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The prognosis of acute myeloid leukemia (AML) remains a challenge. In this study, we applied the weighted gene coexpression
network analysis (WGCNA) to find survival-specific genes in AML based on 42 adult CN-AML samples from The Cancer
Genome Atlas (TCGA) database. Eighteen hub genes (ABCA13, ANXA3, ARG1, BTNL8, C11orf42, CEACAM1, CEACAM3,
CHI3L1, CRISP2, CYP4F3, GPR84, HP, LTF, MMP8, OLR1, PADI2, RGL4, and RILPL1) were found to be related to AML
patient survival time. We then compared the hub gene expression levels between AML peripheral blood (PB) samples (n = 162)
and control healthy whole blood samples (n = 337). Seventeen of the hub genes showed lower expression levels in AML PB
samples. The gene expression analysis was also done among AML BM (bone marrow) samples of different stages: diagnosis
(n = 142), posttreatment (n = 42), and recurrent (n = 12) stages. The results showed a significant increase of ANXA3, CEACM1,
RGL4, RILPL1, and HP in posttreatment samples compared to diagnosis and/or recurrent samples. Transcription factor (TF)
prediction of the hub genes suggested LTF as the top hit, overlapping 10 hub genes, while LTF itself is just one of the hub
genes. Also, 3671 correlation links were shown between 128 mRNAs and 209 lncRNAs found in survival time-related modules.
Generally, we identified candidate mRNA biomarkers based on CN-AML data which can be extensively used in AML
prognosis. In addition, we mapped their potential regulatory mechanisms with correlated lncRNAs, providing new insights
into potential targets for therapies in AML.

1. Background

The malignant hematologic disease, acute myeloid leukemia
(AML), is a heterogeneous clonal disorder of myeloid pro-
genitors that accumulates due to a blockage in their differen-
tiation and infiltration into other organs of the body (mainly
the liver and spleen and to a lesser extent the lymph nodes,
central nervous system, and testicles), leading to death
[1–3]. The pathogenesis of AML is often accompanied by
cytogenetic and molecular biological abnormalities. No spe-
cific pathogenic factors of AML have been discovered.

Cytogenetically normal acute myeloid leukemia (CN-
AML) presents without microscopically detectable chromo-
somal abnormalities and contributes to approximately 50%

of the observed AML cases [4]. Heterogeneity is common
within patients with CN-AML. With the advancement of
genomics research, molecular genetic analysis has allowed
for a more detailed pretreatment assessment of CN-AML
prognosis, which can be graded by their molecular genetic
characteristics. Many genes are involved in the molecular
mechanisms of AML, leading to complexities in AML diag-
nosis and prognosis. Previous studies identified various
DNA and RNA markers as prognostic factors for CN-
AML, such as NPM1 and CEBPA, in which mutations have
been proposed as good prognostic factors, as well as PLT3,
RUNX1, ASXL1, and TP53, in which mutations have been
considered to be correlated with poor prognosis [4, 5].
Treatment-dependent factors are also important in
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estimating the prognosis of CN-AML patients. For example,
platelet (PLT) counts at diagnosis are proved to be able to
predict survival for patients with intermediate-risk AML
[6]. Also, in another study, CD45dimCD117+ phenotypical
abnormal cell ratio > 2:055% within 2 weeks after the first
complete remission (CR) is considered to be an independent
risk factor for recurrence, which also is an adverse factor for
relapse-free survival (RFS) and overall survival (OS) in adult
AML patients [7]. However, due to the highly variable
molecular genetic prognostic yield, prognostic genes of
AML require further exploration.

To better understand the complex prognostic gene
expression signatures of CN-AML and investigate potential
targeted therapies, we performed the weighted gene coex-
pression network analysis (WGCNA) on the RNA-seq data
of adult patients with CN-AML, available from The Cancer
Genome Atlas (TCGA). Our study identified survival-
specific genes and provided system-level evidence of genetic
networks that contribute to the prognosis of adult CN-AML
patients. What is more, the survival-specific genes we found
based on CN-AML samples also showed prognostic values
in AML samples regardless of any clinical characteristics
(including age and the existence of chromosomal changes).

