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SoloTE for improved analysis of transposable
elements in single-cell RNA-Seq data using
locus-specific expression

Rocio Rodn’guez—Quiroz1 & Braulio Valdebenito-Maturana'™

Transposable Elements (TEs) contribute to the repetitive fraction in almost every eukaryotic
genome known to date, and their transcriptional activation can influence the expression of
neighboring genes in healthy and disease states. Single cell RNA-Seq (scRNA-Seq) is a
technical advance that allows the study of gene expression on a cell-by-cell basis. Although a
current computational approach is available for the single cell analysis of TE expression, it
omits their genomic location. Here we show SoloTE, a pipeline that outperforms the previous
approach in terms of computational resources and by allowing the inclusion of locus-specific
TE activity in scRNA-Seq expression matrixes. We then apply SoloTE to several datasets to
reveal the repertoire of TEs that become transcriptionally active in different cell groups, and
based on their genomic location, we predict their potential impact on gene expression. As our
tool takes as input the resulting files from standard scRNA-Seq processing pipelines, we
expect it to be widely adopted in single cell studies to help researchers discover patterns of
cellular diversity associated with TE expression.
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capability to move (“transpose”) within and between

genomes!, and they are present in most eukaryotic gen-
omes. TEs are organized into two classes: retrotransposons and
DNA. Retrotransposons are subdivided into Long Terminal
Repeats (LTRs), LINEs (Long Interspersed Nuclear Elements),
and SINEs (Short Interspersed Nuclear Elements). Both LTRs and
LINEs code for proteins involved in the retrotranscription of their
mRNAs and subsequent insertion of these novel copies in another
genomic location, whereas SINEs take advantage of the LINE
proteins to retrotranspose?. On the other hand, DNA TEs code
for a transposase, which excises the element from its original
position, and inserts it elsewhere?. According to their sequence
similarity, TEs from each class are further organized into families.
Because of the potential negative impact of the transposition of
TEs, most of them have accumulated mutations that render them
inactive (also known as “Old TEs”), with few copies remaining
intact (also known as “Young TEs”)>4.

Although originally thought to be junk DNA, TEs are now
being recognized as drivers of evolution! and regulators of gene
expression®. Their role in gene regulation is dependent on their
genomic location, with some TEs having effects on neighboring
genes (“cis effects”) or on genes located far away in the genome
(“trans effects”)°. Thus, understanding TE expression in a locus-
specific manner is paramount to assess their effect on modulating
gene activity.

Bulk RNA-sequencing (RNA-Seq) is the gold standard method
to profile gene expression across several types of tissues and/or
across several experimental conditions”-8, However, because the
source material is homogenized before sequencing, it captures an
average portrait of gene expression, losing patterns of gene
activity specific to certain cellular groups*3. A recent advance of
this technology is single-cell RNA-Seq (scRNA-Seq), which is
now being widely adopted, because it allows to analyze gene
expression across all cell types of a tissued. scRNA-Seq has been
successfully applied to profile tissues in healthy conditions
(development®, regeneration!?) and in diseases (cancer!!, amyo-
trophic lateral sclerosis!2, Alzheimer’s disease (AD)!3), revealing
novel patterns of gene expression and cell heterogeneity at an
unprecedented scale.

TEs are often discarded in RNA-Seq analysis due to their
repetitive nature, and this has severely hindered our under-
standing of their role in gene regulation. For bulk RNA-Seq,
several tools have been developed to analyze locus-specific TE
expression (reviewed by Lanciano & Cristofari3), however, similar
developments for novel RNA-Seq techniques are scarce®14. To
the best of our knowledge, the only tool developed for the analysis
of TEs in scRNA-Seq datasets is scTE!4, which summarizes TE
expression on metagenes corresponding to TE families, thus,
losing the genomic location from which each TE is expressed. In
turn, this limits the potential avenues that could be explored by
analyzing TE activity. In this work, we present SoloTE, a tool to
analyze TEs in scRNA-Seq data using locus-specific expression.
First, we compare it to scTE, in terms of (i) detecting TE
expression, (ii) UMAP dimensional reduction, and (iii) detection
of cell marker TEs. Then, we applied SoloTE to three datasets.
First, we studied the murine embryonic two-cell stage, in which
TE expression is known to occur in a subset of cells'4, and then in
datasets whose TE expression has not been explored before: early
gastric cancer (GC)!! and APP/PS1 AD mouse modell3.

