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Breast cancer (BC), the most common cancer in women, is caused by the uncontrolled proliferation of mammary epithelial cells
under the action of a variety of carcinogenic factors. Cuproptosis-related targets have been found to be closely associated with
breast cancer development. TCGA obtained 1226 tumor samples, 1073 clinical data, and 37 lncRNAs during univariate Cox
multivariate analysis. We used nonnegative matrix factoring (NMF) agglomeration to spot thirty-three potential molecular
subsets with totally different cuproptosis-related lncRNA expression patterns. The least absolute shrinkage and selection
operator (LASSO) formula and variable Cox multivariate analysis were not used to construct the best prognostic model. The
variations in neoplasm mutation burden and factor gene ontology (GO) and gene set enrichment analysis (GSEA) within the
high- and low-risk teams were analyzed, and therefore, the potential mechanism of the development of carcinoma was
analyzed. We created a prognostic profile consisting of nineteen cuproptosis-related genes (NFE2L2, LIPT1, LIPT2, DLD, etc.)
and their connected targets. The correlation between tumor mutational burden (TMB) and clinical manifestations of tumors
demonstrates the importance of high- and low-expression bunch data on the incidence of clinical manifestations of tumors.
The area under the curve (AUC) shows moderate prophetic power for copper mortality. GO enrichment analysis showed that
immunorelated responses were enriched. Correlation analysis of immune cells showed that pathology could play an important
role in the prevalence and prognosis of tumors, and there were variations in immune cells between the probable and low-risk
groups. Our study suggests that the prognostic characteristic genes associated with cuproptosis can be used as new biomarkers
to predict the prognosis of breast cancer patients. In addition, we found that immunotherapy may play a key role in breast
cancer treatment regimens. Levels of immune-associated cells and pathways vary significantly among risk groups of breast
cancer patients.

1. Introduction

With the improvement in medical treatment, the death rate
for breast cancer has dropped dramatically [1, 2]. A range of
treatments have been developed to combat the onset and
progression of cancer, such as brachytherapy for treating
various malignancies [3] and local breast surgery for metas-
tatic breast cancer [4]. RNA therapy for breast cancer
plays a significant regulatory role in cell-targeted therapy by
increasing or silencing the expression of specific proteins

[5] and includes emerging immunotherapy strategies, such
as intratumoral therapy and antitumor vaccines [6]. Despite
the rapid development of treatments, sometimes, a single
treatment fails to achieve the desired effect. Moreover, for
triple-negative breast cancer, which is more likely to relapse
and metastasize and has a low survival rate, there are a lack
of clear targets and limited therapeutic interventions [7].
Therefore, it is particularly important to find more effective
therapeutic schemes and regulatory targets for breast cancer.
In cancer development and progression, long noncoding
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Figure 1: (a) The samples were divided into 2 groups in keeping with the high and low expression of lncRNA. (b) The clinical
connectedness of heat map and lncRNA expression between the 2 groups. (c) ESTIMATE score. (d) Immune score. (e) Stromal score.
(f) Neoplasm purity. (g) Percentage of infiltrating immune cells. (h) Immunocell correlation diagram in cluster.
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Figure 2: Continued.
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RNAs play a crucial role [8]. It has been found that the long
noncoding RNA Neat1 promotes growth and metastasis of
breast cancer in some studies [9]. In triple-negative breast
cancer (TNBC), long noncoding RNAs (lncRNAs) increase
invasion, migration, tumor growth, and decrease apoptosis
[10]. There has been evidence that abnormally expressed
lncRNAs are associated with poor prognoses in TNBC tis-
sues. Due to these specific characteristics, lncRNAs have

emerged as novel diagnostic and prognostic biomarkers for
TNBC treatment.

We know that the nucleus contains copper and that
cancer cells contain higher levels of copper than normal
cells, but the mechanisms are poorly studied, and the
functional significance of more copper and the underlying
mechanisms are still poorly understood [11]. Copper
metabolism-related targets have been reported as potential
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Figure 2: Analysis of immune-related differences between the two groups. (a) T-cell regulatory (Treg) comparison between the two
subgroups. (b) T-cell comparison between the two subgroups. (c) T-cell CD4 memory resting between the two subgroups. (d) T-cell
CD8 between the two subgroups. (e) T-cell CD4 memory activated between the two subgroups. (f) TNK-cell activated comparison
between the two subgroups. (g) Mast cell resting comparison between the two subgroups. (h) Macrophage M0 comparison between the
two subgroups. (i) B-cell naive comparison between the two subgroups.
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breast cancer therapeutic targets, since they stimulate angio-
genesis and metastasis and are essential to cell proliferation
and survival [12]. The main method of cuproptosis depends
on the buildup of living copper ions. Copper ions directly
bind to the lipoacylated elements of the TCA cycle, resulting
in the aggregation and disorder of those proteins and block-