2. Materials and Methods

2.1. Study Design and Data Curation. Figure 1 provides a
flowchart of the study process. Forty-two adult patients with
CN-AML were selected from TCGA database (https://portal
.gdc.cancer.gov/) (project TCGA-LAML [8]) for the
WGCNA (see the clinical information in Table 1. For more
detailed information, please see Table 1S). The sample
screening criteria were (a) patients with integral RNA-seq
data and clinical trait data, (b) patients who were
cytogenetically normal, (c) patients who were deceased and
the date of death ≥ 30 days from the date of initial
pathologic diagnosis, and (d) the age at diagnosis was ≥18.

To perform the survival analysis among the hub genes
obtained after the WGCNA, we chose 148 adult (≥18 years)
CN-AML patients with an OS > 30 days from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm
.nih.gov/geo/; accession number GSE12417 [9], platform
GPL96) (for more detailed information, please see Table 2S).

To compare the expression levels of hub genes and cor-
relatedly expressed lncRNAs in AML BM samples of differ-
ent stages, we chose 196 samples of 163 patients from an
independent cohort in the Therapeutically Applicable
Research to Generate Effective Treatments (TARGET) data-
base (https://ocg.cancer.gov/programs/target) [10]. The
sample screening criteria were primary AML BM samples
with RNA expression profiles from diagnosis, posttreatment,
or recurrent stages regardless of their clinical characteristics
(for more detailed patient information, please see Table 3S).

To compare the expression levels of hub genes and cor-
relatedly expressed lncRNAs between primary AML PB
samples at the diagnosis stage and normal whole blood sam-
ples, we chose 133 samples from TCGA database (https://
portal.gdc.cancer.gov/) and 29 samples from the TARGET
(https://ocg.cancer.gov/programs/target) database (samples

from TCGA database do not include the 42 CN-AML used
for WGCNA). The AML PB sample screening criteria were
primary AML PB samples of the diagnosis stage with RNA
expression profiles; AML PB samples were selected regard-
less of their clinical characteristics (see Tables 4S and 5S
for the sample details). Also, 337 healthy whole blood
samples were selected from the Genotype-Tissue
Expression (GTEx) database [11] (https://www.gtexportal
.org/home/) to serve as normal controls. The healthy whole
blood sample screening criteria were healthy whole blood
samples with RNA expression profiles.

2.2. Data Preprocessing.We collected the fragments per kilo-
base of exon model per million (FPKM) mapped reads [12]
and standardized the RNA-seq data from the TCGA-LAML
project. mRNA, miRNA, and lncRNA expression profiles
were separated and annotated according to the GENCODE
(v29) database [13]. A total of 19663 mRNA, 1450 miRNA,
and 7182 lncRNA expression profiles were obtained. For
mRNAs, only the top 15,000 genes (ranked by their mean
values) with a coefficient of variation ðCVÞ > 0:5 were
selected for subsequent analysis, resulting in 6942 mRNAs.
Owing to the constant nature of the updates to TCGA data-
base, we used the survival time of deceased patients, other
than OS in the WGCNA to define the survival-related gene
modules.

2.3. WGCNA.WGCNA was performed on lncRNA, miRNA,
and mRNA expression data separately using the R package
“WGCNA” [14]. Clinical information of patients including
gender, age, white blood cell count (WBC), and survival time
was explored to identify the coexpression modules associ-
ated with disease progression. First, the expression data were
cleaned by removing visible outlier samples (Figure 1S) and
genes. Genes of similar expression patterns were divided into
modules based on their Euclidean distances (Figures 2S A,
2S C, and 2S E). To construct an unsigned weighted gene
network, the proper soft thresholding power beta was
chosen, and the coexpression similarity was raised to
calculate adjacency. To ensure a scale-free network, the
power of the β values for mRNAs, miRNAs, and lncRNAs
was 5, 4, and 4, respectively (Figure 3S). The adjacency was
converted into a topological overlap matrix (TOM),
followed by the corresponding dissimilarity calculation.
Second, a hierarchical clustering tree of genes, also called a
dendrogram, was generated by hierarchical clustering, and
the dynamic tree cut was used to identify the coexpression
gene modules. Next, the module-trait associations were
quantified to identify important modules. The associations
of individual genes with the trait of interest were defined
by gene significance (GS) as the gene-clinical trait
correlation. Also, module membership (MM) was defined
to quantify the relevance between module eigengenes and
the gene expression profiles. Finally, genes with high GS
for interesting traits and high MM in important modules
were identified.