Transposable elements (TEs) are molecular agents with the

Results

Comparison with scTE. To the best of our knowledge, scTE is
the only computational effort to include TEs in scRNA-Seq
analysis, so we compared the performance of our tool against it.

The main methodological difference between SoloTE and scTE, is
that the former attempts to estimate the locus-specific expression
of TEs, whereas the latter assigns read to TE metagenes sum-
marized at the family level (Fig. la). We speculate that the
approach used by scTE might under- or over-estimate TE
expression, because of interfamily similarities that lead to read
assignment ambiguity>*. Indeed, when studying the different
modalities of scTE, we found preliminary evidence to support this
statement (Supplementary Table 1). In consequence, this could
affect scRNA-seq analysis of specific cell types. Thus, we com-
pared the tools first in general terms: resource (memory and time)
usage and global estimation of TE expression (before cell
demultiplexing); and in terms of scRNA-Seq specific metrics:
UMAP dimensional reduction, and cell marker TE detection.

Regarding time and memory usage, scTE takes between 20 and
60 mins per run, whereas SoloTE takes <25mins per run.
Moreover, the memory usage of SoloTE was at most 15 Gb,
while scTE used between 40 and 60 Gb per run (Fig. 1b). It is
worth noting that before processing BAM files, scTE requires the
generation of a genomic index, which can take between 5-42
minutes (Supplementary Table 2), in contrast to SoloTE that can
directly process the BAM file. Altogether, we found that SoloTE
outperforms scTE in computational resource usage. Then, to gain
an idea on the overall TE expression levels estimated by each tool
before cell demultiplexing, we compared them against the real TE
expression. At this point, the expression across each cell was
summed, and then used for the analysis (Fig. 1c, Table 1). TEs
mistakenly reported as expressed by a tool were labeled as false
positives (Fig. 1c, orange circles and Table 1), whereas TEs not
detected were labeled as false negatives (Fig. lc, red circles and
Table 1). We found that for both hg38 and mm10 old TEs, the
results obtained using each tool correlated well with the real
expression levels, although SoloTE seems to have a few false
negative results. In contrast, we observed that for young TEs there
was a higher proportion of false positives and false negatives in
the SoloTE results, since those TEs are the most problematic to
assess in terms of genomic locations. As scTE reports result at the
family level, and does not report TEs with locus resolution,
comparing its output against our simulated ground truth data in
terms of TE locus, is unfeasible. Thus, it is worth noting at this
point, that the scTE results seem to have a smaller proportion of
false positives, because we compared them against the expected
results also aggregated at the family level. Collectively, these
results indicate that both tools are able to detect TE expression,
with a small proportion of wrongly assigned TEs. To better
understand the estimations reported by each tool in a scRNA-Seq
context-specific manner, we then assessed the impact in cell type
clustering and analysis steps.

The gene-cell expression matrixes from the simulated experi-
ment, along with those generated with SoloTE and scTE, were
processed with Seurat (see Methods), in order to identify cell
clusters and their corresponding TE markers. For old TEs in both
hg38 and mm10, we found that through the use of either tool, the
four expected clusters could be obtained (Fig. 2, “hg38 Old TEs”
and “mm10 OId TEs”). Nonetheless, in neither case the cluster
positions across the UMAP were the same as those in the real
UMAP, probably as a consequence of the small error rates
described in the previous paragraph. It is worth noting that
through the use of the Seurat integration protocol, almost all TEs
from the SoloTE matrix, could be associated with the correspond-
ing expected cluster, while this could not be achieved when using
the scTE matrix (Supplementary Figure 1). A different result
could be seen for young TEs (Fig. 2, “hg38 Young TEs” and
“mm10 Young TEs”). scTE clustering results have the cells more
separated between them, while the clusters are closer, and even
mixed. This is probably due to the indiscriminate assignment of
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Fig. 1 General comparison between SoloTE and scTE. a Overview of the read assignment per TE of each method. Four TEs are depicted, with three of
them belonging to “family 1" (in red) and the remaining one to “family 2" (in cyan). Yellow diamonds indicate sequence variations specific to a TE. The
smaller rectangles above each TE correspond to reads assigned to that specific location, with small gray rectangles corresponding to multi-mapped reads.
The counts to the right indicate how each method calculates TE expression. “Real”: the expected situation in which 2 TEs from family 1 are expressed, and 1
TE from family 2 is expressed. “SoloTE": reads are assigned to each locus, with multi-mapped reads assigned to a random location. “scTE": dashed
rectangles indicate that reads are assigned to TE metagenes, and summarized by families. b Memory usage versus time plots of SoloTE and scTE using the
datasets simulated in this work: left, simulated data from the human genome hg38 version; right, simulated data from the mouse genome mm10 version.
Color indicates the method (scTE in blue, SoloTE in red), and the shape indicates the TE type (circle for Old TEs, and triangle for Young TEs). ¢ Overall
expression estimates (without cell demultiplexing) for each simulated dataset. First row corresponds to the comparisons using the hg38 datasets, and the
second row to the comparisons using the mm10 datasets. In each plot, the x axis corresponds to the method used to estimate expression (SoloTE or scTE),
and the y axis to the real TE expression. Points are colored according to whether they match an expressed TE (gray, “True Positive”), TE mistakenly
reported as expressed (orange, “False Positive”), TE expressed but not detected by the method (red, “False Negative"). Inset plots were added to the scTE

