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Abstract

As of November 2021, several SARS‐CoV‐2 variants appeared and became

dominant epidemic strains in many countries, including five variants of

concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron defined by the World

Health Organization during the COVID‐19 pandemic. As of August 2022,

Omicron is classified into five main lineages, BA.1, BA.2, BA.3, BA.4, BA.5 and

some sublineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6) (https://www.

gisaid.org/). Compared to the previous VOCs (Alpha, Beta, Gamma, and Delta),

all the Omicron lineages have the most highly mutations in the spike protein,

and with 50 mutations accumulated throughout the genome. Early data

indicated that Omicron BA.2 sublineage had higher infectivity and more

immune escape than the early wild‐type (WT) strain, the previous VOCs, and

BA.1. Recently, global surveillance data suggest a higher transmissibility of

BA.4/BA.5 than BA.1, BA.1.1 and BA.2, and BA.4/BA.5 is becoming dominant

strain in many countries globally.
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1 | INTRODUCTION

During the COVID‐19 epidemic, several SARS‐CoV‐2 variants1–3

have emerged and SARS‐CoV‐2 variants continue to alter the

trajectory of the COVID‐19 pandemic,4 causing severe damage to

human health and the medical system globally.5–7 As of August 2,

2022, there have been 575 887 049 confirmed cases of COVID‐19

worldwide, including 6 398 412 deaths, reported to theWorld Health

Organization (WHO) (https://covid19.who.int/).

At present, the WHO has designated five variants of concern

(VOC), including Alpha (B.1.1.7),1 Beta (B.1.351),2 Gamma (P.1),3

Delta (B.1.617.2),8 and Omicron (B.1.1.529).9 B.1.1.529 was first

detected in specimens on November 11, 2021, in Botswana and

on November 14, 2021, in South Africa.9 On November 26, the

WHO defined it as the fifth VOC and named it Omicron. Then, a

variant of Omicron, the BA.1 lineage, rapidly spread worldwide

and outcompeted other VOCs. Subsequently, another variant of

Omicron, the BA.2 lineage, was identified in late 2021 in patients

in countries including Denmark, South Africa, and India.10

Notably, studies have shown that BA.2 may be ∼30% more

transmissible than BA.1, but does not appear to cause more

severe disease.11,12 Since then, BA.2 has increased in many

countries, and is more transmissible and possesses a selective

advantage over BA.1.13,14 The fourth COVID‐19 wave of South

Africa was associated with BA.1 and BA.2.15–17 In South Africa

from April 2022, BA.4 and BA.5 have rapidly replaced BA.2 and

initiated the fifth COVID‐19 wave, accounted for more than 50%

of sequenced cases.18–20 The current review article aims to

analyse the characteristics of key spike mutations, epidemic

characteristics, humoral and cellular immunity, and vaccine

effectiveness of five Omicron lineages, especially Omicron

BA.2, BA.4, and BA.5. We hope to provide a scientific reference

for monitoring, control measures, and vaccine development

strategies for the five main Omicron lineages.
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1.1 | Spike mutations of SARS‐CoV‐2 Omicron
lineages

The earliest BA.2 sequence was uploaded from South Africa on

November 27, 2021.21 On December 7, the Omicron sublineage was

detected in South Africa, and the Nextstrain defined it as 21 L, Omicron

(21 L, BA.2). The Omicron (21 L, BA.2) spike protein contains 29 amino

acid substitutions and one insertion (T19I, L24S, ins25PPA, D142D,

V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N,

N440K, G446S, S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H,

D614G, H655Y, N679K, P681H, N764K, D796Y, Q954H, N969K)

(https://www.nicd.ac.za/diseases-a-z-index/disease-index-covid-19/sars-

cov-2-genomic-surveillance-update/). There are 20 identical spike muta-

tions (G142D, G339D, S373P, S375F, K417N, N440K, S477N, T478K,

E484A, Q498R, N501Y, Y505H, D614G, H655Y, N679K, P681H,

N764K, D796Y, Q954H, N969K) in all five Omicron lineages (BA.1,

BA.2, BA.3, BA.4, and BA.5) and BA.1.1, BA.2.12.1 sublineage,22 as

shown in Figure 1 and Table 1.

