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Abstract
The rise of functional magnetic resonance imaging (fMRI) has led to a deeper understanding of cortical processing
of pain. Central to these advances has been the identification and analysis of “functional networks”, often derived
from groups of pre-selected pain regions. In this study our main objective was to identify functional brain networks
related to pain perception by examining whole-brain activation, avoiding the need for a priori selection of regions.
We applied a data-driven technique—Constrained Principal Component Analysis for fMRI (fMRI-CPCA)—that
identifies networks without assuming their anatomical or temporal properties. Open-source fMRI data collected
during a thermal pain task (33 healthy participants) were subjected to fMRI-CPCA for network extraction, and
networks were associated with pain perception by modelling subjective pain ratings as a function of network
activation intensities. Three functional networks emerged: a sensorimotor response network, a salience-mediated
attention network, and the default-mode network. Together, these networks constituted a brain state that explained
variability in pain perception, both within and between individuals, demonstrating the potential of data-driven,
whole-brain functional network techniques for the analysis of pain imaging data.

Keywords Functional MRI . Functional brain networks . Functional connectivity . Pain . Multivariate least-squares regression .

Principal component analysis . Hemodynamic responses . Attention

Introduction

The application of non-invasive neuroimaging techniques has
greatly enhanced our neurobiological understanding of pain
(Davis, 2011; May, 2008; Moayedi et al., 2018). Functional
magnetic resonance imaging (fMRI) has played a particularly
valuable role, leading to the discovery of a core set of
regions—including the thalamus, the anterior cingulate, so-
matosensory, and insular cortices—that are consistently acti-
vated by experimental pain (Davis & Moayedi, 2013; Iannetti
& Mouraux, 2010; Mouraux & Iannetti, 2018; Wilcox et al.,
2015).

Traditionally, fMRI research on pain has relied extensively
onmass-univariate analysis techniques to investigate the func-
tional role of individual regions in generating the pain expe-
rience. More recently, functional connectivity (FC) tech-
niques, which examine temporal correlations between re-
gions, have allowed researchers to determine how traditional
pain regions organize into larger networks. Characterizing
such networks (in terms of both spatial organization and func-
tion) is an important objective because (1) largely distributed
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patterns of activation likely provide a more reliable “signa-
ture” of pain than any local activation, where signatures have
the potential to be used in diagnosis and/or evaluations of treat-
ment efficacy (van der Miesen et al., 2019), and (2) understand-
ing network functionality informs our basic understanding of
existing treatments, for example, cognitive-behavioural therapies
(Eccleston et al., 2013), as well as burgeoning treatment avenues
like neuromodulation (Alo & Holsheimer, 2002) and real-time
fMRI feedback (Chapin et al., 2012).

In pain research, FC techniques have shown traditional
pain regions to be organized into distinct functional networks
serving sensory, emotional, cognitive or motor aspects of pain
(Wilcox et al., 2015). However, FC studies have often relied
on seed-based techniques, meaning that correlations between
brain regions are interrogated by selecting a voxel or region (a
“seed”) and modeling activity in other voxels as a function of
signal changes within the seed (Diano et al., 2016; Moayedi
et al., 2018; Wilcox et al., 2015). Estimated model parameters
represent the strength of each voxel’s functional connection to
the seed and can be used to construct a map of intercorrelated
regions, that is to say, a functional network (Moayedi et al.,
2018). Although powerful, this framework is limited by the
regions (or seeds) inputted as regressors. It is therefore impor-
tant to consider alternative methods that are data-driven, let-
ting functional networks emerge without relying on spatial
(i.e. regions-of-interest) or temporal assumptions (i.e. pre-
supposing the shape of the response elicited, as is typically
done in the univariate framework; Henson & Friston, 2007).

One such al ternat ive is Constra ined Principal
Component Analysis for fMRI (fMRI-CPCA). fMRI-
CPCA extracts functional brain networks from whole-
brain Blood Oxygen Level Dependent (BOLD) signal data
with variance constrained to that predictable from task
timing, and generates spatial maps, as well as estimates of
hemodynamic responses (HDRs) for each combination of
subject, task condition and brain network. The technique is
valuable in that it combines: (1) networks based on multi-
variate analyses, which interrogate the intercorrelated struc-
ture of task-based voxel data without submitting each voxel
to a separate statistical test as in univariate approaches (e.g.
seed-based connectivity techniques, where each voxel is
correlated to the seed), (2) networks extracted from BOLD
signal constrained to task-timing-related variance, which is
useful because task-optimized networks can bemore readily
associated with cognitive and behavioural functions by
analysing how network HDRs differ between task condi-
tions, and (3) data-driven network extraction, meaning that
no assumptions about the spatial or temporal properties of
networks are formally defined. Spatial and temporal as-
sumptions are avoided by analyzing all voxels in the brain
instead of selecting regions-of-interest and using a Finite
Impulse Response (FIR) model of task-evoked HDRs in-
stead of assuming a particular HDR shape, respectively.

In this paper, we used fMRI-CPCA to conduct a whole-
brain, data-driven extraction of functional networks involved
in pain. We analyzed a publicly available and previously pub-
lished dataset, posted on openneuro.org (accession number
ds000140; Gorgolewski, 2018; Woo et al., 2015), featuring
a thermal stimulation task. fMRI-CPCA delineated multiple,
dominant functional brain networks evoked by thermal stim-
ulation, obtaining estimates of their spatial configurations and
temporal response patterns. We then modelled subjective pain
ratings as a linear function of multiple network activations, to
verify the relevance of the networks detected to pain percep-
tion. Our fundamental goal was to identify the functional net-
works involved in processing noxious heat stimuli, explore
their responses and anatomy, and quantify their relationships
with pain perception. Based on research that has demonstrated
the organization of pain regions into distinct networks at rest
(described as sensory-discriminative, cognitive-evaluative, af-
fective-motivational, and motor networks; Davis & Moayedi,
2013; Wilcox et al., 2015), we hypothesized similar network
configurations to be evoked during experimental thermal pain
based on our fMRI-CPCA analysis.

Materials and Methods

The original study by Woo et al. (2015) provides detailed
information on participants, study design and data collection.
Here, we provide only a brief description for clarity.

Participants

33 healthy, right-handed adults (22 females, 11males) participat-
ed in the study, with a mean age of 27.9 years (SD= 9.0 years).
All participants provided informed consent and reported no prior
history of psychiatric, neurological or pain disorders. Ethical re-
view and approval were provided by the Columbia University
Institutional Review Board (Protocol number AAAE3743).
Since the data were anonymized and we performed a secondary
analysis, no local ethics review was required.

In our study, two participants (subjects 11 and 30) were
excluded because they received too few trials under each ex-
perimental condition (defined below), creating problems for
the fMRI-CPCA algorithm. This left 31 participants to be
analysed.

Thermal Stimulation

To elicit pain, a thermode device was placed on the volar
surface of the left forearm (TSA-II Neurosensory Analyzer
with a 16-mm Peltier thermode endplate, Medoc Advanced
Medical Systems). Thermal stimuli were delivered at specific
temperatures for 12.5 s each, with 3 s of ramp-up, 7.5 s at the
target temperature, and 2 s of ramp-down. Temperature levels
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ranged from 40.8 °C to 47.3 °C (study documentation and
participant results are available at https://openneuro.org/
datasets/ds000140/versions/00001).

fMRI Task

Participants completed 9 separate functional scanning ses-
sions. There were 3 types of sessions: “standard” runs, where
pain stimulation was received passively; “regulate-up” runs,
where participants were instructed to increase the intensity of
pain by cognitive control; and their counterpart, “regulate-
down” runs. The regulation manipulation was intended to en-
gage supplementary brain systems for pain regulation. For the
explicit purposes of our study, we focused on standard runs
only.