ing the TCA cycle, thus leading to macromolecule cytotoxic
stress and death [13, 14]. FDX1 is a key regulator of cuprop-
tosis and an upstream regulator of protein lipoylation [15].
For breast cancer patients, immunotherapy cannot be
ignored, and immune checkpoint blockade therapies have
been used in a variety of cancers [16, 17]. Metals are known
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Figure 3: (a) Forest map of 37 CuPro-related lncRNAs. (b) Heat map of the correlation between lncRNA and cuproptosis-related targets.
(c) A prognostic risk prediction model was constructed. (d) lncRNA heat map of the different levels of risk groups. (e–f) Seven clinically
relevant forest maps were analyzed by univariate Cox regression.
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to be important for metabolic activity; however, once excess
metals exceed the flexibility of cells to bind inert com-
pounds, they become toxic [18, 19]. Some data mining stud-
ies of cancer patients have shown upregulation of the
mitochondrial copper-chaperone and cochaperone proteins
COX17 and SCO2 [20]. The regulatory mechanism of the
copper-related pathway is important for breast cancer
development.

In this study, we hope to find a completely unique
lncRNA feature that can accurately predict the prognosis
of tumor patients, and at the same time, we will analyze
the possible role of cuproptosis-related lncRNA as a tumor
therapeutic target to find a key signaling pathway for the
treatment of breast cancer.

2. Materials and Methods

2.1. Collection and Grouping of Breast Cancer Data. The
RNA-sequencing and clinical data of The Cancer Genome
Atlas (TCGA) BRCA dataset were downloaded from TCGA
(https://tcga-data.nci.nih.gov/tcga/). The cohort consisted of
1098 carcinoma patients with relevant organic phenomenon
profiles and clinical characteristics, and 25 patients were
then excluded because of incomplete transcriptomic and
clinical information. The remaining data with complete
follow-up information (n = 1073) was included in our
dataset for more analysis.

2.2. Analysis of High and Low lncRNA Expression Groups.
First, we distinguished lncRNAs from total RNA. Through cor-
relation analysis, we obtained cuproptosis-related lncRNAs,
and univariate Cox regression analysis was applied to

obtain lncRNA-related prognoses. Moreover, the down-
loaded carcinoma samples were divided into 2 groups in
a step with the expression level of lncRNAs through non-
negative matrix factorization (NMF) clustering, namely,
the lncRNA high-expression cluster and the lncRNA
low-expression cluster. Heat maps of the high expression
cluster and therefore the low expression cluster were used
to analyze the correlation of clinical manifestations of the
samples. Then, the ESTIMATE algorithm and CIBERSORT
were applied to analyze the differences in the immune
microenvironment (stromal score, immune score, ESTI-
MATE score, and tumor purity) and immune cell infiltra-
tion between group 1 and group 2.

2.3. Construction of the Model and the Nomogram. The least
absolute shrinkage and selection operator (LASSO) and
multivariate Cox regression analyses are used in this analy-
sis; we obtained a prognostic model based on 16 lncRNAs.
At the same time, heat maps were drawn to show the expres-
sion in 1073 patients. Furthermore, to predict the prognosis
more efficiently, a nomogram was used. Before the nomo-
gram, we ran univariate Cox regression and multivariate
Cox regression analysis to determine which clinical charac-
teristics could be used as an influential factor.

2.4. Tumor Mutation Analysis. In the model, patient groups
with high-expression breast cancer and those with low-
expression breast cancer showed a difference. The gene
mutation burden of groups with high expression was calcu-
lated. Mutation counts were clearly observed in both the
high-expression and low-expression groups, and the rela-
tionship between mutations and risk was investigated.
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Figure 4: (a) Clinically relevant ROC curve of the model. (b) 1-3 year ROC curve of the model. (c) C-index curve of 7 clinical factories.
(d) Nomogram score and clinical characteristics.
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2.5. Functional Enrichment Analysis. Using differentially
expressed genes (DEGs) of the different levels of risk groups,
we ran gene ontology (GO) to identify potential pathways.
GO analysis showed significant enrichment of immune-
related molecules. They included body substance immune
reactions, modulating cell surface receptor signal pathway
substances, and receptor-mediated signal pathway immune
reactions.

