Table 1.
The developed DenseNet model's internal architecture, including relevant hyperparameters. ReLU, BN, fully connected, and softmax layers are not shown here.
Dense blocks | Layers name | Output size | Kernel size | # Filters | Stride | Padding |
---|---|---|---|---|---|---|
Primary convolution layer | Conv2d-1 | 128 × 128 | 7 × 7 | 64 | 2 | 3 |
| ||||||
Dense_Block-1 | Conv2d-4 | 128 × 128 | 3 × 3 | 32 | 1 | 1 |
Conv2d-6 | 128 × 128 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-9 | 128 × 128 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-12 | 128 × 128 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-15 | 128 × 128 | 3 × 3 | 32 | 1 | 1 | |
| ||||||
Transition layer -1 | Conv2d-19 | 128 × 128 | 1 × 1 | 128 | 1 | 0 |
AvgPool2d-22 | 64 × 64 | 2 × 2 | 128 | 2 | 0 | |
| ||||||
Dense_Block-2 | Conv2d-25 | 64 × 64 | 3 × 3 | 32 | 1 | 1 |
Conv2d-27 | 64 × 64 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-30 | 64 × 64 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-33 | 64 × 64 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-36 | 64 × 64 | 3 × 3 | 32 | 1 | 1 | |
| ||||||
Transition layer -2 | Conv2d-40 | 64 × 64 | 1 × 1 | 128 | 1 | 0 |
AvgPool2d-43 | 32 × 32 | 2 × 2 | 128 | 2 | 0 | |
| ||||||
Dense_Block-3 | Conv2d-46 | 32 × 32 | 3 × 3 | 32 | 1 | 1 |
Conv2d-48 | 32 × 32 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-51 | 32 × 32 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-54 | 32 × 32 | 3 × 3 | 32 | 1 | 1 | |
Conv2d-57 | 32 × 32 | 3 × 3 | 32 | 1 | 1 | |
| ||||||
Transition layer -3 | Conv2d-61 | 32 × 32 | 1 × 1 | 64 | 1 | 0 |
AvgPool2d-64 | 16 × 16 | 2 × 2 | 64 | 2 | 0 |