Each standard run began with an 18-s fixation cross pre-
sented on screen, followed by 11 consecutive trials. Each trial
was 33–41 s long and featured the same progression: 12.5 s of
thermal stimulation, 4.5–8.5 s (jittered) of pre-rate rest, 11 s of
pain rating (completed on screen using a hand-held remote),
and 5–9 s (jittered) of post-rate rest. The rating period in-
volved two kinds of rating; first, participants decided whether
a stimulus was painful or not (this phase lasted 4 s), then
participants rated the intensity of their sensation on a Visual
Analogue Scale from 0 to 200, where the interval 0–100 rep-
resented non-painful warmth, and 100–200 represented the
intensity of a stimulus perceived as painful. The scale was
presented on screen, and participants were instructed as to
the meaning of each interval prior to scanning. The specific
order of temperatures administered throughout each run can
be found in Woo et al. (2015). For a schematic illustration of
task design, see Fig. 1.

Image Acquisition

Whole-brain functional images were collected on a 3 T Philips
Achieva TX scanner at Columbia University’s Program for
Imaging in Cognitive Science (PICS). Structural images were
collected with high-resolution T1 spoiled gradient recall im-
ages (SPGR), which allow for anatomical localization and
warping to standard space. For functional EPI image collec-
tion, the following scanning parameters were set: TR =
2000 ms, TE = 20 ms, field of view = 224 mm, 64 × 64 ma-
trix, 3 × 3 × 3 mm3 voxels, 42 interleaved slices, parallel im-
aging, SENSE factor 1.5. E-Prime software (PST Inc.) was
used to control stimulus presentation and collect behavioural
data.

Preprocessing

For our analysis, all preprocessing was completed in SPM 12.
Structural and functional scans were reoriented manually,
such that the origin was placed on the anterior commissure,

and the AC-PC plane was oriented horizontally. Slice-time
correction was performed to mitigate the temporal lag in slice
acquisition across the 2-s TR, using slice 21 as a reference.
Realignment algorithms were applied to counteract displace-
ment of voxels due to head movement, and runs that exceeded
movement parameter thresholds of 4.5 mm in either z, x, y
direction, as well as pitch, yaw or roll, by at least 50 scans,
were removed from the analysis (subject 10, run 5 and 6;
subject 2, run 5; subject 4, run 1, 4 and 5). For each partici-
pant, functional scans were co-registered to their correspond-
ing structural images, and structural T1 scans were segmented
into gray matter, white matter, cerebrospinal fluid, meninges
and skull components. Finally, raw functional data were nor-
malized to MNI template space (with a voxel size of 3 × 3 ×
3 mm) and smoothed with a 6 × 6 × 6 FWHM Gaussian
kernel.

For detailed explanations of preprocessing methods, along
with specific versions of software tools used, refer to supple-
mentary materials.

Task-Based Whole-Brain Network Analysis

Constrained Principal Component Analysis (CPCA) is a sta-
tistical technique that combines multivariate least-squares re-
gression with principal component analysis (Hunter &
Takane, 2002; Takane & Shibayama, 1991; Takane &
Hunter, 2001). It can be used to perform whole-brain analyses
of fMRI BOLD signal data. When applied to fMRI, it iden-
tifies multiple functional networks involved in a task and es-
timates fluctuations in BOLD signal for each network, over a
specified interval of time. Further statistical tests can be used
to quantify the interactions between networks, correlational
relationships between network activation and behavioural
measures, and the effect of experimental manipulations on
the activation of each network.

Broadly speaking, fMRI-CPCA involves two steps. First,
multivariate least-squares multiple regression is used to isolate
variance in BOLD signal that is predictable from the timing of
stimulus presentation, after which the variance is said to be
“constrained” to task timing. This first step is referred to as the
external analysis. Second, a principal component analysis
(PCA) is conducted on the constrained portion of the variance
in BOLD signal, and the extracted components represent sys-
tems of functionally interconnected voxels (i.e. functional
brain networks) related to the task. This step is referred as
the internal analysis. Importantly, applying PCA after the re-
gression ensures that the networks identified are based on
task-related information only. This is a defining feature of
fMRI-CPCA and distinguishes it from other applications of
PCA (or ICA) used in fMRI. In fMRI-CPCA, the variance
shared between principal components and task timing is max-
imized, thus avoiding any contamination of the solution by
variability that is not predictable from task timing. Ultimately,
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fMRI-CPCA outputs brain activity maps that can be overlaid
on a structural image (for example, in applications like
MRIcron [https://www.nitrc.org/projects/mricron]), as well
as estimated hemodynamic response shapes (plotted over
post-stimulus time) for each combination of network,
subject and task condition. The next few paragraphs
will elaborate on specific matrices and equations
required to implement the analyses.

In order to perform the external analysis, twomatrices must
first be prepared. The Z matrix (or activation matrix) contains
the BOLD data for all runs, with each voxel represented as a
single column, and each full-brain scan represented as a single
row. In the current study, 31 subjects went through nine runs
each, with 209 scans per run. Six runs were removed due to
excessive head movement (see section “2.5. Preprocessing”),
leaving a total of 42,427 rows (full brain scans) and 79,522
columns (voxels) in the Z matrix. The mean value for each
voxel was centered to zero for each run separately, and the
variables standardized (such that the standard deviations were
set to one for each run separately). The G matrix (or design
matrix) contains a Finite Impulse Response (FIR) model of the
BOLD signal based on stimulus presentation timing; unlike
more conventional models, the FIR model does not impose a
predetermined HDR shape on the dataset (which is commonly
assumed to aid in determining task-relevant activations in
BOLD signal). Instead, a value of one is placed into cells of
G for which the BOLD signal is to be estimated, and a value of

zero is in all other cells—thus, theGmatrix simply defines the
time intervals during which we expect to see task-relevant
activations. The number of rows in the G matrix will equal
the number of rows in the Zmatrix, but the number of columns
is equal to the number of post-stimulus time points (time bins)
for which the BOLD signal is to be predicted, multiplied by
the total number of conditions and the total number of sub-
jects. The G matrix is also standardized for each individual
run. We then regress the Z matrix onto the G matrix,

Z ¼ GC þ E;

where C = (G ′G)−1G ′ Z is a matrix of timepoint- and voxel-
specific regression weights that satisfy the least-squares crite-
rion. When C is applied to G it provides a matrix of BOLD

signal values predicted from task-timing, scans bZvoxels orGC. E
represents the residual signal (i.e. signal that is not predictable
from task-timing), which is disregarded in the rest of the anal-
ysis. As an additional note, E can be further analysed exactly
like GC; such an analysis would produce the dominant net-
works that are not predictable from task timing, which may be
those engaged during off-task periods, or task on processes
that span the whole series of trials but are not specifically
elicited by the onset of tasks. This type of analysis was not
carried out here and is beyond the scope of this paper.