2.6. Immune Cell Infiltration and Immune Function Analysis.
Based on the GO results, we explored more immune-related
studies. CIBERSORT was used to calculate the abundance of
immune cells, and a single-sample gene set enrichment
analysis (ssGSEA) was used to compare immune function
between different levels of risk individuals. A gene set
enrichment analysis (GSEA) was performed to analyze the
differences in pathways between the two groups.

2.7. Statistical Analyses. R (version 4.2.0 https://cran.r-
project.org/bin/windows/base/) and Perl (version 5.30.0.1;
https://www.perl.org/get.html) programming languages
were used to extract and process clinical information and
RNA sequences. The cutoff value for differentially expressed
FRGs was set at ∣log2fold change ∣ >0:5, and a false
discovery rate ðFDRÞ < 0:05 was used. The t test and chi-

square test were used to calculate whether the results were
significantly different.

3. Results and Discussion

3.1. Nonnegative Matrix Factorization (NMF) Clustering. It
can be seen from the figure that there were differences
between high-expression clusters and low-expression clus-
ters (Figures 1(a) and 1(b)). High lncRNA expression clus-
ters showed significant differences in ESTIMATE score,
immune score, stromal score, and tumor purity atmo-
spheres. The ESTIMATE score of high-expression cluster
patients was significantly higher than one of low expression
cluster patients (Figure 1(c)), and the immune score of high-
expression cluster patients was significantly higher than one
of low-expression cluster patients (Figure 1(d)). The stromal
score of the patients with high expression was significantly
higher than that of the patients with low expression
(Figure 1(e)), and tumor purity was significantly lower in
patients with high expression than in patients with low
expression (Figure 1(f)). We compared the high expression
and low expression of lncRNA, indicating important varia-
tions in tumor-infiltrating immune cells between the risk
cluster and the low-risk cluster. Comparing the two groups
shows that there is a difference in the proportion of infiltrat-
ing immune cells (Figure 1(g)). There were differences in
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Figure 5: Survival risk scoring model. (a, b) Survival rate of patients in the medium-high risk group with different tumor stages. (c) Survival
rate of women in the medium-high risk group. (d, e) Survival rate of patients in different age groups with high and low risk. (f, g) Survival
rate of patients in the low-medium risk groups with different T stages of tumor tissue. (h, i) Survival rate of patients in the medium-high risk
groups with different N stages of tumor tissue.
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immune cell content and the microenvironment between
patients with high lncRNA expression and patients with
low-risk lncRNAs, so there was a high correlation between
immune cells (Figure 1(h)).

3.2. Analysis of High- and Low-Expression lncRNA Immune
Cells. To check the variations in infiltrating immune cells
between the risky and low-risk teams, a box diagram was made.
The proportion of resting memory CD4 T-cells, naive B-cells,
and resting mast cells in the risky cluster was considerably
higher than that in the low-risk cluster. The proportion of T
helper cells in the risk cluster was higher than that in the low-
risk cluster (Figure 2).

3.3. Cuproptosis Genes Associated with Breast Cancer Have
Significant Prognostic Value. Thirty-seven related lncRNAs
were used as the prediction model (Figure 3(a)). A correla-
tion heat map was used to show the DEG correlations asso-
ciated with cuproptosis. (Figure 3(b)). LASSO multivariate
analysis was used to validate the model (Figure 3(c)). Risk
scores in different levels of risk clusters were distinguished
by heat maps (Figure 3(d)). Univariate results showed that

the model scores were different except for gender, and mul-
tivariate results showed that the model scores and age
regional units were different in high-risk and low-risk
groups (Figures 3(e) and 3(f)).

3.4. Construction and Evaluation of the Gene Prognosis
Model in TCGA. Similarly, it is possible to predict patient
survival based on the risk score (Figure 4(a)), and the area
under the curve (AUC) confirmed that the identified prog-
nostic characteristics predicted BRCA survival (AUC =
0:766, 0.808, and 0.745; 1 year, 2 years, and 3 years
(Figure 4(b)), while other scoring methods had a higher con-
cordance index (Figure 4(c)). By building a prognostic
model, patients can be scored according to their age, gender,
clinical stage of tumor, and other conditions, and the 1-3
year survival rate of patients can be predicted (Figure 4(d)).

