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Abstract
Computational modelling of biochemical reaction pathways is an increasingly important part of neuroscience research. In 
order to be useful, computational models need to be valid in two senses: First, they need to be consistent with experimental 
data and able to make testable predictions (external validity). Second, they need to be internally consistent and independently 
reproducible (internal validity). Here, we discuss both types of validity and provide a brief overview of tools and technologies 
used to ensure they are met. We also suggest the introduction of new collaborative technologies to ensure model validity: an 
incentivised experimental database for external validity and reproducibility audits for internal validity. Both rely on FAIR 
principles and on collaborative science practices.
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Introduction

The large number of molecules and interactions underpin-
ning most biological phenomena call for in silico approaches 
to understand biochemical networks (Pollard 2013). This is 
especially true for neuroscience, where the interpretation of 
a molecular signalling network can have major implications 
on translational approaches to diseases and disorders. A 
good computational model makes testable predictions which 
can be used to narrow down the number of experimental 
investigations required to reach an understanding of a given 
phenomenon (Berro, 2018). With the newer multistate com-
putational models and tools (Bazzazi et al., 2018; Boutillier 
et al., 2018; Harris et al., 2016; Stefan et al., 2014; Stites  
et al., 2015; Stefan et al., 2012; Pharris et al., 2019) we 

can see the impact of modifying one aspect of a molecule’s 
function on all others, and how that affects the biochemi-
cal network as a whole, without needing to construct many 
different computational models, or run multiple in vivo or 
in vitro experiments.

These powerful aspects of modelling have not reached 
their full potential within neuroscience. This may stem in 
part from a lack of clarity on how our modelling approaches 
represent the biological mechanisms they claim to simulate 
(Berro, 2018; Mogilner et al., 2006) and the soundness of 
the models themselves. Two major questions can be asked 
about the validity of a computational model: 

1.	 How can we be sure that the model is representative of 
in vivo states?

2.	 How do we know the model is reliable?

The first question relates to the external validity of a model 
(how well the model fits with experimentally knowable 
data), the second relates to its internal validity (whether the 
model is soundly and consistently constructed).

This commentary provides two possible pathways to 
answer these questions about model validity. Both require 
a greater level of collaboration, both between biochemical 
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modellers and between modellers and their experimental 
counterparts. We believe by fostering such connections mod-
els will be better utilised, better parameterised, and embed-
ded more into the driving of neuroscientific inquiry.

External Validity: Comparing 
a Computational Model to Experimental 
Data

Computational models of biological systems are important 
tools: They can synthesise the current state of knowledge 
about a biological process into a coherent system. Using 
models, we can explore overall behaviours of a biological 
system that would be impossible to predict from just examin-
ing its component parts (Le Novère, 2015). Using computa-
tional models, we can quickly test a large number of possible 
scenarios. They are therefore especially useful for generating 
hypotheses about a system, and making testable predictions 
about its behaviour.

The predictive power of a computational model relies 
on the model being an accurate (enough) representation of 
biological reality. Modellers rely on experimental data to 
construct and constrain the model. Once a model is com-
pleted, experiments are needed to validate models, test 
model predictions, or select from competing models of the 
same process.

A biochemical modeller wants their model parameters to 
closely resemble the situation in vivo. This requires binding 
constants and concentrations specific to a specific cell type  
or functional component such as a dendritic spine. There 
are databases of biochemical parameters (Glont et al., 2020; 
Jeske et al., 2019; Sivakumaran et al., 2003; Wittig et al.,  
2012), but at this point they suffer from incomplete cover-
age, especially when it comes to data on signalling path-
ways. For instance, in one of our models of CaMKII activa-
tion (Stefan et al., 2012), only 27% of the model parameters 
were taken directly from experimental papers, another 13% 
came from previous modelling papers, 27% were derived 
from measurements found in the literature, and the rest  
( 33% ) has to be estimated in the course of model construc-
tion and validation.