main plots to show the spread of false positive predictions.

TE expression to family metagenes, impeding the estimation of
more subtle differences. This is further supported by the fact that
SoloTE clustering results for young TEs reveal the 4 expected
clusters.

As one of the main focus in sScRNA-Seq is to identify markers
for each cell cluster, our final comparison between scTE and
SoloTE was in terms of how well the expected TE cell markers
could be retrieved when using the TE expression calculated by
each tool. Across all datasets, we performed cell marker
identification with Seurat (see Methods). We labeled a marker
as correctly recovered, if there was a match with the expected
result in terms of the TE identifier and the cluster to which it
belonged, without imposing any log,(FC) threshold. In general,
we found that SoloTE has a consistently high marker recovery

rate, with the exception being the mm10 young TEs (Fig. 3).
Particularly, our results indicate that these markers correlate well
with the real markers. On the other hand, we found that in all
cases, sCTE severely underestimated log,(FC) values (points above
dashed lines in Fig. 3). Moreover, scTE had a limited marker
recovery rate, with one case being particularly low: a small
number of markers of only 1 cluster were found, and none for the
remaining 3 clusters (Fig. 3, “hg38 Young TEs”).

Collectively, these results depict that SoloTE represents an
improvement over scTE, by taking advantage of locus-specific TE
information. Based on these findings, we then aimed to uncover
the TE repertoire across 3 datasets. First, on the murine
embryonic two-cell stage, which was also used in the original
scTE publication, because it represents an example of well-known
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Table 1 Overall expression predictions.

Genome TE group Method TP FP FN
hg38 Old scTE 95.502 4.498 0
hg38 Young scTE 81.9 18.1 0
mm10 Old scTE 93.96 4314 1726
mm10 Young scTE 78.723 21.198 0.079
hg38 Old SoloTE 93.834 4143 2.023
hg38 Young SoloTE 55.959 39.806 4.235
mm10 Old SoloTE 84.991 8.379 6.63
mm10 Young SoloTE 26.06 64.162 9.777

For each simulated dataset, defined by the genome used (“Genome”) and the TE group (“Old”
or “Young"), the performance of TE detection by “scTE" and “SoloTE" (“Method” column) is
reported. “True Positives” (TP) correspond to TEs reported by the method that also are in the
real expression matrix (i.e., a TE correctly identified), “False Positives” (FP) correspond to TEs
reported by the method that are not actually expressed, and “False Negatives” (FN) correspond
to TEs in the real expression matrix that were not detected by a method.

TE expression in a specific cell population. Then, on early GC and
in the APP/PS1 AD mouse model, both datasets in which TE
expression at the single cell level has not been explored before.