The next stage of fMRI-CPCA is the internal analysis,
which typically involves application of a principal component

Fig. 1 Schematic illustration of task design adapted from Woo et al.
(2015). Every run was preceded by an 18 s fixation cross presented on
screen. Every trial began with a 12.5 s thermal stimulus, followed by a

pre-rate anticipation period (4.5–8.5 s, jittered), a 4 s rating period to
judge if the stimulus was painful or not, a 7 s pain rating period using a
VAS scale, and a post rate rest period of 5–9 s (jittered)
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analysis (PCA) to the constrained, task-related signal (GC).
This identifies correlated structure underlying the voxel data,
grouping correlated voxels into components that represent
functional brain networks. Importantly, these components will
be optimized to be task-related, because GC contains task-
related variance only. PCA is achieved through singular value
decomposition of GC:

UDV 0 ¼ SVD GCð Þ
where U is a matrix of left singular vectors, D is a diagonal
matrix of singular values, and V′ is a matrix of right singular
vectors. In matrix U, columns represent components, and
rows represent scans. The values in matrix U are “component
scores” and provide an indication or “score” of how important
each component is for each scan. In matrix V, columns repre-
sent components, and rows represent voxels. Cells of V can be

rescaled by VD=
ffiffiffiffi
N

p
to obtain “component loadings”—corre-

lation coefficients indicating the correlation of task-related
BOLD signal in each voxel with the respective component
scores. Voxels that are highly correlated with a given compo-
nent’s “component scores” form the brain regions that define
the functional network represented by that component.
Notably, rescaling right singular vectors in V allows them to
be interpreted as correlations between voxels and networks,
while also providing a better approximation of the inputted
matrix GC by incorporating the variance accounted for by
each network. To visualize a brain activity map for each net-
work, columns in rescaled Vwere overlaid on a brain template
in MRIcron and thresholded to display only the voxels with
the most dominant loadings (e.g. top 10% absolute values). In
the current study, we orthogonally rotated and rescaled the V
matrix prior to display, using a varimax solution with 500
iterations (Abdi & Williams, 2010; Bryant & Yarnold, 1995;
Kaiser, 1958).

PCA identifies a large number of components, but a select
few can be extracted (the components that account for the least
amount of variability are considered noise, or brain activity that is
unlikely to be reliable). Various methods for component selec-
tion exist; in this study we used the elbow method. This method
relies on visual inspection of the scree plot of singular values
(Cattell, 1966; Cattell & Vogelmann, 1977). When plotted, sin-
gular values (which are contained inD) produce a line that grad-
ually approaches zero as components account for less and less
variance. In the elbow method, components are selected for ex-
traction by locating the first abrupt increase in variance—relative
to the baseline variance accounted for by the majority of
components—and extracting the associated component followed
by all components that account for a greater proportion of vari-
ance (Kodinariya & Makwana, 2013). In this study, 4 compo-
nents were retained and varimax rotated. We attempted addition-
al analyses with a greater number of components retained, to
ensure the validity of the chosen threshold. Additional networks

did not substantially improve the solution, only marginally in-
creasing variance explained and failing to detect new and infor-
mative regions/networks, instead fragmenting networks previ-
ously identified in the four-component solution.

After the external and internal analyses are complete, a
final step is applied to produce estimates of HDR shapes as-
sociated with each network. This is achieved by relating com-
ponent scores (in matrix U) back to stimulus presentation
timing (coded in G), and computing P such that:

U ¼ GP;

where P contains “predictor weights”—these are weights that
estimate the intensity of each component for the time bins
specified in G. When plotted over post-stimulus time, predic-
tor weights reveal the unique HDR shapes elicited by each
subject and condition within each network, for the specified
interval of time. In this study, predictor weights were averaged
over subjects before plotting. Further, predictor weights were
averaged over post-stimulus time to compute overall intensity
values for network activation; more detail on this is provided
below.

Preparation of G

The goal of the current study was to determine how the brain
configures itself when processing pain, and to use the brain
networks detected to generate a model of subjective pain per-
ception. Accordingly, we formatted the G matrix such that
separate HDR shapes would be produced for high and low
temperature conditions. The division was based on the median
temperature administered across all trials, including regulation
runs (the median temperature was 44.3 °C, any stimulus that
was equal to or less than 44.3 was assigned to the “low”
temperature condition; the rest were “high”). We examined
brain activity during thermal heat portions of the experimental
task only, and only included standard runs in the analysis to
avoid capturing brain systems for cognitive self-regulation
over pain perception. The task-relevant time interval (encoded
in G) was defined as the 16 s immediately following thermal
stimulus presentation; in this way, the entire duration of the
stimulus and 3.5 s thereafter were accounted for. Because each
full-brain fMRI scan was completed in two seconds, HDRs
were estimated for eight post-stimulus time bins. TheGmatrix
therefore consisted of 496 columns (2 conditions × 31 subjects
× 8 time bins), and 42,427 rows (equal to the number of rows
in the Z matrix).

Preparation of Network and Rating Data for Multiple
Regressions

For each network, the predictor weights produced in the final
step of fMRI-CPCA define the unique HDR shapes associated
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with each condition, over the specified 16-s time interval. To
model pain perception from brain activation, it was preferable
to compute a single value that would capture the intensity of
the response. In this case, due to exploration of the HDR
shapes obtained, network activation intensity was estimated
by averaging predictor weights (i.e. estimated BOLD signal)
over the entire post-stimulus time interval. This yielded 248
estimates in total, one for each temperature category for each
of the four networks detected by fMRI-CPCA for every
participant.

Pain ratings were subjected to a similar procedure: ratings
associated with each temperature condition were averaged
over trials to obtain participant-specific estimates of pain per-
ception during high- and low-temperature stimuli, yielding 62
estimates in total.

Multiple Regressions

Two separate multiple linear regression analyses were con-
ducted on pain rating and network activation data.

Modelling Within-Subject Pain

The first of these modelled changes in perceived pain as a
function of changes in the intensity of network activations.
The fundamental goal here was to examine how a change in
rating corresponded with changes in activation intensities be-
tween high and low temperatures. All brain networks detected
by fMRI-CPCA (component 3 was excluded because it
reflected a movement artifact, see section "3. Results") were
inputted as predictors to explain changes in pain rating:

ΔRating∼1þΔComponent1þΔComponent2

þΔComponent4:

To evaluate model fit beyond R2, fitted values were plotted
against, and correlated with, the response variable using
Pearson’s r correlation coefficient.

Modelling Between-Subject Pain

To investigate the relationship between perceived pain and
network activation intensity across subjects, we applied a
bootstrap-like regression procedure. Samples of size n = 31
were drawn from the dataset of condition- and participant-
specific estimates of pain ratings and network activation in-
tensities (see section “2.8. Preparation of Network and Rating
Data for Multiple Regressions”). Each participant contributed
one pain rating (and its corresponding network intensities),
selected at random, and every sample was a near-balanced
combination of ratings greater than 100 (i.e. painful) and rat-
ings less than 100 (i.e. warm). The prevalence of pain in the

sample was maintained between 45% and 55% (non-
inclusive).

All brain networks detected by fMRI-CPCA (components
1, 2, and 4) were then used to model the pain rating variable,

Rating∼1þ Component1þ Component2þ Component4;

for every sample drawn (305 samples in total). This effective-
ly treated the regressors as random rather than fixed effects
(Fox, 2015), and it provided empirical bootstrap distributions
for relevant statistics like regression coefficients, R2 and mod-
el significance as determined by F-test, from which estimates
of each metric or model parameter could be obtained.
Confidence intervals (95%) were calculated non-
parametrically using percentiles (Fox, 2015).