2.4. Functional and Pathway Enrichment Analysis. The
ToppGene database (https://toppgene.cchmc.org/ (accessed
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on Jul. 30th, 2022)) was applied to statistically identify
enriched pathways and gene ontologies (GO) [15]. The
cut-off value was set to Q value < 0.05 [16]. The results were
then visualized by using R package “ggplot2” and “GOPlot”
[17, 18].

2.5. Protein-Protein Interaction (PPI) Network Construction.
The online database Search Tool for the Retrieval of Inter-
acting Genes (STRING) (Version 11.0) (https://string-db
.org/) was used to construct the PPIs [19], with a combined
score > 0:4 as the cut-off criterion. The Cytoscape software
(Version 3.7.0) was used for visualization and analysis of
the biomolecular interaction networks [20].

2.6. Screening of Hub Genes. The cytoHubba plugin of the
Cytoscape software was used to identify the hub genes of
the interested mRNA modules [21]. Twelve scoring methods
were used to screen the hub genes. The methods were Max-
imum Clique Centrality (MCC), Density of Maximum
Neighborhood Component (DMNC), Maximum Neighbor-
hood Component (MNC), Degree, Edge Percolated Compo-
nent (EPC), BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, Stress, and ClusteringCoefficient. Genes listed
in the top 20 ranked nodes by no less than 5 of the scoring
methods were identified as the hub genes.

2.7. Survival Analysis of Hub Genes in GEO Dataset. The sur-
vival analysis based on the hub gene mRNA expression
levels and patient OS was analyzed by an online tool, Geno-
micScape (http://genomicscape.com/) [22]. The probe set
with the highest standard deviation (SD) was selected when
more than one probe set interrogated the same gene.

2.8. Expression Analyses of Hub Genes and lncRNAs among
Different Stages of AML BM Samples or between AML PB
Samples and Healthy Blood Samples. The expression matri-
ces with RSEM (RNA-Seq by Expectation Maximization)
[23] normalized count data of genes in AML BM samples,
AML PB samples, and healthy blood samples (the samples
were from TCGA, TARGET, and GTEx databases) were
obtained from the UCSC XENA database (https://
xenabrowser.net/) [24].

2.9. Transcription Factor (TF) Prediction for the Hub Genes.
TF prediction for the hub genes was done via the ChEA3
(https://amp.pharm.mssm.edu/chea3/) website [25].

2.10. Statistical Analysis. The RStudio software (http://www
.rstudio.com), Microsoft Excel 2007, the Cytoscape software
(Version 3.7.0), and GraphPad Prism 7 were used for all
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Figure 1: The work flow of this research.
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statistical analysis or graphic drawings in this research. P
values < 0.05 were considered statistically significant [26].

3. Results

3.1. Key Modules and Survival-Specific Genes Identified by
WGCNA. A total of 29, 15, and 33 modules were identified
for mRNAs, miRNAs, and lncRNAs, respectively
(Figures 2S B, 2S D, and 2S F).

The relationship between each module and the CN-AML
clinical information was tested. We found that ME (module
eigengene) 1 module of mRNAs, as well as ME2, ME3, and
ME4 modules of lncRNAs, showed positive associations
with the survival time of adult patients with CN-AML
(Figures 2(a)–2(c)), suggesting that ME1, ME2, ME3, and
ME4 modules may play a key role in CN-AML patients sur-
viving. The gene numbers in these modules were 131, 230,
261, and 84, respectively (Figure 2(d)).