TE expression in the murine embryonic two-cell stage. The
embryonic two-cell stage is a key step in mouse development.
Particularly, is characterized by zygotic genome activation, and it
marks the shift from the use of the maternal genetic program
toward the embryonic genetic program!®. Current evidence
shows that TEs contribute to the regulation of pluripotency
during this stage!®. Using the Zscan4c and Tcstv3 known markers
for the 2-cell (2C) like cell population, we then explored how TEs
were expressed. First, we were able to confirm the expression of
the MERVL-int:ERVL:LTR and MT2-Mm:ERVL:LTR, which are
also known to be differentially expressed in the 2C-like cells
(Fig. 4a). Using a log,(Fold Change) >1 threshold, we were able to
find that there were no TEs expressed in the non-2C-like cells,
and we identified a total of 106 marker TEs in the 2C-like cells
(Fig. 4b). With our tool, we detected a greater number of marker
TEs, when compared to the 28 markers reported by scTE (Sup-
plementary Figure 2, Supplementary Data 1). These TEs spanned
all major classes, with 38 (35.85%) LTRs, 37 (34.9%) SINEs, 28
(26.42%) LINEs, 2 (1.89%) DNA, and 1 (0.94%) Other TE. Some
TEs exclusively identified with our tool are depicted in Fig. 4c,
and correspond to the MT2C and MTEa LTR TEs and to locus-
specific instances of the Lx3B and Lx3C LINE TEs. These TEs
exhibit a similar pattern of cell expression as the known genes and
marker TEs previously indicated. Collectively, the results
obtained with this analysis confirm that SoloTE can identify
known TEs across cellular groups, and add to the repertoire of
expressed TEs those detected with locus resolution.
Locus-specific TE analysis revealed that 18 of them could be
statistically associated with 12 genes (Methods). We found 5
genes having positive correlations with TEs, and 7 had negative
correlations. Of these genes, only 7 (2 positive, 5 negative) could
be associated with a biological process in the Panther classifica-
tion system (Supplementary Data 2). The 2 positively-correlated
genes found are Map4 (Microtubule-associated protein 4) and
Tef711 (Transcription factor 7-like 1). Map4 is associated with
neuron projection development and microtubule cytoskeleton
organization, whereas Tcf7l1 is associated with the Wnt signaling
pathway and transcription regulation. On the other hand, the
genes correlating negatively with TEs were Gm9008 (Predicted
pseudogene 9008), Mapt (Microtubule-associated protein tau),
Marveld2 (MARVEL domain-containing protein 2), Scml2 (Scm
polycomb group protein-like 2) and Tfeb (Transcription factor
EB). Of these, Marveld2 and Tfeb are associated with

transcriptional regulation, whereas Gm9008 is associated with
protein ubiquitination, a process that has been linked to
transcription factors important during cell reprogramming and
associated with the 2C-like state!”>18. The Scmi2 gene is involved
in chromatin binding and Mapt with neuron projection
development and microtubule cytoskeleton organization, similar
to Map4 mentioned earlier. In sum, this locus-specific analysis
suggests that TEs could be modulating the expression of several
genes involved in transcriptional regulation and other genes
involved in microtubule-related processes, which are key for cell
differentiation!®.

TE expression in early GC. TE expression has been reported to
occur in several types of cancer?)-23, Although most of these
findings were obtained using bulk RNA-Seq data, they still point
towards a trend in TE activity during the cancer disease state.
Recently, scRNA-Seq has been used to profile several types of
cancer, but to the best of our knowledge, the activity of TEs has
not been explored. In this work, we focused our efforts in GC. In
worldwide terms, this cancer represents the second cause of
mortality?4, following lung cancer?®. Currently, the 5-year sur-
vival rate for early GC (EGC) is >90%, whereas for advanced GC
is ~30%2°. Because of this, there is a high interest in finding
alternatives for detecting this cancer in its early stages.

TEs have the potential to be used as markers, given that specific
TEs can become active under certain conditions2’. For example,
they have been used as markers of aging?®, and of lung cancer?.
Taking this into account, we applied SoloTE to dissect the impact
of TE expression in the EGC cellular heterogeneity. After
processing with Seurat, we obtained a total of 6 cell clusters:
Cancer, Enteroendocrine, Goblet, Metaplastic stem-like cells
(MSCs), Non-epithelial, and other gastric cells (“Other”) (Fig. 5a).
Then, we performed the marker analysis, and found a total of 24
TEs (compared to the three TEs obtained with scTE, Supple-
mentary Figure 2 and Supplementary Figure 3). Moreover, we
were able to find 2 TEs with locus resolution, having higher
expression in the Cancer cell cluster when compared to the other
cell types identified: LIPA7 (located at chrY:18989629-18990627)
and THEID (located at chr8:61579930-61580458) (Fig. 5b, c).
Interestingly, we were able to also find TEs differentially
expressed in enteroendocrine cells and non-epithelial cells
(Fig. 5b, ¢). This finding suggests that TE activity in the early-
malignant lesion in other cell types could be indicative of a global
alteration in gene expression programs, which in turn, might
contribute to the GC progression.