Compounding this data scarcity is that much of these 
experimentally derived sources for reaction constants 
and concentrations come from decades-old research. This 
work is often of excellent quality, but does not cover many 
more recently discovered molecules and interactions. The 
urgent need for new experimental data for models is being 
approached in interesting ways, with frameworks such as 
FindSim (Viswan et al., 2018) encouraging the integration of 
multiscale models with experimental datasets, and the FAIR 
initiative improving the extraction of data from published 
studies to improve discovery, standardisation, and enable 

the re-use of this data (Wilkinson et al., 2016). These can-
not generate data which is not there though. As our in vivo 
techniques have improved, there has been a major shift in 
analysing the function of molecules in situ. The actual mech-
anisms that underpin function are often included quite late in 
how we currently construct and perceive biological theory 
(Lazebnik, 2002; Kennedy, 2017). This contrasts with bio-
chemical modellers, who are almost always concerned with 
mechanisms (Chen et al., 2010; van Riel, 2006).

Modellers do have an array of tools to work around this 
problem. We can run parameter sensitivity analyses to pin-
point the parameters that matter to a reaction network (Zi 
et al., 2008), and then estimate values that fit with experi-
mental outcomes. We can assess the robustness a reaction 
network, determining sloppy parameters, whose ’true’ 
value does not matter much to the behaviour of the model 
(Gutenkunst et al., 2007). Indeed it may be enough to focus 
experimental efforts on a few parameters that the model is 
most sensitive to, instead of measuring every single model 
parameter, which would be both experimentally costly and, 
for some parameters, unnecessary (Gutenkunst et al., 2007; 
Transtrum et al., 2015).

And yet, as we move to larger and more complex models, 
the question of how well these sensitivity and parameter 
identification analyses scale to larger contexts is still open 
(Babtie and Stumpf, 2017). Parameterisation techniques for 
large models have evolved rapidly to reduce the intracta-
ble computational load and to accommodate the sparsity of 
absolute datasets (Schmiester et al., 2020), but they do not 
eliminate the need to experimentally determine some key 
parameters.

Once built, a model can be tested against experimental  
data to establish its validity. A good model can make predic-
tions that go beyond the currently available data, and may 
even go beyond currently possible experimental techniques -  
this is indeed quite common in fields such as physics (see for  
instance Englert & Brout,  1964; Higgs,  1964; Guralnik  
et al., 1964; ATLAS Collaboration, 2012; CMS Collaboration,  
2012). This means that a modeller may predict the outcome of 
an experiment, but may never be able to conduct the experi-
ment itself, or even see it conducted.

Taken together, experiments can provide useful informa-
tion for computational modelling, from early on in model 
development to years after a model has been completed and 
distributed. For a fast-paced field with rich data such as 
neuroscience, where molecular understanding is constantly 
evolving, the ability to test hypotheses quickly and robustly 
against prior evidence is a valuable asset that modelling 
affords. There is a risk that a lack of biologically acquired 
parameters decouples modellers and experimenters. This 
causes work to be unnecessarily duplicated, or unfeasible 
avenues of research undertaken that could have been shown 
to be unwise with a single simulation or a simple in vivo test
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We suspect all modellers have a “wish list” of experi-
ments that would improve and accelerate their model devel-
opment, or test model predictions. But not all modellers have 
access to the necessary infrastructure and skills. Finding 
experimental collaborators is not always easy: There is not 
necessarily complete overlap between the experiments that 
would be informative to a computational modeller and the 
experiments that interest the experimentalist.

Incentivised Experimental Database

As we have seen, there is a gap between computational mod-
els and the experimental data needed to both constrain those 
models and test their outcomes. This is partly because exist-
ing data is not always published and shared, but partly also 
because some experiments have just never been conducted.

What is needed is a way of incentivising these experi-
ments, to persuade our experimentalist colleagues that there 
is some benefit to them for carrying them out. We propose 
one such way is to take some lessons from the past. Could 
we not present our experimental wishlist, specifying the data 
we need to complete or check our models, and offer a cash 
incentive for providing this data?