To further explore the association of these four modules
with patient survival time, we used GS and MM measures to
identify the genes with both high GS for “survival time,” as
well as high MM in the selected modules. As shown in
Figure 4S, GS and MM were moderately correlated in the
ME1 module of mRNAs (cor = 0:57, P = 1:2e − 12) and the
ME3 module of lncRNAs (cor = 0:46, P = 4:5e − 15) and
strongly correlated in ME2 (cor = 0:72, P = 4:9e − 38) and
ME4 (cor = 0:71, P = 4e − 14) modules of lncRNAs,

indicating that genes significantly associated with survival
time were also key elements of modules associated with
survival time. Thus, we considered genes from the ME1
module of mRNAs, together with those in the ME2,
ME3, and ME4 modules of lncRNAs, as survival-specific
in adult patients with CN-AML.

3.2. Functional/Pathway Enrichment Analysis and PPI
Network Establishment. To explore the survival-specific
protein-coding genes, the GO analysis of BP, MF, and CC,
as well as pathway analyses, was performed on the 131
mRNAs of the ME1 module. The top 20 GO terms of each
category are shown in Figure 3(a) and listed in Table 6S.
The biological progress (BP) analysis revealed that the
survival-specific protein-coding genes were notably
enriched in cell activation, leukocyte activation, immune
effector process, secretion, myeloid leukocyte activation,
and like. The cell component (CC) analysis showed that
the ME1 genes were highly concentrated in the
compositions of secretory granule, secretory vesicle,
specific granule, etc. The molecular function (MF) showed
that the ME1 genes were mainly related to calcium ion
binding, carbohydrate binding, and so on. The innate
immune system, neutrophil degranulation, and ensemble
of genes encoding ECM- (extracellular matrix-) associated
proteins (including ECM-affiliated proteins, ECM
regulators, and secreted factors) are the top three hits in
the pathway analysis with the hit gene number > 10% of
the ME1 mRNAs (Figure 3(b) and Table 6S).

Next, we established a PPI network of the ME1 mRNAs
recognized in STRING, as shown in Figure 5S.

3.3. Hub Gene Identification and Validation.We obtained 18
hub genes from 131 mRNAs of the ME1 module by the
method we described above, using the cytoHubba plugin of
the Cytoscape software. These were ABCA13, ANXA3,
ARG1, BTNL8, C11orf42, CEACAM1, CEACAM3, CHI3L1,
CRISP2, CYP4F3, GPR84, HP, LTF, MMP8, OLR1, PADI2,
RGL4, and RILPL1.

The expression levels of the hub genes in PB samples of
primary AML patients from the diagnosis stage and healthy
whole blood samples were analyzed. We separately com-
pared TCGA AML PB samples vs. GTEx healthy samples
(Figure 6S A) and TARGET PB samples vs. GTEx healthy
samples (Figure 6S B). Also, we integrated AML PB
samples from TCGA and TARGET databases and
compared them with GTEx healthy samples (Figure 4(a)).
In whichever analyzing way, we observed that 17 of the 18
hub genes (except C11orf42) had a decreased expression
level in AML PB samples compared to healthy samples
(P < 0:05).

Next, we compared the hub gene expression levels in pri-
mary AML BM samples of three different stages: diagnosis
stage, posttreatment stage, and recurrent stage (all samples
here are from the TARGET database). From Figure 4(b),
we observed some interesting changes in hub gene expres-
sion among samples of different stages. ANXA3 and
CEACM1 are significantly upregulated in posttreatment
samples compared to diagnosis samples (P < 0:05). RGL4

Table 1: Clinical information of 42 adult CN-AML patients
selected from TCGA database for WGCNA analysis.

TCGA Datasets
Variables Case number (N = 42)
Age (21-88 years)

<60 21

>=60 21

Gender

Female 22

Male 20

FAB

M0 3

M1 10

M2 11

M3 0

M4 13

M5 4

M6 0

M7 1

WBC/×109/L, median (range)

32.5(1-203)

BM blast/%, median (range)

71(0-98)

Survival time/days, median (range)

320(30-1706)

WBC, white blood cell count; BM, bone marrow; FAB, French–American–
British classification systems.
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Figure 2: Continued.
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and RILPL1 are significantly upregulated in posttreatment
samples compared to both diagnosis and recurrent samples
(P < 0:05). ABCA13, ARG1, CRISP2, and CYP4F3 showed
higher expression levels in recurrent samples than in diagno-
sis samples (P < 0:05). Also, the expression level of HP in
posttreatment samples is significantly higher than that in
recurrent samples (P < 0:05).