Model fit was further evaluated by determining the accura-
cy with which fitted values distinguished between pain and
warmth. This was done by converting the ratings predicted by
the model (a continuous variable) into a categorical outcome,
pain or non-pain, based on the 100-point pain threshold spec-
ified by the VAS scale. For every model, the predicted binary
outcomes were compared to the true state of affairs in order to
generate estimates of accuracy (the proportion of total cases
that were correctly classified as either pain or warmth), sensi-
tivity (the proportion of pain cases that were correctly classi-
fied as pain) and specificity (the proportion of non-pain cases
that were correctly classified as warmth). This provided em-
pirical bootstrap distributions and corresponding estimates
(with percentile intervals) of model accuracy, sensitivity and
specificity. All regression analyses were completed in
MATLAB R2019a (scripts available from https://github.
com/MatteoDamascelli/Multiple-Functional-Brain-
Networks-Related-to-Pain-Perception-Revealed-by-fMRI.).

Results

Summary of fMRI-CPCA Output

The scree plot of singular values indicated that four compo-
nents should be extracted. Components 1, 2, 3, and 4
accounted for 21.47, 7.26, 4.95, and 3.74% of task-related
variance in BOLD signal, respectively. Component images
and estimated HDR shapes are displayed in Figs. 2, 3, 4, 5,
along with network activation intensities for each temperature
category (box plots).

Component 1 was primarily comprised of a) motor areas,
including the primary motor cortex (M1), supplementary mo-
tor area (SMA) and cerebellum, b) visual areas, including the
lateral occipital cortex (LO), and c) the primary somatosenso-
ry cortex (S1). Component 2 featured a frontoparietal activity
pattern that included activation peaks in the anterior cingulate
cortex (ACC), dorsolateral prefrontal cortex (dlPFC), anterior
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Fig. 2 a-cComponent 1. a Three-dimensional rendering of Component 1
(based on the top 10% of component loadings) and estimated HDRs
associated with this network over the course of one thermal stimulation
trial. The red bar placed over x-axis tick labels indicates the duration of a
thermal stimulus (12.5 s). Estimated HDRs were obtained by averaging
the FIR-based predictor weights for each condition level and plotting
them as a function of post-stimulus time. Error bars given by standard
error. HDR = hemodynamic response. b Boxplots illustrating the

distributions of Component 1 BOLD signal across participants, for both
high and low temperature stimuli. BOLD signal was first averaged over
the entire post-stimulus time interval for each participant and each con-
dition. Themean is given by ×. cHorizontal cross-sections of Component
1 (only the top 10% of component loadings are shown). Positive loadings
in red, threshold = 0.17, max = 0.33. No negative loadings. Blue values
indicate the MNI coordinate of each slice in the z direction

Fig. 3 a-cComponent 2. a Three-dimensional rendering of Component 2
(based on the top 10% of component loadings) and estimated HDRs
associated with this network over the course of one thermal stimulation
trial. The red bar placed over x-axis tick labels indicates the duration of a
thermal stimulus (12.5 s). Estimated HDRs were obtained by averaging
the FIR-based predictor weights for each condition level and plotting
them as a function of post-stimulus time. Error bars given by standard
error. HDR = hemodynamic response. b Boxplots illustrating the

distributions of Component 2 BOLD signal across participants, for both
high and low temperature stimuli. In both cases, BOLD signal was first
averaged over the entire post-stimulus time interval for each participant
and each condition. The mean is given by ×. c Horizontal cross-sections
of Component 2 (only the top 10% of component loadings are shown).
Positive loadings in red, threshold = 0.09, max = 0.21. No negative load-
ings. Blue values indicate the MNI coordinate of each slice in the z
direction
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Fig. 4 a-cComponent 3. a Three-dimensional rendering of Component 3
(based on the top 10% of component loadings) and estimated HDRs
associated with this network over the course of one thermal stimulation
trial. The red bar placed over x-axis tick labels indicates the duration of a
thermal stimulus (12.5 s). Estimated HDRs were obtained by averaging
the FIR-based predictor weights for each condition level and plotting
them as a function of post-stimulus time. Blue coloring indicates negative
loadings; graphs should be interpreted as displaying the intensity of de-
activation instead of activation. Error bars given by standard error.

HDR = hemodynamic response. b Boxplots illustrating the distributions
of Component 3 BOLD signal across participants, for both high and low
temperature stimuli. In both cases, BOLD signal was first averaged over
the entire post-stimulus time interval for each participant and each con-
dition. Themean is given by ×. cHorizontal cross-sections of Component
3 (only the top 10% of component loadings are shown). Negative load-
ings in blue, threshold = −0.08, max = −0.16. Positive loadings in red,
threshold 0.08, max = 0.09. Blue values indicate the MNI coordinate of
each slice in the z direction

Fig. 5 a-cComponent 4. a Three-dimensional rendering of Component 4
(based on the top 10% of component loadings) and estimated HDRs
associated with this network over the course of one thermal stimulation
trial. The red bar placed over x-axis tick labels indicates the duration of a
thermal stimulus (12.5 s). Estimated HDRs were obtained by averaging
the FIR-based predictor weights for each condition level and plotting
them as a function of post-stimulus time. Blue coloring indicates negative
loadings; graphs should be interpreted as displaying the intensity of de-
activation instead of activation. Error bars given by standard error.

HDR = hemodynamic response. b Boxplots illustrating the distributions
of Component 4 BOLD signal across participants, for both high and low
temperature stimuli. In both cases, BOLD signal was first averaged over
the entire post-stimulus time interval for each participant and each con-
dition. Themean is given by ×. cHorizontal cross-sections of Component
4 (only the top 10% of component loadings are shown). Negative load-
ings in blue, threshold = −0.06, max = −0.14. Positive loadings in red,
threshold 0.06, max = 0.07. Blue values indicate the MNI coordinate of
each slice in the z direction
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and posterior insula (aIns and pIns), and thalamus.
Component 3 was limited to the outer edge of the cortex
(specifically the frontal and occipital poles) and the longitu-
dinal fissure and was mostly composed of negative loadings
(i.e. it became deactivated during stimulation). This particu-
lar configuration was biologically untenable and resembled
no established networks; it was most likely summarizing
head movement that was coordinated with the application of
thermal pain. Component 4 was characterized by deactivations
in areas conventionally associated with the default mode net-
work, including the posterior cingulate cortex (PCC), medial
prefrontal cortex (mPFC), precuneuous and angular gyrus
(AnG). Detailed anatomical descriptions for all networks are
found in supplementary information (supplementary tables 1–3).

Regressions

To relate these networks back to pain perception, wemodelled
variability in pain ratings as a linear function of activation
intensities in all networks, both within and across individuals.
The dataset used to model pain ratings consisted of pain rat-
ings and network activation intensities for each temperature
category (i.e. high and low) within each participant.
Descriptive statistics (means and standard errors) for these
data are found in supplementary table 4.