Offering cash rewards for solving scientific problems is 
not without precedent. Historically, Challenge Prizes drove 
major advancements in problems of navigation (e.g. The UK  
Longitude Act of 1714 lon, 1714) and aviation (e.g the 
Orteig Prize Brady, 2002). The Millennium Prize offers $1 
million for the solution of any of seven stated mathematical 
problems (Jaffe, 2006). Even more recently, foundations such 
as Nesta offer considerable sums of money for the solving  
of defined problems within a range of different fields (Puttick  
et al., 2014).

What we are suggesting is not quite financially on the 
same scale as this but captures some of that spirit; of incenti-
vising innovation to accelerate improvements in biochemical 
modelling. Our “problem” is that we have limited access to 
specific biochemical data necessary to accelerate the con-
struction and testing of complex dynamical models of bio-
chemical systems. Our solution is to reward experimenters 
who “solve” parts of this problem through the provision of 
this data.

We envisage this working thusly. Modellers submit a wish-
list of experiments to a database, with explicit instructions on 
the biological background, the model, the data needed, and 
(if available) a suggested experimental design. These experi-
ments are sorted into categories related to difficultly and the 
experimental methodology required to implement them. The 
relative difficulty or complexity of the experiment is linked to 
a cash reward, which not only compensates for the time and 
resources used but provides extra income for the lab to con-
tinue their own research. These “microgrants” would be split 

into two components – money up front for the experiment, 
with the bonus provided upon submission of raw data and doc-
umentation following FAIR principles (regardless of the nature 
of the outcome). The dataset publication would also include 
authorship and contribution information of all experimental 
collaborators, as well as a link to the original data request and 
the model it stemmed from, thus giving credit and facilitating 
provenance tracking for model parameters.

These ‘arranged’ collaborations may even prove more 
fruitful in connecting researchers exploring the same phe-
nomena through different approaches. This leads to our sec-
ond parallel intention for this database: prediction testing.

As initiatives like FindSim (Viswan et al., 2018) empha-
sise, models ideally exist in a dynamic cycle with experi-
mental research. Model outcomes produce predictions that 
are tested experimentally, which provides data to update 
the model to drive further predictions. This ideal scenario 
is rarely achieved however, and what we have is a mostly 
decoupled system where model predictions are not seen 
by experimental researchers, or only discovered after con-
vergently reaching the same outcome. Our database would 
encourage modellers to post the major predictions of their 
models which can then be validated by experimental work. 
This approach allows for a gradual and visible increase in the 
utility of modelling alongside experimental work. As models 
receive higher fidelity parameter sets, the predictions made 
will have more weight and power to guide real conceptual 
breakthroughs.

This provides another use of the modeller “wish list”, 
supplying experimenters with readily available predictions 
and a clearly defined direction for potentially fruitful future 
research. The results of these investigations are importantly 
just as valuable if they contradict the model as when they 
agree, leading in each case to publishable findings and 
model enhancement.

Thus, the incentivised experiment database provides 
a mechanism for long-term mutually beneficial cycles of 
models and experiments to arrive at a deeper understand-
ing of biological questions. Importantly, the cycle does not 
involve fixed teams of researchers. At any point, another 
experimentalist can claim an open experiment and contrib-
ute their data. And a modeller can pick up and refine an 
existing model. This brings us to the second issue around 
model validity: The “internal validity” of a computational 
model, i.e. its ability to be reproduced.

Internal Validity: Ensuring Reproducibility 
of Computational Model

The importance of reproducible research has received much 
attention in recent years across all areas of science (Baker,  
2016), including computational modelling of biological 
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systems (Mendes, 2018). Reproducibility is an important 
condition for model sharing and reuse (Cucurull-Sanchez 
et al., 2019; Scharm et al., 2018).

Much work has been done on how to ensure the reproduc-
ibility of computational work. Standards for reproducible 
computational research have been formulated both as stand-
alone guidelines (Sandve et al., 2013; Elofsson et al., 2019), 
and within the FAIR framework (Wilkinson et al., 2016).