Following our statistical modeling approach to investigate the
potential impact of the locus-specific expression of TEs
(Methods), we found seven TEs associated with six genes
(Supplementary Data 2). Amongst the genes having a positive
correlation with TEs, we identified (function according to the
Panther enrichment analysis in parenthesis): SLC27A4 (secondary
carrier transporter), and MALATI (no results). On the other
hand, we identified the following genes having negative correla-
tions with TEs: CDHI (cadherin), PAM (oxygenase), RUNX3
(Runt transcription factor), and LINC-PINT (no results). Overall,
these results suggest that TEs could be potentially influencing
transcriptional regulation (associations with RUNX3) and several
cellular processes involved with transport and cell
communication.

Of particular relevance to the disease, is that previous works
have linked all of the aforementioned genes with cancer.
Downregulation of CDHI and LINC-PINT has been implicated
in GC3031. The PAM and RUNX3 genes have anti-cancer and
tumor suppressor activities, and thus, their loss-of-function is
characteristic of gastric and several other types of cancer32-33,
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Conversely, upregulation of MALAT13435 has been implicated in
GC, whereas SLC27A4 has also been reported to be over-
expressed, but in other cancer types3®37.

Interestingly, the genes whose down-regulation is associated
with cancer are those that we found to be negatively correlated
with TEs. As we only analyzed marker TEs, a negative correlation
would mean that for a given cell cluster, the TE has increased
expression whereas the gene has decreased expression. In other
words, this could suggest that the TE might be negatively
regulating the gene. In turn, this could implicate TEs in
contributing towards the disease phenotype. On the other hand,
all of the genes reported to be up-regulated in cancer, positively
correlate with TE expression. Based on the correlation analysis, it
is not possible to discern whether the TE could be driving the
increase in gene expression, or vice versa. Taken altogether, our
locus-specific analysis underlines a putative role of TEs in GC, in

agreement with the vision that TE expression in cancer can have
several consequences on gene expression’®.

TE expression in APP/PS1 AD mouse model. The last aim of
our work was to investigate whether TEs are expressed during
AD. Generally speaking, several previous works have reported de-
repression and subsequent activation of TEs in neurodegenerative
diseases, such as amyotrophic lateral sclerosis®3°-41 and AD#2-44,
Using a recently published dataset from the transgenic AD mouse
model that carries the human APP/PS1 mutant genes, and their
respective control wild-type samples!3, we applied SoloTE to
uncover the repertoire of TEs that are transcriptionally up-
regulated in the disease samples. In the original work, according
to the expression of marker genes, they merged several clusters
into the Homeostatic (H) cluster, while the remaining clusters
were associated with specific genes (Fig. 6a). Particularly, the
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authors annotated disease-associated microglia (DAM) clusters
based on the expression of Cst7, Lpl, and Clec7a. We replicated
this approach when processing the SoloTE cell expression matrix.
In our analysis, clusters 4 and 5 correspond to the DAM group.
After this, we performed a marker analysis with Seurat (see
Methods) to detect TEs having increased expression in a given
cell cluster when compared to the remaining ones. At this point,
we obtained 71 markers TEs versus 0 obtained with scTE (Sup-
plementary Figure 2).

To uncover which of the marker TEs have a disease-specific
effect, we performed a Differential Expression (DE) analysis. To
this end, we adopted a pseudobulk approach in which expression
of genes and TEs per each cell cluster was aggregated, and then,
edgeR was used to statistically test for differences (method
reviewed by Squair et al.#%). As a result of this strategy, we found
a total of 9 TEs that are markers of cell clusters, and have
increased expression in the disease samples when compared to
wild-type (Fig. 6b, c). Of these TEs, 3 were detected at the locus-

level: ArthurlB (marker of cluster 3, located at chr14:105919204-
105919261), RLTRI14-int (marker of cluster 3, located at
chr7:55428645-55428856), and MMVL30-int (marker of cluster
12, located at chr2:85850484-85851460) (Fig. 6b).

Locus-specific analysis of these TEs, following the same
approach for the datasets described earlier, revealed 1 TE
correlating negatively with the OIfr1033 (Olfactory receptor
1033) gene, and 1 TE correlating positively with the Siglech
(Sialic acid binding Ig-like lectin H) gene (Supplementary Data 2).
Panther analysis revealed that Olfr1033 is a transmembrane signal
receptor, whereas Siglech is involved with cell adhesion. Notably,
olfactory dysfunction has been associated with AD#%47, indicating
that the negative correlation we found between the MMVL30-int
TE and OIfr1033 could be of importance to understand the
disease pathogenesis. Increased expression of several genes of the
Siglec family has been associated with neurodegenerative diseases,
and in particular, Siglech has been linked with amyotrophic lateral
sclerosis*®. Based on our analysis, it could be speculated that a
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¢ UMAP plots of TEs detected exclusively with SoloTE in the 2C-like cells. “*" denotes locus-specific TEs.