3.5. Clinical Manifestations of the Low-Risk and High-Risk
Groups. The prognostic model was used to further study
patients according to tumor stage, age, sex, and so on as
the classification. Differences in tumor stages and ages were
observed between the high- and low-expression groups. The
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Figure 6: (a) PCA of all genes. (b) Different risks of cuproptosis-related genes. (c) Different risks of cuproptosis-related lncRNAs.
(d) Different risks of lncRNA expression PCA. (e) The model predicted survival in different risks. (f) The model predicted progression-free
survival in different risks. (g, h) Risk score distribution and survival status of breast cancer patients in different risks.
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Figure 7: Analysis of mutation burden in breast cancer samples. (a, b) Waterfall diagram of gene mutations in samples from the groups of
different risks. (c) Relationship between tumor mutation burden in samples from the groups of high-low risk. (d) Relationship between
survival rate in the high-low mutation burden group. (e) Relationship between survival rate in the high-low mutation burden group and
the high-high risk group.
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high-risk patient survival rate and survival rate were signifi-
cantly lower than those of the low-risk patients (Figure 5).

3.6. Different Stemness Statuses in the Low-Risk and High-
Risk Groups. PCA was used to analyze the BCSC-associated
lncRNA risk model, a comparison of 19 cuproptosis-related
coding genes and genome-wide expression profiles between
different risk individuals (Figures 6(a) and 6(b)). In the risk
model, there were different distribution directions between
the different risk groups (Figures 6(c) and 6(d)), indicating
that the risk model can divide breast cancer patients into
two parts, and the situation of different levels of risk patients
is different. Based on the survival rate and progression-free
survival rate, with further functional annotation, the risk
model of related genes in the breast cancer group and the sur-
vival rate of differentially expressed genes between different
levels of risk patients showed differences in the survival rate
of different levels of risk patients during the dry correlation
process. The survival rate of the high-risk group was relatively
low, and the survival rate of the high-risk group was relatively

low (Figure 6(e)). Prognostic values of risk models associated
with lncRNAs in TCGA cohort were evaluated. The Kaplan-
Meier survival analysis was performed for different levels of
risk patients based on the risk model and median risk score.
Based on the risk score, breast cancer patients were divided
into different risk levels, and the median risk score was
determined. Kaplan-Meier survival analysis showed a lower
overall survival in high-risk patients than in low-risk patients
(Figure 6(f)). In an attempt to explain the relationship
between risk scores and survival of breast cancer patients, risk
curves and scatter plots were used. Risk scores are correlated
with mortality rates (Figures 6(g) and 6(h)).

3.7. Independent Validation of Mutations. In the two groups
of patients with a genetic mutation burden calculation, it
was clearly observed that in patients with breast cancer,
significantly higher mutation counts and high mutation
rates were observed in the high-expression and low-
expression groups. In the high-risk group of patients with
low risk and with high and low mutation samples, the
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Figure 8: An analysis of gene ontology (GO) visualizing biological processes, molecular functions, and cellular components enriched by
DEGs (a, b).
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B cells naive
B cells memory
Plasma cells
T cells CD8
T cells CD4 naive
T cells CD4 memory resting
T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)
T cells gamma delta
NK cells resting

NK cells activated
Monocytes
Macrophages M0
Macrophages M1
Macrophages M2
Dendritic cells resting
Dendritic cells activated
Mast cells resting
Mast cells activated
Eosinophils
Neutrophils

(a)

B cell_TIMER
T cell CD4+_TIMER
Neutrophil_TIMER
Myeloid dendritic cell_TIMER

Risk
Risk score
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B cell memory_CIBERSORT
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mutation of counting was visible, with PI3CA, TP53, and
TTN genes being prone to light mutations, such as
Frame_Shift_Del and Missense_Mutation (Figures 7(a)
and 7(b)). In the risk models, there were differences in
tumor mutation burden (Figure 7(c)), and patients in the
low-risk group had a significantly lower survival rate than
those in the high-risk group (Figure 7(d)). The survival
rates of the high mutation group of patients and the
high-risk group of patients were lower than those of the
low mutation group and the low-risk group of patients
(Figure 7(e)); thus, the prediction model in the high-risk
groups for breast cancer survival prediction was statisti-
cally significant.