Community efforts to ensure reproducible modelling of  
biochemical reaction systems include efforts to standard-
ise model specification (e.g. Hucka et  al., 2003; Zhang 
et al., 2020; Hedley et al., 2001; Le Novère et al., 2009; 
Touré et al., 2020; Schreiber et al., 2020; Waltemath et al.,  
2020), model databases (Glont et al., 2018; Malik-Sheriff  
et al., 2019), and standards for model annotation and docu-
mentation (Waltemath et al., 2011; Bergmann et al., 2014; 
Waltemath et al., 2020).

There is now also a journal specifically designed for rep-
lication studies of previous computational work (Hinsen & 
Rougier, 2019).

There are, however, persistent problems with model 
reproducibility. Not all modellers use available standards 
and share their code. Even for those who attempt to, there 
are often additional assumptions, e.g. about simulation 
parameters, model interfacing, or model data analysis that 
are not made explicit and that hinder future reproducibility 
(Waltemath et al., 2020).

To carefully annotate and document a model and ensure 
its reproducibility involves time and work. There is as yet 
little incentive or reward to doing this - the benefits of a 
model being reproducible often become clear years after it 
is first published, and scientific career paths are not currently 
structured to invite this level of foresight.

In theory, pre-publication peer review could pick up 
problems around reproducibility, but peer reviewers do not 
always have access to the code, computational resources, and 
time it would take to reproduce a model that they are review-
ing. Post-publication review or replication studies (Hinsen 
& Rougier, 2019) are valuable, but may come too late to 
salvage the original model.

There is thus room for a new robust process to ascer-
tain model reproducibility pre-publication, and even pre-
submission, so that any reproducibility gaps can be caught 
and addressed early.

Reproducibility Audits

In order to increase model reproducibility, we suggest the 
introduction of pre-publication reproducibility audits for 
modelling projects. This means that each project should 
involve a reproducibility auditor, whose role is to ensure 
the model is reproducible before it is published.

A reproducibility auditor would be a person familiar 
with the biological framework and modelling methodolo-
gies used, but who was not involved in the original model 
development. They would ideally not be part of the same 
research group as the original model developers, so that they 
do not share the workflows and implicit assumptions preva-
lent in that group.

When a computational model is ready for publication, 
the model developers send the model and write-up to their 
reproducibility auditor. The auditor attempts to run the 
model and reproduce the figures in the paper based on the 
information given to them, and identifies gaps in reproduc-
ibility. Both parties then work together to improve the docu-
mentation and ensure model reproducibility.

Once this is achieved, they submit the manuscript describ-
ing the model for publication together, with a short report of 
the reproducibility audit (steps taken, results obtained) in the 
appendix, and an author contribution statement specifying 
the role of the auditor.

The benefit for modellers is an external confirmation of 
reproducibility prior to publishing the model: possible gaps 
in documentation can thus be caught and fixed early.

For the field as such, the benefit is that there is an extra 
quality control step pre-publication. Journals could highlight 
this by introducing a “reproducibility audited” badge, similar 
to existing open science badges (Kidwell et al., 2016).

For the reproducibility auditor, the benefit is an opportu-
nity to establish a collaboration with another research group 
in their field and learn first-hand about their modelling meth-
ods and process. This could be especially useful for early-
career scientists just starting in a particular field. A simple 
reproducibility audit could even be an exercise assigned in 
a computational biology, biomedical informatics, or neuro-
science class.

Standardisation efforts would benefit from reproducibility 
audits in two ways: First, reproducibility audits provide a 
good incentive for adhering to standards and good practices, 
thereby popularising the standards. Second, reproducibility 
audits will generate feedback on both the usefulness and 
usability of the standards used, and can thus feed back into 
standards development.

How will modellers find their reproducibility auditors? 
This could be done fairly informally within existing col-
laborative network. Some institutions or consortia may also 
create the role of a reproducibility auditor or make repro-
ducibility audits part of the role of their research integrity 
advisors (Winchester, 2018).