Survival analysis of the 18 hug genes was then performed
in an independent cohort of 148 patients with CN-AML
from the GEO database, using GenomicScape. We found
that higher expression levels of 5 genes, ARG1, CEACAM1,
CHI3L1, CRISP2, and CYP4F3, were significantly correlated
with a longer OS (P < 0:05) (Figure 5).

We then predicted TFs for the 18 hub genes by ChEA3
website. The top 10 TFs were listed in Table 2. From the

results, we noticed that Lactotransferrin (LTF) ranked the
first place with the lowest mean rank [25] and the most over-
lapping genes (CEACAM3, CEACAM1, ANXA3, ARG1,
CYP4F3, CHI3L1, PADI2, RGL4, MMP8, and ABCA13).
Also, LTF is just one of our 18 hub genes.

3.4. Pearson’s Correlation Analysis between mRNAs and
lncRNAs. To explore the potential regulatory mechanisms
linking the lncRNAs of modules ME2, ME3, and ME4 with
the mRNAs of module ME1, we performed Pearson’s corre-
lation analysis based on their expression data from 42 TCGA
samples. The 128 mRNAs and 209 lncRNAs formed 3671
correlation links (jRj > 0:5, P < 0:05). In particular, 127
mRNAs and 28 lncRNAs formed 224 very strong [27] corre-
lation links with an jRj > 0:8 ðP < 0:05Þ (Figure 6(a),
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Figure 2: Module-trait associations and gene numbers in the survival time positively related modules. (a–c) The positive and negative
correlation coefficients of WGCNA modules and clinical characteristics of mRNAs, miRNAs, and lncRNAs were colored red and green,
respectively. Each cell contains the corresponding correlation and P value. The more intense red indicates a positive correlation; the
more intense green indicates a negative correlation. ME1 module of mRNAs (a), as well as the ME2, ME3, and ME4 modules of
lncRNAs (c), showed positive associations with the survival times of the adult CN-AML patients (marked with red frames). (d) Gene
numbers in ME1, ME2, ME3, and ME4 modules.
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Table 7S). The top 2 lncRNAs having the most linked
mRNAs are AC092650.1 and LINC00671, linked to 19
and 17 mRNAs, respectively. However, there are no
studies about AC092650.1 yet. But LINC00671 has been
reported serving as an anticarcinogenic role in various
kinds of cancers [28–31]. We analyzed the expression
level of LINC00671 in AML PB samples and normal
peripheral blood samples. Notably, we found that
LINC00671 showed decreased expression in AML PB

samples compared to healthy blood samples
(Figure 6(b)). No significant expression differences were
shown among the samples of diagnosis, posttreatment,
and recurrent stages, but we can see a trend of
increased expression in the posttreatment group
compared to the other 2 groups (Figure 6(c)). Since we
only have 12 posttreatment samples here, maybe there
will be statistical significance when more samples are
available.
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blood samples. (b) Comparison of AML BM samples of diagnosis stage, posttreatment stage, and recurrent stage.
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Figure 5: Continued.
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4. Discussion

Patients with AML without chromosomal changes are diag-
nosed as CN-AML [32]. Having no microscopically detect-
able chromosomal abnormalities in leukemic blasts makes
CN-AML cytogenetically uniform and provides a perfect
platform for AML biomarker recognition. Here, we used
the WGCNA methodology to identify the prognosis-
related biomarkers of AML on the basis of RNA-seq and
clinical trait data of CN-AML samples.

