. So, it is
suggested that deploying deep learning-based methods in
real-life applications where bid data dealing is required is
more feasible. Forth is efficiency; it will be hard to deploy our
proposed method into portable healthcare devices for real-
life applications. In that case, designing the lightweight deep
model is directed, or models compression techniques such as
weight sharing and knowledge distillation are used. Fifth is
integration with expert features; it is hard to integrate a
trained deep model with the existing expert features. To
handle the issue, domain expert knowledge could be directed
to design a deep model. Sixth is noise robustness: a deep
method that automatically extracts all features from the

Table 7: A summary of all evaluatedmetrics from confusionmatrix
depicted in Figures 9(a) and 9(b).

Accuracy(%) Precision (%) Recall (%) F 1score (%)
For E 5
N 99.67 N 99.90 N 99.79 N 99.84
S 99.67 S 94.46 S 97.28 S 95.85
V 100.0 V 100.0 V 100.0 V 100.0
F 100.0 F 100.0 F 100.0 F 100.0
Average 99.83 Average 98.59 Average 99.27 Average 98.92
For E 6
N 99.87 N 99.96 N 99.90 N 99.93
S 99.87 S 97.59 S 98.91 S 98.25
V 100.0 V 100.0 V 100.0 V 100.0
F 100.0 F 100.0 F 100.0 F 100.0
Average 99.94 Average 99.39 Average 99.70 Average 99.55

Table 8: 1e comparison of all reached metrics in E5 and E6.

Evaluation matrices/validation loss E 5 E 6

Recall 0.9927 0.9971
F 1-score 0.9892 0.9954
Accuracy 0.9970 0.9987
Precision 0.9859 0.9939
Minimal validation loss 0.0236 0.0236
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signals, including different types of real-world noises, which
may lead to incorrect results. So, some researchers tried to
resolve the issue by fitting denoising/filtering techniques
before commencing data into the input of deep models, but
some valuable information could be omitted in that case [64].
So, any denoising/filtering technique is not employed on the
raw information in our study. Finally, the major failure case

of our proposed method is the inability to identify all cat-
egories of images correctly available in real worlds including
the identification of all beat images properly, which is
demonstrated in Figures 5(a), 6(a), 8, and 9 and Tables 9 and
10. However, 2D CNN-based deep method is a promising
direction for diagnosing various categories of cardiovascular
diseases in offline and online approaches.
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Figure 10: Training and testing loss curve for (a) E5 and (b) E6.

18 Computational Intelligence and Neuroscience



Table 9: 1e reached confusion matrix and average values of evaluated metrics in E7 and E8.

Predicted label
Accuracy (%) Precision (%) Recall (%) F 1_score (%)

F N S V
E 7

True label

F 62 0 0 1

99.92 95.27 98.03 96.62N 0 10585 10 0
S 4 0 75 0
V 0 1 0 90

E 8

True label

F 62 0 1 0

99.94 97.41 98.68 98.03N 0 10590 5 0
S 2 0 77 0
V 0 1 0 90

Table 10: 1e reached confusion matrix and average values of evaluated metrics in E9 and E10.

Predicted label
Accuracy (%) Precision (%) Recall (%) F 1_score (%)

F N S V
E 7

True label

F 119 0 0 2

99.89 97.37 99.15 98.38N 2 43500 10 4
S 0 0 166 2
V 0 2 0 362

E 8

True label

F 120 0 0 1

99.98 98.51 99.58 99.03N 1 43506 6 3
S 0 1 167 0
V 0 0 1 363
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Figure 11: Continued.
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4. Conclusions

In this study, a 2D CNN method with an effective DenseNet
is proposed for arrhythmias recognition on four different
imbalanced datasets with various experiments. 1e findings
from all experiments demonstrate that the proposed method
outperforms the performance of state-of-the-art models,

which validates the proposed method’s effectiveness and
generalization. 1e key convenience of the developed model
is that each layer can access the gradients directly from the
input signals and loss function, resulting in improved
gradients and information flow across the network with
various regularization techniques. 1ese regularizing effects
alleviate the overfitting challenges on classification tasks
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Figure 11: Training and testing loss curve for (a) E9 and (b) E10.

Table 11: Comparative table of our work with the previous approaches.

Classifier type/approach Class categories Accuracy Precision Recall F1-score
2D CNN (proposed) (on MIT-BIH-E1) 4 99.80∗∗ 98.34∗∗ 99.63∗∗ 98.91∗∗
2D CNN (proposed) (on INCART-E2) 4 99.63∗∗ 98.94∗∗ 99.42∗∗ 98.91∗∗

2D CNN [36] 8 98.92∗ — 97.26∗ 98.00∗
99.11∗∗ — 97.91∗∗ 98.00∗∗

2D CNN [39] 8 99.05∗ — 97.85∗ —98.90∗∗ — 97.20∗∗

2D CNN [39] AlexNet 8 98.85∗ — 97.08∗ —98.81∗∗ — 96.81∗∗

2D CNN [39] VGGNet 8 98.63∗ — 96.93∗ —98.77∗∗ — 97.26∗∗
2D CNN [37] 4 98.50∗ — — —
2D CNN [38] 8 99.02∗∗ — — —
2D CNN [58] 5 99.00∗ — — —
2D CNN [59] 5 99.70∗∗ — 99.70∗∗ —
2D CNN [60] 5 99.62∗ — 92.24∗ 94.00∗
1D CNN [36] 8 97.80∗ — — —
1D CNN [58] 5 90.93∗ — — —
1D CNN [38] 5 97.38∗ — — —
CNN-LSTM [61] 5 98.10∗ — 97.50∗ —
LSTM, FL [62] 8 99.26∗ — 99.26∗ —
DBB, AdaBoost [12] 5 99.10∗ — 97.90∗ —
∗∗with augmentation on-the-fly or manual, ∗without augmentation, FL: focal loss, DBB: distribution-based balancing.
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with the confined training data sizes. Moreover, our ex-
perimental results from all experiments illustrate that the
proposed model provides satisfactory results in resolving the
class imbalance issue of all used datasets. 1e findings also
indicate that the performance of the developed model re-
mains almost identical despite using various strategies in
various experiments for four heterogeneous datasets. 1is
expresses better applicability and scalability of the proposed
method. So, the proposed method could be a helpful tool for
cardiologists’ clinical decision support systems in offline or
online approaches. 1e factors behind such successes are (i)
because of using indicated regularization techniques, (ii)
advantages of the fundamental DenseNets model compared
to others such as features reusing, the punctuation of fea-
tures propagation, and less trained parameters to be re-
quired, (iii) proper segmentation and transformation of beat
images, and (iii) because of using weighted categorical cost
function and weighted random sampler in all experiments.
In the future, we will look into a hybrid model incorporating
LSTM with the developed model. We have also planned to
conduct a study with the clinical data or data from our
developed flexible sensor to test the proposedmethod, which
will be more applicable in real-life applications. It is also
possible to employ the study in other biomedical engi-
neering applications, especially in neurological diseases such
as Alzheimer’s, epilepsy.
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