TE-driven increase of Siglech expression could be contributing to
the AD progression in the APP/PS1 mouse model.

Interestingly, we were able to find 2 marker TEs in the DAM
clusters (Lx5, LTR88C), but not at the locus-level, impeding us to
further analyze and predict their potential impact in AD. Similar
to the result obtained for the early GC dataset, we observed that
TE expression is spread to other cell types besides those
associated with the disease (Fig. 6b, c). This discovery suggests
that if TE expression is a driver of the aberrant phenotypes, it
does so by having a direct influence (activation in disease-
associated cell types) and by also having an indirect influence
(activation in other cell types). Likewise, TE activation in other
cell types could be a catalyst in the transition toward a diseased
cell. Conversely, an alternative hypothesis to this, is that TE
activation could be playing a regulatory role in the normal activity

of cells, as has been reported to occur for several healthy
statesl$9:10,49,50

Discussion

TEs, which are often overlooked in gene expression analysis, have
begun to gain recognition in several research groups. This could
be attributed to the fact that there is increasing evidence asso-
ciating them with development and other healthy states, along
with pathologies such as cancer and neurodegenerative diseases.
On par with the advancement of bulk RNA-Seq, several tools
have been developed for the analysis of TE expression, with
increased focus on accurately assessing the locus of activity.

COMMUNICATIONS BIOLOGY | (2022)5:1063 | https://doi.org/10.1038/s42003-022-040

However, only one tool for single cell TE analysis from high-
throughput scRNA-Seq data has been published, and it omits the
location of TEs. As TEs can influence genes in their genomic
vicinity, it is of importance to assess the expression without losing
their positions. CELLO-Seq, a recent development, can measure
TE expression at the locus-specific level with single-cell resolu-
tion. To achieve this, CELLO-Seq integrates long-read sequencing
with a bespoke computational framework. This strategy revealed
improvements in the mapping of both young and old TEs, yet for
some “very young TEs” they were unable to map reads to specific
genomic locations!. However, the methodology has only been
shown to work with low number of cells (6 in mouse and 96 in
human). On the other hand, SoloTE can be readily integrated and
applied to data already generated from high-throughput scRNA-
Seq technologies, which can profile between hundreds and
thousands of cells>2-54,

In this work, we presented SoloTE, an improvement over the
previous tool for analysis of TEs in scRNA-Seq data. We found
that our tool is faster and uses less computational resources than
scTE. This is probably due to the fact that scTE requires the
building and subsequent use of “TE indexes”, whereas SoloTE can
start directly from the BAM file obtained with either CellRanger
or STAR. In terms of usability, we found that scTE does not filter
repetitive elements in such indexes, and thus, in the resulting
matrix other types of non-TE repeats, such as Satellites, appear.
Moreover, the identification of TEs to a non-TE expert could
seem obscure, as no special keyword appear to differentiate TEs

20-5 | www.nature.com/commsbio
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from genes in the expression matrix. Conversely, SoloTE adds the
“SoloTE” keyword at the start of each TE id, making it more
straightforward to identify and select TEs in any downstream
analysis.

In terms of locus-specific TE analysis, SoloTE reports the
location of expression if the reads could be accurately assigned to
it. If not possible, it adopts the approach of summarizing TE
expression at the family level. Considering that in most organ-
isms a high proportion of the TE repertoire has accumulated
mutations, most of them are sufficiently distinct from other
copies, ensuring the unique alignment of reads. Nonetheless, a
limitation of our tool is that for organisms with a greater pro-
portion of transpositionally-active TEs, this could not be the
case, as most of the copies could be genetically intact. Other
limitations that could also impact TE expression measurements
may be associated with the scRNA-Seq technology used. For 3’
end 10X single-cell data, a commonly used single-cell platform>>,

