Skip to main content
. 2022 Sep 29;2022:9475162. doi: 10.1155/2022/9475162

Table 1.

The developed DenseNet model's internal architecture, including relevant hyperparameters. ReLU, BN, fully connected, and softmax layers are not shown here.

Dense blocks Layers name Output size Kernel size # Filters Stride Padding
Primary convolution layer Conv2d-1 128 × 128 7 × 7 64 2 3

Dense_Block-1 Conv2d-4 128 × 128 3 × 3 32 1 1
Conv2d-6 128 × 128 3 × 3 32 1 1
Conv2d-9 128 × 128 3 × 3 32 1 1
Conv2d-12 128 × 128 3 × 3 32 1 1
Conv2d-15 128 × 128 3 × 3 32 1 1

Transition layer -1 Conv2d-19 128 × 128 1 × 1 128 1 0
AvgPool2d-22 64 × 64 2 × 2 128 2 0

Dense_Block-2 Conv2d-25 64 × 64 3 × 3 32 1 1
Conv2d-27 64 × 64 3 × 3 32 1 1
Conv2d-30 64 × 64 3 × 3 32 1 1
Conv2d-33 64 × 64 3 × 3 32 1 1
Conv2d-36 64 × 64 3 × 3 32 1 1

Transition layer -2 Conv2d-40 64 × 64 1 × 1 128 1 0
AvgPool2d-43 32 × 32 2 × 2 128 2 0

Dense_Block-3 Conv2d-46 32 × 32 3 × 3 32 1 1
Conv2d-48 32 × 32 3 × 3 32 1 1
Conv2d-51 32 × 32 3 × 3 32 1 1
Conv2d-54 32 × 32 3 × 3 32 1 1
Conv2d-57 32 × 32 3 × 3 32 1 1

Transition layer -3 Conv2d-61 32 × 32 1 × 1 64 1 0
AvgPool2d-64 16 × 16 2 × 2 64 2 0