WGCNA, an algorithm for a scale-free network intro-
duced in 2005, has been used to propose candidate therapeu-
tic targets or predict diagnosis, classification, progression, or
prognosis in various types of cancers [33–37]. As an effective
bioinformatics tool for outlining gene correlation patterns,
WGCNA not only identifies but also weights gene connec-
tions by the association between sample expression profiles
and clinical features, for the construction of more accurate

and complete gene networks [14]. lncRNAs play multiface-
ted roles in both health and disease, including cancer [38].
One assumption of the lncRNA functional mechanism is
the competitive endogenous RNA (ceRNA) hypothesis. This
suggests that lncRNAs may nullify miRNA, subsequently
upregulate the expression of downstream miRNA target
genes [39]. This hypothesis has been experimentally sub-
stantiated in various types of cancers, including hematolog-
ical malignancies [40–44]. Nowadays, there are more and
more studies involving applying WGCNA in AML-related
analysis published in journals of different levels [45–50],
which proves the recognition of this algorithm to some
extent. However, there is no study aimed at finding AML
survival-specific biomarkers using the WGCNA methodol-
ogy based on adult CN-AML data by far. Moreover, our
study not only is limited to the expression of the mRNA
level but also includes miRNA, and lncRNA gene expression
data (though no AML characteristic-related miRNA
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Figure 5: Prognostic values of the mRNA expression of ARG1 (a), CEACAM1 (b), CHI3L1 (c), CRISP2 (d), and CYP4F3 (e) in 148 adult
CN-AML patients of the GSE12417 dataset from the GEO database.
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modules were found in our study, which probably means
that the miRNA expression profile alone is not capable
enough to connect with AML clinical characteristics inde-
pendently). A total of 19663 mRNAs, 1450 miRNAs, and
7182 lncRNAs were included in our analysis. Based on clin-
ical features (gender, age, survival time, and white blood cell
count (WBC)), we identified 1 prognosis-related mRNA
module (ME1 module of 131 mRNAs) and 3 lncRNA mod-
ules (ME2, ME3, and ME4 modules of 230, 261, and 84
lncRNAs, respectively) from the RNA-seq data and clinical
trait data of 42 adult patients with CN-AML that matched
our screening criteria.

After constructing a PPI network of 131 mRNAs and
mRNA-lncRNA network carried out by Pearson’s correla-
tion analysis, we used the cytoHubba plugin of Cytoscape
software to find hub genes. CytoHubba provides 12 topolog-
ical analysis methods, which are MCC, DMNC, MNC,
Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality,
Betweenness, Stress, and ClusteringCoefficient, to rank
nodes in a network by the network features [51]. These
nodes screened for 18 hub genes in our study.

In expression analyses of the hub genes in different
cohorts of AML samples and healthy whole blood samples,
17 of the 18 hub genes showed higher expression levels in

AML PB samples than in healthy whole blood samples. Nine
genes showed higher expression levels in AML BM samples
in the posttreatment stage, compared to the diagnosis and
recurrent stages. These results were consistent with our
expectation of prognostic values of these genes. And it also
proved that these potential biomarkers extracted based on
CN-AML sample data may be extensively applicable to all
kinds of AML samples, regardless of clinical traits. Also, sur-
vival analysis of the 18 hub genes in 148 GEO CN-AML
patients showed the correlation of higher expression levels
of ARG1, CEACAM1, CHI3L1, CRISP2, and CYP4F3 with a
longer OS.

In the 18 hub genes, CEACAM1, CRISP2, and CYP4F3
showed their strong competitiveness in both expression
analyses (AML PB samples vs. healthy blood samples and
AML BM samples posttreatment stage vs. diagnosis/recur-
rent stages) and the survival analysis. They can be key study
genes in our further research. Their relationship with tumor
progression has been reported in previous studies. Carcino-
embryonic antigen-related cell adhesion molecule 1 (CEA-
CAM1) mediates the direct interaction between tumor and
immune cells as a cell-cell communication molecule [52].
It has been proved to be a tumor suppressor or biomarker
in cancers of different primary sites, including the liver, lung,

Table 2: Top 10 predicted transcription factors (TFs) for the hub genes.