Within-Subject Pain

For within-subject pain, the model included temperature-
dependent changes in network activation intensity for all func-
tional networks identified by fMRI-CPCA (components 1, 2
and 4), and explained 39.7% of the variance in temperature-
dependent changes in pain rating (R2 = 0.397;F(3, 27) = 5.9, p
= .003), or 32.9% when adjusted for the number of predictors
(R2

adjusted = 0.329). This indicates that changes in pain ratings

are predictable from changes in BOLD signal in the functional
networks identified, according to:

change in rating∼−138:94 C1 BOLD signal intensity changeð Þ

þ 201:39 C2 BOLD signal intensity changeð Þ þ

112:07 C4 BOLD signal intensity changeð Þ þ 40:78:

The accuracy of predicted scores was evaluated by taking
the standard deviation of the residuals or the Root-mean-
square error (RMSE), which was 18.27. As shown in
Table 1, components 2 and 4 were the only statistically sig-
nificant contributors (Component 2: β = 0.654, p = .001;
Component 4: β = 0.482, p = .011). Also of note,
Component 2 predicted increases in pain based on increases
in its activation, whereas Component 4 predicted increases in
pain based on increases in its deactivation, given that it

consisted primarily of negative loadings (i.e. its intensity
values represented deactivation, not activation, intensity).

To further evaluate model fit, changes in pain rating were
plotted against changes predicted by the model in Fig. 6. The
two variables were significantly correlated (r = 0.630,
p < .001). Importantly, this model shows that the networks
identified by fMRI-CPCA, as a whole, capture variations in
pain perception at the within-subject level.

Between-Subject Pain

Bootstrapped regression models of pain ratings, with all func-
tional networks inputted as predictors, explained 28.6% of the

variance in pain rating data on average (R2 = 0.286,
CI95% = [0.079, 0.475]), or 20.7% when adjusted for the num-
ber of predictors (R2

adjusted = 0.207). F-tests for the variance

accounted for by each model revealed that 65.9% of the time,
models were significant at the .05 level with a median p value
of .023 (see Fig. 7).

The accuracy of predicted pain ratings was evaluated by

averaging RMSE across all re-sampled models (RMSE =
37.24; Fig. 7). Estimated regression coefficients, their stan-
dard errors and confidence intervals are given in Table 2;
components 2 and 4 were the only significant predictors of

pain rating (Component 2: β = 0.42, CI95% = [0.12, 0.64];

Component 4: β = 0.26, CI95% = [0.09, 0.44]). Further, stan-
dardized coefficients showed that Component 2 made the
most important contribution to the model, and its activation
intensity was positively associated with pain ratings. By con-
trast, Component 4 deactivation intensity was positively asso-
ciated with pain ratings. Figure 8 provides a schematic sum-
mary of these relationships between networks and pain per-
ception. Overall, this model shows that—as a whole—the
networks delineated by fMRI-CPCA are sensitive to be-
tween-subject variability in pain perception.

To evaluate the model’s ability to differentiate be-
tween painful and non-painful states, we converted true
ratings and predicted ratings into binary categories (i.e.
pain or non-pain, as described in method) and calculat-
ed accuracy, sensitivity and specificity of classification

Table 1 Within-subject pain: estimated regression coefficients and
related statistics

Predictor b (S.E.) β t p value

(Intercept) 40.78 (7.19) 5.67 0.000

Component 1 -138.94 (79.41) −0.29 −1.75 0.092

Component 2 201.39 (54.54) 0.65 3.69 0.001

Component 4 112.07 (40.77) 0.48 2.75 0.011

b = unstandardized regression coefficient, β = standardized regression co-
efficient, S.E. = standard error, p-values are two-tailed
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for every resampled model; Supplementary Figure 1
demonstrates this procedure for one bootstrap sample.
Empirical bootstrap distributions for accuracy, sensitivi-
ty and specificity are shown in Fig. 9. Estimates (ob-
tained by averaging) were 68.83%, 59.17% and 77.10%,
respectively. Confidence intervals show that only accu-
racy and specificity were significantly higher than
chance level (50%). This indicates that the overall ac-
curacy of the model is driven by its specificity, or its
ability to correctly identify non-pain (more precisely,
specificity is the fraction of pain ratings below 100
correctly classified as “non-pain”). It appears that the

predicted ratings tend to better approximate ratings be-
low the pain threshold than ratings above it, such that
when ratings are converted to the binary variable “pain”
or “non-pain”, ratings above the threshold are more of-
ten miscategorized than ratings below it.

Discussion

In this study, distinct functional connectivity networks for
pain were revealed by fMRI-CPCA. The networks encompass
a variety of brain regions consistently active in response to

Fig. 6 a-d Assessing model fit for within-subject pain. Temperature-
dependent change in pain ratings plotted against change in BOLD signal
for Component 1 (a), Component 2 (b), and Component 4 (c); true
changes are shown alongside predictions made by the linear regression

model. d True change in pain ratings plotted against change in ratings
predicted by the model. The strength and significance of the relationship
is given by Pearson r = 0.630, p < .001

Fig. 7 Assessing model fit for between-subject pain. Histograms, kernel
density estimates, and average bootstrap estimates for R-squared, adjust-
ed R-squared, Root-mean-square Error (RMSE) and model significance
afforded by F-test (determines if a model fits significantly better than one
based on a constant term only). Means and percentile intervals for the first

three figures: R2 ¼ 0.286, CI95% = [0.079, 0.475]; R2
adj: = 0.207,

CI95% = [−0.023, 0.417]; RMSE = 37.238, CI95% = [31.247, 43.404].
For model significance: 65.9% of models were significant at the .05 level,
pmedian = .023
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pain, including MI, SMA, cerebellum and SI (Component 1),
the ACC, insular cortex, and thalamus (Component 2), and
mPFC, hippocampus, para-hippocampus and precuneus
(Component 4) (Apkarian et al., 2005; Atlas et al., 2014;
Schweinhardt & Bushnell, 2010). Within participants, chang-
es in perceived intensity related to low and high temperatures
were associated with the magnitude of change in BOLD
across networks. While falling short of accurate classification,
the magnitude of BOLD activation in functional networks was
significantly associated with pain intensity between partici-
pants. Future development of fMRI-CPCA in the context of
pain is warranted to further explore the brain in pain.

Over and above capturing the activation of known pain re-
gions, fMRI-CPCA integrated these brain regions into multiple

functional networks. Although the specific parcellation observed
here is unique, it is largely congruent with current perspectives
on pain-related networks. In particular, evidence from PET and
fMRI suggests that pain-activated regions are segregated into at
least four distinct sub-networks: a sensory network for stimulus
localization and intensity coding (Davis & Moayedi, 2013;
Hofbauer et al., 2001; Peyron et al., 1999), an affective network
for generating the aversive, unpleasant quality of a stimulus
(Davis & Moayedi, 2013; Peyron et al., 2000; Wilcox et al.,
2015), a cognitive network for attending to, anticipating and
remembering the stimulus (Davis & Moayedi, 2013; Peyron
et al., 1999;Wilcox et al., 2015), and a network ofmotor regions
for pain avoidance (Davis & Moayedi, 2013; Wilcox et al.,
2015).

Table 2 Between-subject pain:
estimated regression coefficients
and related statistics

Unstandardized coefficient Standardized coefficient (β)

Predictor Average Bootstrap
Estimate (S.E.)

Percentile CI (95%) Average Bootstrap
Estimate (S.E.)