For researchers not having access to these channels, 
there could also be a centralised online forum where peo-
ple can post a short description of the project, techniques 
used, skills expected of auditor, expected workload associ-
ated with auditing and an indicative time frame. This may 
provide especially valuable opportunities for scientists who 
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may not have access to mainstream scientific networks to 
act as auditors and thereby gain experience and establish 
collaborative ties.

Turning Recommendations into Best 
Practice

How can both initiatives be incentivised, monitored and 
validated?

If a scientist invests time and resources in contributing 
to the experiment database, or serve as a reproducibility 
auditor, what is in it for them? We see several possibilities. 
The “microgrant” model of (small) cash incentives for solv-
ing particular problems is not entirely new. In data science, 
the Kaggle platform (https://​www.​kaggle.​com/) challenges 
users to analyse data sets, sometimes (but not always) in 
competition for cash prizes. Over the last years, a wealth of 
interesting research papers have come out of Kaggle chal-
lenges. The potential for a similar crowd-sourcing approach 
to biomedical challenges has been recognised previously 
(Saez-Rodriguez et al., 2016). Additional incentives could 
be provided by opportunities for shared authorship and the 
establishment of new collaorations.

In the same way that Kaggle has been successfully used 
as a learning resource (Serrano et al., 2018), this is also a 
possibility here: Contributions to the incentivised experi-
mental database or reproducibility audits could be a learning 
experience, for instance within the framework of an under-
graduate assignment or Honours project. It could also be 
an opportunity for on-the-job learning for PhD students or 
postdoctoral researchers new to a particular field.

Our ideas fit within the bigger context of biocuration, in 
which datasets are structured, curated and annotated such 
that they adhere to FAIR-TLC principles (Howe et al., 2008; 
International Society for Biocuration, 2018). This movement 
has over the past decade or so striven to reframe data as an 
asset, that requires quality control and trust in those car-
rying this out (International Society for Biocuration, 2018; 
Gabrielsen, 2020).

Modellers arguably conduct biocuration in the course 
of the construction of their models. Parameters are chosen 
based on an expert assessment of the experiment that pro-
duced them, the use of these data are clearly defined, and 
there are standardised naming conventions for annotating 
model parts (Le Novère et al., 2005).

Our reproducibility audits therefore fall under the quality 
control aspect of curation, and can take much from recent 
guidance in this area (Tang et al., 2019). Here again, the idea 
of using curation as a teaching tool has already been brought 
up: Undergraduates have been shown to be just as capable at 
biocuration as experts after training (Mitchell et al., 2015), 
and from our own experience quickly acquire the proficiency 

required to critically evaluate model data inputs and out-
puts. This, if combined with the experimental database idea, 
could harness student expertise in driving model validation, 
expose potential researchers early in their career to FAIR 
principles, and introduce modelling methods as a way of 
structuring existing data into valuable and usable formats.

Ultimately, the ideas laid out here have to be tested and 
evaluated. If an incentivised experimental database with 
an attached microgrant scheme were to be implemented, it 
would make sense to monitor not only application and suc-
cess rates, but also completion of projects, data submission, 
and subsequent use, for instance in models and follow-up 
publications.

The use of reproducibility audits could easily be tracked if 
journals were to introduce a “reproducibility audited” badge. 
This would also allow an analysis of the impact (e.g. model 
downloads from repositories or paper citations) of audited 
vs non-audited models.

Conclusions

We show here that the fostering of collaborative practices 
has potential for improving the validity of biochemical mod-
els, both external and internal. These collaborations are 
designed to be mutually beneficial, bringing researchers in 
similar fields closer together whilst also addressing the chal-
lenge of model validity. Furthermore, they have the poten-
tial to both accelerate model development and increase the 
number of biologically-derived parameters available to all 
researchers. The specifics of how to exactly implement these 
ideas should also be collaboratively decided. By setting out 
a possible framework we now invite readers to discuss and 
debate how we can best turn these ideas into reality.
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