Skip to main content
. 2022 Sep 30;19(3):646–668. doi: 10.14245/ns.2244368.184

Table 2.

Clinical studies promoting inhibitory tone for SCI-NP

Approach and route Duration No. of participants Mechanism and conclusion
Mechanism and conclusion
Ketamine (i.v. then p.o.) 17.2 Days (acute), 59 days (subacute) 13 Ketamine reduced allodynia in acute phase significantly by antagonizing NMDA receptors [142]
(Epidural injection) 7-, 15-, 30, 45-, and 60-day postinjection 40 Showed effects till 30 days post injection by antagonizing NMDA receptors [143]
Ketamine and Alfentanil (i.v. infusion) - 9 Both markedly reduced evoked pain by antagonizing NMDA receptors [144]
Ketamine (i.v.)+Lidocaine (i.v.) - 10 NMDA antagonist ketamine but not lidocaine was effective [145]
Valproic acid (p.o.) 8 Weeks 20 Voltage-gated ion channels blocker showed no significant analgesic effects [146]
Lamotrigine (p.o) 9 Weeks 30 Pain reduction in patients with incomplete SCI by blocking sodium channels [71]
Lamotrigine (p.o.) vs. amitriptyline (p.o.) 3 Weeks 147 Sodium channel blocker and monoamine reuptake inhibitor both showed similar efficacy [73]
Lidocaine (i.v.) 1 to 3 weeks 24 Sodium channel blocker reduced pain at and below injury [66]
16
(5% plaster) 160 Days 1 Superficial NP symptoms completely disappeared by blocking sodium channels [69]
Lumbar subarachnoid catheterization - 21 Response to diagnostic spinal anaesthesia using sodium channel blocker in chronic SCI pain is complex [147]
Lidocaine (i.v.) vs. sodium amobarbital (i.v.) - 5 Amobarbital by promoting GABAA inhibition was more superior in relieving pain [67]
Mexiletine 5 Weeks 15 Sodium channel blocker showed no significant pain reduction [148]
Oxcarbazepine - 55 Sodium channel blocker was more effective in patients without evoked pain [149] well tolerated, efficacious and safe for monotherapy
20 Weeks 37
Fosphenytoin (i.v.) vs. Lidocaine (i.v.) - 17 Significant pain reduction by Sodium channel blocker fosphenytoin [150]
Botulinum toxin type A (s.c.) 4, 8, and 12 weeks 40 Showed significant pain reduction [75] and mainly controlled at-level SCI pain by inhibiting release of glutamate and substance P
8
Gabapentinoids
Gabapentin (p.o.) 4–24 Weeks 7 Decrease in pain intensity, burning sensation, [151] frequency and NP refractory to other analgesics by GABA modulation
31
38
20
Gabapentin (p.o.)+ketamine (infusion) 4 Weeks 40 NMDA receptor antagonist ketamine was safe and efficacious adjuvant [65]
Gabapentin+amitriptyline (p.o.) 8 Weeks 38 Serotonin enhancer amitriptyline was more efficacious [152]
Gabapentin vs. pregabalin (p.o.) 8 Weeks 30 GABA analogs showed no difference in efficacy [153]
Pregabalin (p.o.) 9–17 Weeks 137 Pregabalin relieved moderate to severe NP [154] was effective and well tolerated [82] and also effective in NP related sleep interference [155] by GABA modulation
108
175
40
GABA agonist
Baclofen (i.t.) 24 Hours–12 months 16 GABAB agonist decreased chronic musculoskeletal pain but not chronic neurogenic pain, [156] suppressed spontaneous and evoked pain [157] and showed significant analgesic effect [98]
9
13
KCC2 enhancer
Bumetanide (p.o.) 19 Weeks 14 Produced analgesia by upregulating KCC2 protein [55]

SCI, spinal cord injury; NP, neuropathic pain; CNP, chronic neuropathic pain; i.v., intravenous; p.o., peroral; NMDA, N-methyl-D-aspartate; GABA, gamma-aminobutyric acid; i.t., intrathecal; s.c., subcutaneous; KCC2, K+-Cl- cotransporter isoform 2.