Percentile CI (95%)

(Intercept) 73.67 (16.81) [36.14, 103.13]

Component 1 −48.95 (78.65) [−228.15, 87.88] −0.07 (0.11) [−0.30, 0.13]
Component 2 172.26 (47.66) [52.76, 255.13] 0.42 (0.12) [0.12, 0.64]

Component 4 76.24 (27.04) [24.54, 133.80] 0.26 (0.09) [0.09, 0.44]

S.E. = standard error, i.e. the standard deviation of the corresponding bootstrap distribution

Fig. 8 a-b Component
contributions to pain. a Schematic
depiction of each component’s
contribution to pain ratings,
according to bootstrap estimates
of standardized regression
coefficients (beta weights). Lines
are proportional to the strength of
their relation to pain. Component
4 is characterized by deactivation

instead of activation; thus, its β
value captures the strength of the
relationship between Component
4 deactivation and pain
perception. b Histograms, kernel
density estimates, and average
bootstrap estimates for
unstandardized regression
coefficients, with means and CI
bounds. Component number
indicated in the top left corner
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Component 1 (Sensorimotor Response)

Component 1, with prominent activation peaks in MI, SMA,
and cerebellum, is most aptly described as a sensory and
motor network. In the context of thermal stimulation, sensa-
tion and motor output may be related to an instinctive
flexing or bracing, or a desire to move, in response to in-
tense stimuli (Davis & Moayedi, 2013; Davis et al., 2002).
Hemodynamic response shapes (HDRs) for Component 1
showed that activation was in fact exclusive to higher inten-
sity stimuli (temperatures above 44.3 °C). Component 1 also
included prominent activations in SI, which, as a key corti-
cal aspect of the lateral nociceptive system, is one of the first
recipients of ascending pain signals through the
spinothalamic tract (Davis & Moayedi, 2013; Fomberstein
et al., 2013; Vierck et al., 2013; Yam et al., 2018). SI’s
inclusion in Component 1 suggests that, during thermal
stimulation, motor processes are prioritized and closely co-
ordinated with sensory-discriminative functions (e.g. deter-
mination of stimulus location and intensity). In theory, such
close communication would be necessary for an effective
pain avoidance response when stimulus intensity reaches
noxious levels (Postorino et al., 2017). This plausible role
of Component 1 in generating pain-induced motor com-
mands remains to be further explored; follow-up studies
would benefit from monitoring physical movements in con-
junction with other variables, allowing for the precise rela-
tionships between Component 1 activation intensity, stimu-
lus intensity (e.g. temperature), motion, and pain perception
to be determined.

A novel observation from fMRI-CPCA is the temporal
overlap between visual areas and sensory-motor coupling, ev-
idenced in Component 1. Their detection is likely an idiosyn-
cratic capture of fMRI-CPCA, which avoids using regions-of-
interest to spatially constrain the analysis. In fact, the anatomy
of Component 1 replicates previous applications of fMRI-
CPCA in other domains—specifically, it resembles a network
consistently associated with sensorimotor response processes,
featuring activations in lateralized MI, SMA, SI, cerebellum,
and visual areas including the lateral occipital cortex (LO;
Goghari et al., 2017; Larivière et al., 2017; Metzak et al.,
2011). In this case, sensorimotor-visual coupling was likely

observed because of screen-related cues that coincided with
stimulus presentation.

Component 2 (Attentional Pain Network)

In agreement with previous studies, Component 2 incorporat-
ed a large number of regions involved in pain, and combined
sensory, affective and cognitive sub-networks (Davis &
Moayedi, 2013; Wilcox et al., 2015). For example, the most
prominent activation peaks were found in SII and posterior
insula (pIns; sensory-discriminative regions), dACC, aIns,
and thalamus (affective-motivational regions), and dlPFC
and IPL (cognitive-evaluative regions; Peyron et al., 1999;
Wilcox et al., 2015). Based on this, Component 2 could reflect
a unification of sensory, affective and cognitive processes
(Melzack & Casey, 1968) into a coordinated pain response.

The blending of sub-networks is likely facilitated by their
inter-connectivity at rest, provided by common nodes in ACC
and aIns that serve as relay sites between sub-networks
(Wilcox et al., 2015). Importantly, the ACC and aIns are en-
gaged in non-specific “salience detection”, where stimuli are
selected based on their behavioural relevance, and attentional
systems are primed to enable an effective response (Legrain
et al., 2011; Menon, 2015). Such a “salience network” re-
ceives axonal projections from sensory areas like the pIns,
which are thought to provide the aIns with incoming sensory
information (Menon & Uddin, 2010). The pattern of activa-
tion observed in Component 2 captures both attentional sys-
tems (i.e. the cognitive sub-network of pain) and sensory-
discriminative elements like SII and pIns. Thus, Component
2 may represent a salience network-mediated response to
salience—in this case thermal stimulation—or more precisely
a sequential activation of sub-networks, i.e. sensory systems
activate the salience network, which then activates cognitive
systems for sustained attention. The directionality of sub-
network relations is a matter of speculation, but it presents
an interesting question for future investigation. Additionally,
the putative attentional function of Component 2 may be fur-
ther explored by analyzing its pain-induced response during
experimental manipulations of attentional demand or stimulus
salience; a larger effect of attention on network response than
stimulus temperature would suggest an attentional role.

Fig. 9 Classification
performance. Histograms, kernel
density estimates, and average
bootstrap estimates of model
accuracy (Meanacc. = 68.83,
CI95% = [54.84, 83.87]),
sensitivity (Meansens. = 59.17,
CI95% = [33.33, 80.63]) and
specificity (Meanspec. = 77.10,
CI95% = [57.14, 93.75])
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Component 4 (Default-Mode Network)

The tendency for brain areas to become deactivated during a
task and engaged at rest gave rise to the original concept of the
“default mode of brain function” (Shulman et al., 1997;
Raichle et al., 2001). Since being originally characterized,
research has emerged documenting the overall functional con-
tributions of the default-mode network (DMN) to human be-
havior, including its relevance to mind-wandering, self-
referential thought, mentalizing and semantic processing
(Andrews-Hanna, 2012; Andrews-Hanna et al., 2014;
Christoff et al., 2009).

Component 4 was comprised of deactivations in regions
conventionally associated with the DMN, including the
PCC, the AnG, and the amPFC. Such a deactivation departs
from the proposed sub-network scheme discussed above (i.e.
sensory, affective, cognitive, and motor sub-networks of pain;
Davis & Moayedi, 2013; Wilcox et al., 2015). However, the
DMN has also been implicated in pain and so its detection
here is not entirely unexpected. In chronic pain disorders, for
example, the DMN shows a number of anatomical-functional
alterations, including fragmentation between frontal and pos-
terior regions (Baliki et al., 2014), and strengthening of func-
tional connections to aIns (Baliki et al., 2014; Loggia et al.,
2013). In healthy individuals, heat-induced deactivations in
several DMN regions have been reported (Kong et al.,
2010), while some regions, like the hippocampus and
precuneus, also predict pain ratings (in addition to stimulus
intensity) by the magnitude of their deactivation (Atlas et al.,
2014).

As others have argued, pain-induced deactivations in the
DMN may be part of an attentional response to pain (Kucyi
et al., 2013; Kucyi & Davis, 2015), where the DMN sup-
presses as attentional networks (e.g. Component 2) engage.
This type of antagonistic relationship between the DMN and
attentional networks has been documented extensively outside
of pain imaging, along with the DMN’s “task-negative” ten-
dencies (Anticevic et al., 2012; Peng et al., 2018). Future
research would benefit from an analysis of DMN response
to pain in the context of attentional manipulations.
Alternatively, attention levels during a stimulus could bemon-
itored to allow for an analysis of the relationships between
DMN deactivation, DMN-Component 2 antagonism, pain
perception and attention.