3.8. Immune-Related Functions and Pathways Are Enriched
in GO. GO analysis showed significant enrichment of several
immune-related molecules. These included the humoral
immune response, regulation of cell surface antigens of
receptor signaling pathways, receptor-mediated immune
response signal channels, activation of the signal transduc-
tion of the immune response, activation of cell surface
receptor signaling pathways of circulating immune globulin
mediating the humoral immune response, activation of the
B-cell activation of complement activation of the immune
response, B-cell receptor signaling pathways, and other
related immune pathways (Figures 8(a) and 8(b)).

3.9. The Immune Cell Infiltration Landscape in Breast
Cancer. In further exploration of the relationship between
ferroptosis and breast cancer-related lncRNAs and antitu-
mor immunity, tumor-infiltrating immune cells were found
to be significant in both groups. The correlation matrix of
the proportion of all tumor-infiltrating immune cells is
shown in Figure 9(a). The differences in different immune
cells, such as timer, CIBERSORT, CIBERSORT−ABS, and

QUANTISEQ, can be seen in the heat map of immune cells
(Figure 9(b)). B-cells, CD8+ T-cells, and DC scores in the
low-risk group were significantly lower than those in the
high-risk group (Figure 9(c)). Comparison of immune
function showed that the scores of cytolytic activity, HLA,
and inflammatory function in the low-risk group were
significantly lower than those in the high-risk group
(Figure 9(d)). A low-risk group had lower levels of PDHA1,
DLD, NLRP3, and other immune checkpoint molecules than
a high-risk group (Figure 9(e)).

3.10. Correlations Were Identified by Gene Set Enrichment
Analysis (GSEA). Biological functions and signal transduc-
tion pathways of lncRNAs related to cuproptosis and differ-
entially expressed cistrons in bad and low-risk teams were
used for gene set enrichment analysis (GSEA). The results
showed that in bad carcinoma patients, the expression of cell
cycle, complement and natural action cascade, cytokines,
and protein receptor interactions was upregulated. The
expression of the JAK STAT signaling pathway was signifi-
cantly downregulated (Figure 10).

3.11. Discussion. In recent years, the incidence of breast
cancer has been increasing [21], and people are also looking
for more effective diagnosis and treatment plans. With an
increasing number of treatment plans for breast cancer, we
know that many lncRNAs play a critical role in the develop-
ment of cancer [22]. For example, lncRNAs can inhibit the
progression of colorectal cancer by activating YAP [23].
lncRNAs promote liver cancer tumor growth by regulating
mir-154/PCNA/HBV cccDNA signal transduction and
HBV replication [24]. lncRNAs can regulate metabolism
in cancer [25, 26]. lncRNAs regulate intracellular and
extracellular-derived metabolism, thereby influencing the
behavior of cancer cells and regulating the tumor
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microenvironment [27, 28]. Long noncoding RNA (lncRNA)
also shows its regulatory role in cancer drug resistance [29].
In the past decade, RNA-based therapeutics have gained con-

siderable clinical attention, mainly through the use of anti-
sense oligonucleotides and small interfering RNAs [30].
Unfortunately, so far, no clinical trials have been conducted
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Figure 10: GSEA pathway was different between the high- and low-expression groups. (a) Cell cycle. (b) Chemokine signaling pathway.
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with lncRNA therapeutics. The role of long noncoding RNAs
as biomarkers is actively being explored, confirming their
prevalence as disease markers.