Rank TF Score Library Overlapping_genes

1 LTF 1
ARCHS4 coexpression, 1;
GTEx coexpression, 1

CEACAM3, CEACAM1, ANXA3, ARG1, CYP4F3,
CHI3L1, PADI2, RGL4, MMP8, ABCA13

2 CREB5 34.67
ARCHS4 coexpression, 30;

Enrichr queries, 46;
GTEx coexpression, 28

CEACAM3, ANXA3, CYP4F3, RGL4

3 CREB3L3 39.33
ARCHS4 coexpression, 5;

Enrichr queries, 106;
GTEx coexpression, 7

BTNL8, CEACAM1, ARG1, CYP4F3, HP

4 NFE4 51 GTEx coexpression, 51 CEACAM3, RGL4

5 NR1H4 53.33
ARCHS4 coexpression, 40;

Enrichr queries, 80;
GTEx coexpression, 40

CEACAM1, ARG1, CYP4F3, HP

6 ATF5 54.67
ARCHS4 coexpression, 50;

Enrichr queries, 108;
GTEx coexpression, 6

ARG1, ANXA3, CYP4F3, HP

7 ZNF438 66.33
ARCHS4 coexpression, 64;

Enrichr queries, 104;
GTEx coexpression, 31

CEACAM3, ANXA3, GPR84, RGL4

8 TBX10 68.67
ARCHS4 coexpression, 35;

Enrichr queries, 66;
GTEx coexpression, 105

BTNL8, CEACAM1, PADI2

9 HNF4A 73

Literature ChIP-seq, 67;
ARCHS4 coexpression, 7;
ENCODE ChIP-seq, 18;

Enrichr queries, 90;
ReMap ChIP-seq, 104;
GTEx coexpression, 152

BTNL8, CEACAM1, ARG1, CYP4F3, HP

10 NR1I2 81.75
Literature ChIP-seq, 13;
ARCHS4 coexpression, 2;

Enrichr queries, 144; GTEx coexpression, 168
BTNL8, CEACAM1, ARG1, CYP4F3, HP
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breast, prostate, stomach, and ovary [53–57], while its role in
AML remains to be investigated. Cysteine-rich secretory pro-
tein-2 (CRISP2) has been reported to be less expressed in
high-grade squamous intraepithelial lesions than in other
histological grades, making it a novel biomarker for the
detection of cervical cancer [58]. Cytochrome P450 family 4
subfamily F member 3 (CYP4F3) has been reported to have
good diagnostic values for osteosarcoma [59], and a poten-
tially functional SNP in CYP4F3 (rs4646904) may contribute
to the etiology of lung cancer [60]. Mizukami et al. proved
that CYP4F3A was upregulated in all-trans-retinoic acid-
(ATRA-) treated AML cell line HL-60 [61].

LTF (also known as LF) was predicted to be a transcrip-
tion factor to 10 of the 18 hub genes. It is a member of the
transferrin family of genes, and its protein product is found
in the secondary granules of neutrophils. Its relationship
with various types of tumors including AML has been widely
reported. Back in 1988, Davey et al. reported a quantitative
decrease in LTF staining in AML and myelodysplasia, which
supports the concept that abnormal neutrophils and bands
are derived from a malignant clone of myeloid precursor
cells [62] and also is consistent with our expectations for
LTF to be a candidate biomarker for AML prognosis.

The pathway enrichment analysis suggested innate
immune system, neutrophil degranulation, and ensemble
of genes encoding ECM-associated proteins (including
ECM-affiliated proteins, ECM regulators, and secreted fac-
tors) as the top three hits with the hit gene number > 10%

of the ME1 mRNAs (35.11%, 30.53%, and 12.21%, respec-
tively). The innate immune system has been widely reported
to be closely related to various kinds of cancers including
AML [63, 64]. Neutrophil degranulation has been reported
to be enriched with differentially expressed genes between
DNA methyltransferase 3 alpha (DNMT3A) mutation posi-
tive and negative AML samples (DNMT3A is associated with
poor prognosis and appeared to be a potential biomarker)
[65]. ECM-associated proteins have been proven to play a
functional role in the progression and metastasis of many
kinds of cancers, including breast cancer, prostate cancer,
and neurofibroma [66–68]. EMC-associated proteins have
also been reported to be related to disease development
and therapy in AML. Wang et al. claim that the ECM-
receptor interaction is an important PD-L1 downstream
pathway, which regulates cell proliferation and apoptosis in
AML [69]. Berdel et al. suggest that ECM-targeted IL-2 com-
bined with anti-CD33 immunotherapy can be used in post-
transplant AML relapse [70].