Also of note, several DMN regions, including the mPFC,
hippocampus, and precuneus, have been associated with the
regulation of pain (Goffaux et al., 2014; Schweinhardt &
Bushnell, 2010). Their involvement implies a potential role
of the DMN, which might accomplish regulation by
interacting with the periaqueductal gray (PAG)—part of a
descending pathway for pain control—through the mPFC
(Kucyi et al., 2013). Thus, chronic pain disorders may be
related, in part, to deficits in pain regulation caused by

alterations to the DMN. This possibility requires further inves-
tigation and presents an important research objective due to its
implications for chronic pain treatment.

Estimating Pain Within and Between Participants

Among intended applications of neuroimaging in the field of
pain is the development of models to accurately classify an
individual in pain. Previous attempts of this nature have
adopted multivariate pattern analysis (MVPA; Haynes,
2015; van der Miesen et al., 2019). In brief, MVPA uses
machine learning algorithms to model behavioural responses
(either ordinal or continuous variables) as a function of mul-
tiple voxels (or “features”) considered simultaneously
(Moayedi et al., 2018; van der Miesen et al., 2019); predic-
tions or classifications of mental states are then generated on
independent “testing” data based onmodel parameters learned
in the “training” set (Rosa & Seymour, 2014). In one notable
study applying MVPA, a network of regression weights
distributed over pain regions (the “neurologic pain sig-
nature” or NPS) tracked physical pain intensity between
individuals (Wager et al., 2013; Woo et al., 2015).
Perhaps even more remarkable is that physical pain
could be accurately distinguished from other types of
pain (e.g., social; Wager et al., 2013).

In this study, regression models provided some insight into
the capacity of networks detected through fMRI-CPCA to be
used for pain prediction, as components 1, 2 and 4 were sig-
nificantly associated with pain ratings both within and be-
tween participants. Importantly, this was not a predictivemod-
el (networks were used to model in-sample ratings with no
predictions generated on new or held-out data), and the find-
ings should not be interpreted as direct evidence of prediction
ability. However, networks did show potential to be used in
predictive analyses given that in-sample estimation was mod-
erately accurate, and, importantly, results were achieved with-
out any a priori selection of brain regions, reflecting a distinct
advantage of fMRI-CPCA compared to other approaches.

Of all networks, Component 2 was most strongly related to
pain perception; the relationship was positive and consistently
accounted for the largest proportion of within- and between-
subject variability in pain. The value of Component 2 for
predicting pain is intuitive, insofar as brain regions included
in this network represent sensory, affective, and cognitive di-
mensions of pain (Melzack & Casey, 1968). The DMN was
also important for pain estimation, with the magnitude of its
deactivations being significantly related to perceived pain in-
tensity, both within and between participants. The relation-
ships of both networks to pain are corroborated by previous
work that has identified several Component 2 regions—
including SII, aIns, dACC, left cerebellum, and IPL—and
DMN regions—including hippocampus and precuneus—as
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explicit mediators of pain (i.e. they mediate the relationship
between stimulus intensity and pain rating; Atlas et al., 2014).

The intensity of activation in Component 1 was unrelated
to the intensity of perceived pain, mirroring the behaviour of
SI itself, which codes pain information primarily in terms of
sensory-discriminative attributes (Moulton et al., 2012). This
aspect of Component 1 (i.e. its independence from pain per-
ception) is corroborated by mediation analyses that demon-
strate a preference of sensory cortex and cerebellum to stimu-
lus intensity over pain report (Atlas et al., 2014), and implies
that motor systems are mobilized in accordance with stimulus
properties only; the perception of pain occurs elsewhere, and
the intensity of motor commands is, on its own, an unreliable
proxy for the intensity of that perception.

Despite significant associations, when converted into a
classifier the model discriminated between pain and warmth
with an accuracy of only 68.83%. While significantly greater
than chance, sensitivity and specificity were low (estimated at
59.17% and 79.10%, respectively). Still, comparisons be-
tween components 1, 2 and 4 and the existing “neurological
pain signature” (NPS) reveal a high degree of overlap.
Common regions include aIns, pIns, supramarginal gyrus,
thalamus, and IPL. Further, the NPS included negative pre-
dictive weights in regions that were deactivated in Component
4, including PCC, precuneus and mPFC (Wager et al., 2013).
These anatomical similarities raise the possibility that accurate
predictions of pain could be generated from components 1, 2
and 4 if specific regional activations (compared to an overall
estimate of activation in the entire network) were accounted
for using MVPA (Allefeld & Haynes, 2015). By avoiding
spatial averaging, MVPA accounts for signal non-
uniformities between voxels, and exploits these differences
in response signal as a source of predictive information
(Hebart & Baker, 2018).

Crucially, the predictive potential shown by components
indicates that fMRI-CPCA may provide a useful tool for de-
termining appropriate anatomical targets for MVPA. This is
important because a critical step in the MVPA framework is
the selection of “features” with which to train the machine
learning algorithm (Rosa & Seymour, 2014). Features are typ-
ically a subset of voxels, whose activations will be related to
the behavioural response by the algorithm (Allefeld &
Haynes, 2015), and are selected from a region- or regions-
of-interest (based on prior knowledge) or from the entire brain
using dimensionality reduction techniques like PCA (van der
Miesen et al., 2019). Restricting the analysis to relevant re-
gions is important to mitigate the problem of features exceed-
ing the number of observations, which may lead to overfitted
models and interpretive challenges (van der Miesen et al.,
2019). In the case of the NPS, features were selected a priori
from a collection of well-established pain regions (Wager
et al., 2013). By contrast, fMRI-CPCA would allow features
to be selected from the predominant functional networks

involved in pain perception, without relying on prior assump-
tions about relevant spatial or temporal response patterns.
fMRI-CPCA thus provides an opportunity to select
connectivity-based features (Rosa & Seymour, 2014) that
are unbiased, data-driven and task-related.

As a final point, results from multiple regressions are not
only relevant to pain prediction, but also reflect on network
functions proposed earlier, specifically the roles of
Component 2 and the DMN as attention networks. In the
regressions, Component 2 and the DMN displayed opposite
relationships to pain; higher pain was associated with greater
activation in Component 2 but greater suppression in the
DMN, both within and between participants. This is an exten-
sion of the pattern shown by estimated HDRs, where
Component 2 became active during stimulation while the
DMN became suppressed. Together, these findings suggest
that Component 2 and the DMN assume an antagonistic con-
figuration during pain, and that greater antagonism (i.e. great-
er separation in terms of activation) equates to a heightened
perception of pain.