such limitations are: (i) not all TEs can be uniquely mappable
with the short 100 nucleotides reads generated (Supplementary
Figure 4 and Supplementary Figure 5), and (ii) events in which
the TE could be acting as an alternative transcription start site
cannot be detected due to the 3’ bias. Further improvements to
our pipeline are the integration of the Expectation-Maximization
(EM) algorithm and analysis of TE-derived isoforms. The EM
algorithm reallocates reads to a TE locus based on the uniquely
mapped reads (“expected” reads, E-step) surrounding that par-
ticular genomic location, and then through multiple iterations,
assigns multi-mapped reads (M-step). Although this procedure
has been a key element of bulk RNA-Seq TE analysis tools, such
as SQUIRE®® and Telescope®’, future works will need to assess its
performance using 3’ end 10X data. Additionally, TEs can be
integrated into genic transcripts (“TE-derived isoforms”) mod-
ulating their expression®>85%. A misconception about 3’ end 10X
data is that it cannot detect splicing events, however, STAR (one
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of the recommended aligners for SoloTE) has been recently
shown to detect them®. Thus, by taking advantage of these
capabilities provided by STAR, the locus-specific analysis of TEs
done by our tool could further be improved to reveal TE-derived
isoforms.

As proof of concept, we applied SoloTE to profile the TE
transcriptome of the murine embryonic two-cell stage, during
early GC, and in the APP/PS1 AD mouse model. In the case of
the two-cell stage, where current evidence indicates activation of
TEs, we were able to confirm known examples, along with ~80
other instances that, to the best of our knowledge, have not been
reported previously. This highlights the capability of SoloTE in
recovering the expected cellular distribution of TEs. Finally, for
the last two biological conditions studies, we found that TE
activity also seems to involve more clusters than just the disease-
associated ones. Overall, this could suggest that, for such
pathologies, TEs that become active might drive cell types

towards such disease phenotypes. Locus-specific analysis revealed
that TEs could be impacting several genes involved with the
regulation of gene expression, and genes previously implicated
with disease (as described for the early GC and the APP/PS1 AD
results). Although these correlation analyses suggest potential
mechanisms in which TEs could influence gene expression, they
do not reveal a cause-effect link. Consequently, follow-up works
with further experimental validation (i.e., gain- and/or loss-of-
function experiments) are needed to confirm this hypothesis.
Nonetheless, these analyses highlight the relevance of locus-
specific analysis to predict the putative influence of TE activation
on gene regulation.

Considering the ease of use of SoloTE, we expect it to be
efficiently adopted and integrated into the current scRNA-Seq
analysis pipelines used by the scientific community. This in turn
will help to expand the understanding of how TE expression
could impact cellular diversity.
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Methods

SoloTE implementation. SoloTE takes as input files a BAM file resulting from the
alignment against a reference genome, that has the GN and CB tags (i.e., resulting
from the use of CellRanger or STAR®!), and a TE annotation file in BED format.
Two requirements for the BAM file are that unique and multi-mapping reads can
be distinguished and that the multi-mapping reads must not be discarded.
Accordingly, for the alignment process, we recommend using STAR with options --
winAnchorMultimapNmax 100 (to increase sensitivity and detection of multi-
mapped reads), --outFilterMultimapNmax 100 (to control whether multi-mapping
reads are included in the output BAM file) and --outSAMmultNmax 1 (to report
only the best alignment). We suggest these values based on a small experiment we
performed (Supplementary Figure 5), where we found that setting them at 100
resulted in good results, with small improvements seen when using 500, in
agreement with previous works®2-6%. Collectively, these alignment recommenda-
tions will allow for greater mapping of TE reads, and the distinction between
unique and multi-mapping reads. Thus, for reads having multiple mapping loca-
tions, the best one is selected, and the remaining alignments are discarded.

The first step of SoloTE is the selection of reads not assigned to genes. Both
CellRanger and STAR assign reads to known genes if the read is fully contained
within one of its exons (or more than one exon if the alignment is spliced), and
aligning on the same strand in which the gene is annotated. In turn, reads assigned
to known genes are discarded, to avoid mistakenly reporting TEs fully contained
within genes, as expressed. This behavior can be modified by using the “dual”
option of SoloTE, in which reads assigned to genes will also be analyzed in the
following steps. For each read that passed these filters, the overlap with the TE
annotation is assessed using BEDtools®®, and TE expression is summarized at the
locus-level if the alignments have a MAPQ equal to or greater than a user-defined
threshold (default =255, only uniquely mapped reads), and then, at the family
level if they do not meet the criteria (i.e., all multi-mapping reads per TE locus are
aggregated into a single group corresponding to their family classification). The
logic behind this idea is that most TEs have accumulated mutations that distinguish
them from other instances®* (Fig. 1). After reads associated with TEs are
annotated, a new matrix having both genes and TEs expression per cell is obtained
as output, which is compatible with downstream analysis tools, such as Seurat®’.