There is growing evidence that copper metabolism is a
key factor in promoting breast cancer [31, 32]. The immune
system is closely related to copper metabolism. In cancer
cells, copper supplements enhance the expression of pD-L1
at both mRNA and protein levels. Copper modulates key
signaling pathways that control PD-L1-induced cancer
immune escape and promote mediated degradation of PD-
L1. Interestingly, copper chelating agents increased tumor-
infiltrating CD8 T-cells and natural killer cells and slowed
tumor growth [33]. It may therefore be possible to change
copper metabolism and improve immune function by regu-
lating copper metabolism-related lncRNAs. Meanwhile,
improving copper metabolism may be an effective strategy
for breast cancer treatment. In our study, we identified 37
copper metabolism-related lncRNAs associated with breast
cancer prognosis. The proportion of resting CD4 T-cells,
naive B-cells, and resting mast cells was inhibited in the
high-risk group. In our study, consensus clustering of 37
prognostic lncRNAs showed that the two clusters were
higher in the group with high expression of the ESTIMATE
score, immune score, and stromal score lncRNA and lower
in the group with high expression of neoplasm lncRNA.
We know that the immune score is a biomarker for estimat-
ing overall breast cancer survival that is associated with
important immunophenotypic factors and that patients with
high immune scores exhibit therapeutic benefits from che-
motherapy and immunotherapy [34]. Univariate Cox
regression and LASSO Cox regression analyses were used
to construct a copper metabolism-related lncRNA profile,
including 19 copper metabolism-related lncRNAs. In our
study, this feature was shown to be a good predictor of over-
all survival, mutation burden, immune-related function, and
immunotherapy response in different levels of risk breast
cancer groups. A rosette was constructed to analyze the
likely 1-, 3- and 5-year overall survival rates of patients with
breast cancer [35]. It can be seen from our study that the
area under curve and AUC confirmed the prognostic
characteristics and predicted the survival of BRCA. The
consistency index of other scoring methods was higher.
Differences in tumor stage and age were significant
between the different levels of risk groups, and risk scores
could be used as predictors.

Immunity is essential to the treatment of tumors. In the
established clinical prediction model for carcinoma, the GO
enrichment analysis of differential genes within the high-
and low-risk teams showed that the biological processes
were concentrated in immune response−activated cell
surface receptor signaling pathway, circulating immuno-
globulin mediated by humoral immune response, B-cell
complement-activated immune response activation, and B-
cell receptor signaling pathway. The cell components were
enriched in immunoglobulin complex, immunoglobulin
complex, and the immunoglobulin complex pathway by
molecular enrichment. It is known that the immune path-
way is widely activated. In our study, patients at low risk
of breast cancer had a higher tumor mutation burden, and

it is known that a high tumor mutation burden (TMB) can
benefit immunotherapy across multiple tumor types [36].
The study found that the tumor mutation burden and spe-
cific immune cells were associated with the response, and
B-cell T follicular-assisted cell activation promoted the anti-
tumor response [37]. In our study, the T-cell CD4 memory
resting group, the B-cell naive group, and the mast cell rest-
ing group were significantly lower than the low-risk group.
Certain immune cells are more active in a low-risk mutation
burden. Consistent with the established model, lncRNAs
associated with ferroptosis play a vital role in immune regu-
lation. In our study, GSEA was enriched in the cell cycle
pathway. We know from the diagram that the cell cycle
pathway is upregulated in the high-risk group. Immunity is
closely related to the cell cycle [38], which has extensive
immunomodulatory effects mediated by CDK4/CDK6
inhibitors in the different levels of risk groups [39]. We
know that autophagy directly eliminates microbes inside
cells [40]. In addition, the relationship between neutrophils
and circulating tumor cells regulates cell cycle progression
in the blood and increases the metastatic potential of circu-
lating tumor cells [41, 42]. The expression of the high-risk
JAK STAT signaling pathway was significantly downregu-
lated. JAK_STAT was enriched in the different levels of risk
groups. The JAK/STAT signaling is a common intracellular
signaling pathway that regulates cell apoptosis and the
immune system [43]. In tumorigenesis, maintenance, and
metastasis, JAK/STAT signaling plays an important role
[44, 45]. Further experiments are needed to validate the
pathway analysis between the different levels of risk groups.

Our study has some limitations. First, our study relies on
TCGA public information, and this cuproptosis-related
lncRNA prognostic model needs further validation using
prospective, multicenter, real-world data. Second, our
study preliminarily discovered the connection between
cuproptosis-related lncRNAs and antitumor immunity.
The underlying mechanism must be further explored
through additional experiments.

4. Conclusion

In conclusion, we found cuproptosis-related gene that may
accurately predict the prognosis of carcinoma patients. The
current study observed that it could be used to classify
patients with BRCA according to their respective clinical
and molecular features. The novel prognostic model could
independently predict the risk associated with the survival
of patients with BRCA in the derivation and validation
cohorts, which indicated a strong predictive value. Patients
with high risk scores may experience an adverse immune
environment and have poor clinical outcomes. lncRNAs
related to cuproptosis could play a possible role in growth
immunity and become therapeutic targets for carcinoma.
Through our studies, we found that the JAK_STAT signaling
pathway may be an important pathway involved in immune
regulation. The potential mechanisms and their biological
functions in BRCA and cuproptosis -related genes remain
unclear and warrant further research.
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