Based on neuroimaging literature, this antagonism is likely
indicative of an ongoing attentional response. Component 2
included known salience network hubs in ACC and aIns, as
well as cognitive pain regions associated with attention to
pain, and the DMN’s role in attention has been well-docu-
mented. For example, the DMN tends to form anticorrelated
relationships with frontoparietal attention networks during
cognitively demanding tasks (Dixon et al., 2017; Menon,
2015; Sridharan et al., 2008), with greater deactivation
predicting improved task performance (Anticevic et al.,
2012). Furthermore, attention deficits are generally associated
with increased DMN activation (Bonnelle et al., 2011;
Weissman et al., 2006; Danckert & Merrifield, 2018). In the
context of pain, DMN deactivation is especially pronounced
when participants report attending to pain, and less so when
participants mind-wander away from pain (Kucyi et al., 2013).
Thus, the deactivation of DMN observed here likely signifies
attention to pain. The simultaneous activation of Component
2—which included several regions known to be involved in
attention—mirrors the stereo-typical antagonism between
DMN and frontoparietal networks that underlies attention
(Anticevic et al., 2012). In sum, these networks appear to
contribute to pain perception by working together, in an
anticorrelated fashion, as part of an attentional response pro-
cess; the greater the attention, the greater the antagonism be-
tween networks and the greater the pain intensity.

Technical Considerations

Based on the literature discussed in sections above, it is pos-
sible to infer the functionality of each network. However,
these inferences are speculative and are not necessarily vali-
dated by any direct experimental evidence obtained here;
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instead they rely on prior notions about the functional contri-
butions of regions or networks detected. Importantly, the
fMRI-CPCA framework provides an opportunity to more ro-
bustly characterize network function during a task. This is
done by comparing the HDRs estimated for each network
across task conditions to determine how different combina-
tions of independent variables impact network behaviour.
Statistical comparisons can be made using repeated-
measures ANOVAs, with within-subject factors given by time
and independent variables of interest (e.g. temperature level in
this study). By carefully manipulating experimental condi-
tions, cognitive processes can be dissociated from each other,
and by interpreting main and interaction effects of factors on
HDRs, networks can be related to specific aspects of cognition
operationalized by task conditions. Comparisons can also be
made between populations of interest by adding between-
subject factors that define group membership. In this way,
network alterations or deficits associated with diagnostic
categories—such as chronic pain disorders—can be
investigated.

It should be noted that the HDRs estimated by fMRI-CPCA
are well-suited to making inferences about cognitive function;
this is because fMRI-CPCA uses Finite Impulse Response
(FIR)-basis sets to encode brain activity associated with task-
timing, which are essentially dummy regressors for stimulus pre-
sentation timing that make no assumptions about the shape of the
expected response. For this reason, the technique detects re-
sponses (and by extension, functional networks) elicited by cog-
nitive processes that may go unnoticed in more traditional anal-
yses, where the expected response is produced by convolving
stimulus functions with canonical hemodynamic response func-
tions (Henson & Friston, 2007; Henson et al., 2001; Lindquist,
2008; Lindquist et al., 2009). Detailed analysis of HDR shapes
evoked in components 1, 2 and 4, under different experimental
conditions, is therefore warranted to achieve a robust determina-
tion of network function.

Limitations

Our study has a number of limitations to consider. First, we
did not include a protocol for model validation when evaluat-
ing pain predictions and classifications made with multiple
linear regression; the ability of the model to predict or classify
pain in independent samples therefore remains unverified.
Validation techniques—including cross-validation, hold-out
validation, or bootstrapping—are common practice in
decoding analyses to ensure that models generalize to out-
of-sample data (Kohavi, 1995; van der Miesen et al., 2019).
We did not apply these here because of properties of the data
(primarily its small sample size of 30), which made a conven-
tional approach challenging (e.g. some subjects never reported
a stimulus as painful). Future research is needed to formally
validate the pain predictive value of these networks.

In theory, the regression model obtained here is generaliz-
able to new and independent data. The basic procedure would
involve application of the regression coefficients obtained to
the network activations estimated in a new individual to gen-
erate a predicted pain rating. This would require first obtaining
an individual’s activation data during a thermal pain task,
analysing their brain activity using fMRI-CPCA, and “classi-
fying” the networks elucidated through in-house programs
recently developed to determine which of the new individual’s
networks most closely match with the networks that inform
the current model (Percival et al., 2020). The HDR shapes
associated with the correct networks would have to be aver-
aged across an appropriate time interval (or an equivalent time
interval to the current study) to generate estimates of network
activation intensity, and the regression model obtained here
would then be applied to network activation intensities to
generate a predicted pain rating. The classification procedure
referred to above has been utilized previously and involves
correlating the loadings of networks obtained with the load-
ings of “template” images of networks, across a set of charac-
teristic slices that define the individuality of a network. Each
network identified in a new individual would have to be cor-
related with the template images of networks obtained in this
study to determine the strongest matches. Ultimately, this
classification procedure would aid in selecting networks
whose activations (averaged over post-stimulus time) would
then be subjected to the regression model in order to generate
a pain prediction.

To address this first limitation (lack of model validation),
future research may use larger datasets to re-conduct the cur-
rent study with the addition of a validation protocol, or test the
current model in new and independent data according to the
procedure outlined above. That said, predictions based on
these networks are likely to be improved if signal differences
within sub-networks and regions of components are
accounted for by using pattern-based analyses like MVPA,
instead of constructing models based on a whole-network in-
dex of activation (i.e. estimated HDRs for entire networks).

A second limitation is that we included stimuli not rated as
painful (based on the 100-point pain threshold specified by the
VAS scale) in both network extraction via fMRI-CPCA and
regression models of pain ratings. For network extraction, this
means that networks delineated were composed of voxels that
remained functionally-connected across non-painful and pain-
ful stimulation; in this way, any voxels that became incorpo-
rated into the networks—or any new networks that were
formed—during painful stimuli only were potentially missed
by the analysis. For regression models, it raises the possibility
that networks were related to warmth more so than pain per-
ception. This would be the case if model-based predictions of
ratings below the pain threshold (i.e. warmth) were consistent-
ly better than those of ratings above the pain threshold (i.e.
pain).
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Conclusion

Overall, this study has contributed to neuroimaging research
on pain by elucidating three functional networks evoked by
thermal stimulation: a sensorimotor response network for im-
mediate pain avoidance (Component 1), a frontoparietal atten-
tion network mobilized by salience detection processes
(Component 2), and the default-mode network (Component
4). Of these, attention and default-mode networks were related
to pain perception both within and between participants. From
a purely technical perspective, this study validates fMRI-
CPCA within the domain of pain research for the first time,
highlighting advantages compared to existing approaches, in-
cluding that the parcellation of multiple task-related networks
is accomplished without a priori selection of regions-of-
interest (i.e. no assumptions about spatial properties of net-
works). Moreover, fMRI-CPCA does not rely on models that
assume specific HDR shapes to identify task-related activity;
instead, HDRs are predicted using FIR basis functions, which
simply specify an interval during which task-relevant activity
is expected to occur. In this way, fMRI-CPCA detects HDRs
(and potentially networks) elicited by cognitive processes that
may be unaccounted for in conventional analyses.

More generally, the findings obtained provide a foundation
from which to further investigate these networks, their proposed
functions and their pain predictive value. The networks identified
(especially the attention and default-mode networks) may have
implications for pain treatments, if they can be targeted success-
fully with strategies based on neuromodulation (Alo &
Holsheimer, 2002), behavioural therapy (Eccleston et al.,
2013), or real-time fMRI feedback (Chapin et al., 2012), for
example. Further, validated pain predictions can be generated
from these networks and potentially refined by applying
MVPA within network boundaries. Patterns delineated through
MVPA may ultimately serve as objective measures of pain,
which are of crucial importance to effective pain management
in patients unable to self-report their pain.
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