LINC00671 is one of the lncRNAs revealing a high
expression correlation with mRNAs in our PPI network. It
was previously found to be a tumor suppressor in multiple
cancers including renal cell cancer, pancreatic cancer, and
papillary thyroid tumor by inhibiting the growth and metas-
tasis of cancer cells [26–29]. Although there are no studies
about it in hematological malignancies yet, we found its sig-
nificantly higher expression level in AML PB samples com-
pared to healthy blood samples. Also, a trend can be
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Figure 6: Pearson’s correlation analysis between mRNAs and lncRNAs. (a) Coexpression network of 127 mRNAs and 28 lncRNAs with a
jRj > 0:8 (P < 0:05) based on Pearson’s correlation analysis. Yellow round nodes indicate mRNAs, and green diamond nodes indicate
lncRNAs. (b) The expression analysis of LINC00671 between AML PB samples and healthy whole blood samples. The lines inside the
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observed that it could be upregulated in posttreatment AML
BM samples than diagnosis or recurrent ones. Further lab
experiments are needed to prove its cancer suppressor effect
or potential biomarker role in AML.

There are previous studies investigating AML based on
the WGCNA method. Wiggers et al. [71] identified clus-
ters of genes selectively correlated to relapse risk in
patients of distinct AML subtypes by applying WGCNA
on mRNAs in 36 AML samples. Also, Ye et al. analyzed
the differentially expressed genes between primary AML
samples and relapsed samples applying the WGCNA
method and identified genes associated with both relapse
and overall survival. These studies show the usefulness of
the WGCNA method in finding the relationship between
gene expression profile and AML prognosis. Also, one
study previously analyzed the survival-specific lncRNAs
in 27 underage patients with CN-AML [72]. However,
none of the previous studies performed a complete
WGCNA on the mRNA, miRNA, and lncRNA expression
data, and neither of them suggested the possibility that
biomarkers found based on CN-AML data may be appli-
cable to all AML samples.

Admittedly, this work was limited by the sample size and
statuses of our WGCNA—42 samples (deceased patients
only) were included. More comprehensive studies of larger
sample sizes should be performed in the future. Addition-
ally, our study was a bioinformatics analysis. The mRNAs
and their potential regulatory lncRNAs identified in this
study for their prognostic values should be further investi-
gated by in-depth mechanical approaches such as RT-PCR
validation and gene function experiments. To use these
results in clinical prognosis prediction, prediction models
would be constructed, and PCR-based quantifications might
be used in risk grading of adult AML patients.

5. Conclusions

In this study, we identified AML survival-specific mRNAs
and lncRNAs using the WGCNA methodology based on
CN-AML data. Eighteen mRNAs were screened as hub
genes of the survival-specific mRNAs. Expression analyses
in different cohorts of AML samples revealed 17 of the
hub genes (ABCA13, ANXA3, ARG1, BTNL8, C11orf42,
CEACAM1, CEACAM3, CHI3L1, CRISP2, CYP4F3,
GPR84, HP, LTF, MMP8, OLR1, PADI2, RGL4, and
RILPL1) were downregulated in AML PB samples com-
pared to healthy whole blood samples; ANXA3, CEACM1,
RGL4, RILPL1, and HP showed increased expression levels
in AML BM samples of the posttreatment stage compared
to the diagnosis and/or recurrent stage. Also, the expres-
sion levels of ARG1, CEACAM1, CHI3L1, CRISP2, and
CYP4F3 were demonstrated to be positively correlated
with OS in an independent cohort. One of the hub genes,
LTF, appeared on top of the TF prediction list, overlap-
ping 10 hub genes. lncRNA-mRNA networks were con-
structed to exhibit the possible genetic regulatory
mechanisms of adult CN-AML. LINC00671, which was
linked to 17 mRNAs, has been widely reported as a tumor
suppressor in various solid tumors. Clearly, this study

identified the prognosis-specific biomarkers and the poten-
tial lncRNA-related regulatory mechanisms in AML. Our
findings suggest CN-AML samples as good sources to
investigate the relationship of RNA profiles and AML
prognosis, and also provide a necessary groundwork for
further exploration of the function and potential applica-
tions of these biomarkers as therapeutic targets for AML.
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