Benchmarking and validation. To benchmark and validate SoloTE, we simulated
data from the human genome hg38 version, and from the mouse genome mm10
version. For each genome, TEs were divided into young and old, if their divergence
from the consensus sequence was <10% or >10%, respectively. Then, for each TE
group, a cell expression matrix of 1000 randomly selected TEs across 500 cells was
generated using Minnow®8. Additionally, Minnow generates FASTQ files that
match the simulated expression matrix. These FASTQ files were then used as input
to STAR, and the resulting BAM files were then processed. As these BAM files are
also suitable for scTE, we were able to perform a comparison from the same set of
alignments. scTE was run first in the “build” mode, to generate the indexes for the
hg38 and mm10 genomes, with option “-mode inclusive”, and then, the main scTE
pipeline was used with the resulting BAM files from the STAR alignment, with
default options. Both SoloTE and scTE were run with 8 threads.

Analysis of previously published datasets. The previously published datasets
used in this work were the murine embryonic two-cell stage®, early GC!!, and APP/
PS1 AD mouse model!3. The raw FASTQ files were obtained from the database in
which the authors made them available (Gene Expression Omnibus for the first
two, and AD Knowledge Portal for the last one, Supplementary Table 3). All
alignments were performed using STAR v2.7.9a%!. Mouse datasets were aligned to
the mm39 genome, and human datasets to the hg38 genome. Cell demultiplexing
was done using the Chromium 10X V2 whitelist for the embryonic 2-cell and early
GC datasets, and using the Chromium 10X V3 whitelist for the APP/PS1 dataset.
Afterwards, SoloTE was run in the resulting BAM files, using 8 processors. The
gene and TE cell expression matrixes were first filtered, only keeping the cells
selected in their respective original works, and these new matrixes were then
processed with the Seurat v4.0.6 package®” of the R statistical computing
environment®?, using the default analysis pipeline. Finally, marker analysis was
carried out using the “FindAllMarkers” function of Seurat, only keeping the results
having adjusted P-value <0.05 and average log,(Fold Change) >1.

Locus-specific analysis of marker TEs. Marker TEs identified unambiguously at
specific genomic locations with SoloTE, were used for locus-specific analysis. TEs
can potentially influence the activity of neighboring genes, and thus, to predict such
impact we applied a computational strategy similar to previously published
works#14%70, which we describe next. First, we associated TEs with their closest
gene using BEDtools®®. Then, for each gene-TE pair, we applied a linear modeling
strategy in which gene expression was the response variable and the TE expression
was the explanatory variable, using the “Im” function of the R statistical computing
environment. This allowed us to obtain which TEs could explain changes in gene
expression in a statistically significant manner (model P-value <0.05). Then, for all
of the significant gene-TE associations, the correlation between gene and TE
expression was assessed using the “cor” function of R, to predict whether the TE
could be impacting gene expression positively (i.e, positive correlation) or

negatively (i.e, negative correlation). To understand the large-scale impact of these
associations, the genes in statistically significant models were analyzed with the
“Functional classification” tool of the Panther database’!.

Statistics and reproducibility. Statistical tests were applied during the “FindAll-
Markers” step of Seurat in R statistical computing environment to find genes and
TEs with higher expression in a cell cluster when compared to the other groups.
The Wilcoxon Rank Sum test was used to test for statistical significance, followed
by Bonferroni correction to obtain adjusted P-values. As indicated above, a

threshold of adjusted P-value <0.05 was used to keep statistically significant results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All sequencing datasets used in this study were obtained from public data repositories.
The murine 2C-like data was obtained from the Gene Expression Omnibus (GEO)
database, accession GSE114952. The early GC data was also obtained from GEO,
accession GSE134520. The APP/PS1 AD mouse model was obtained from the AD
Knowledge Portal, accession syn23763409. Detailed information, including accession
URLs for these datasets, is available in Supplementary Table 3. All relevant data are
available from the corresponding authors on reasonable request.

Code availability
SoloTE is publicly available at https://github.com/bvaldebenitom/SoloTE/ and in
Zenodo”2.
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