Both structural modeling and pseudovirus experiments indicated

that receptor‐binding domian (RBD) with N440K, S477N, T478K,23

E484A, Q493R, N501Y,24 Q498R,25 and Y505H mutations could

increase the binding affinity and tightness of RBD to human

angiotensin‐converting enzyme 2 (hACE2), thus increasing the

infectivity of SARS‐CoV‐2 Omicron variants. It is worth noting that

there are triple mutations “H655Y +N679K + P681H,” near the furin

cleavage site of the Omicron lineages spike protein.26 Previous

studies indicated that “H655Y +N679K + P681H” might accelerate

S1/S2 cleavage through furin protease and facilitate efficient viral

entry into the host, leading to enhanced replication ability and viral

infectivity.27 Compared to the previous VOCs (Alpha, Beta, Gamma,

Delta), Omicron and its lineages were the most highly mutated strains

and contained at least 32 mutations in the spike protein, which was

twice as many as the Delta variant (https://www.gisaid.org/).

Omicron and its lineages had a higher positive electrostatic surface

than previous VOCs, which could increase the binding affinity and

tightness of RBD to negative electrostatic hACE2. However, some in

silico analyses28,29 predict that the Omicron spike has a higher

binding affinity to ACE2 than Delta (Delta is 60% more transmissible

than the highly infectious Alpha variant). The K417N, N440K,30

S477N,31 T478K, E484A,32 and N501Y33,34 mutations were shown

to evade neutralization by convalescent sera, some monoclonal

antibodies (mAbs), and postvaccine serum.35–37

Compared to Omicron BA.1, BA.1.1, BA.3, BA.4, and BA.5, the BA.2

lineage is missing the 69–70 deletion,38,39 which is associated with S gene

F IGURE 1 Spike mutations affect the biological behavior of five SARS‐CoV‐2 Omicron lineages. Blue, BA.1 has an additional six amino acid
deletions, three insertions, and nine substitutions compared to BA.2; Red, BA.1.1 contains unique mutation R346K compared to BA.1; Green,
BA.2 has eight specific mutations compared to BA.1, BA.1.1, BA.3, BA.4, and BA.5; Purple, BA.2.12.1 contains unique mutation L452Q + S704F
compared to BA.2; Yellow, BA.4 and BA.5 have specific del69‐70, L452R, F486V, R493Q compared with BA.2; Black, all Omicron lineage have
20 identical spike mutations.
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target failure (SGTF) and has been the nicknamed as “stealth” variant. This

makes tracking its transmission by SGTF detection challenging.39 The

protein–protein docking model indicated that the docking energies of

wild‐type (WT), BA.1, BA.1.1, BA.2, and BA.3 were −799.6, −943.4,

−946.8, −974.0, and −999.3, respectively, with hACE2. The docking

results showed that BA.2 and BA.3 had a higher affinity for hACE2 than

WT, BA.1, and BA.1.1, indicating that BA.2 had a higher potential for

transmission than BA.1 based on both protein–protein docking servers.40

Structural predictions pointed out that a key difference in the spike

protein between BA.2 and BA.1 is the N‐terminal domain surface in the

BA.2 is more enlarged and flattened than BA.1.41 This structural change is

due to the lack of 143–145 deletion in BA.2, leading to BA.2 having a

higher positive electrostatic surface potential, which can facilitate the

interaction between BA.2‐RBD and hACE2.42,43 Compare to BA.2, BA.4,

and BA.5 have the additional spike mutations del69‐70, L452R, F486V,

and R493Q, a reversion mutation. Notably, F486V mutation carried by

BA.4/5 reduced receptor affinity due to reduced hydrophobic interac-

tions, while R493Q reversion mutation restored a hydrogen bond with

H34 and avoided charge repulsion by K31, and increased the affinity

between BA.4/5 RBD and hACE2.44

The Omicron variant not only accumulated a large number of

mutations in the spike protein but also in open reading frame 1ab

(ORF1ab), nucleocapsid (N) protein, envelope (E) protein and membrane

(M) protein (including NSP1–S135R; PLpro–T24I, G489S; NSP4–L264F,

T327I, L438F, T492I; 3CL–P132H; NSP6–del105‐108, F108L;

NSP12–P323L; 189V; NSP13–R392C; NSP14–I42 V; NSP15–T112I;

ORF3a–T223I; E–T9I; M–Q19E; N–P13 L, del31‐33, R203K, G204R,

S413R. (Data available from https://www.nicd.ac.za/latest-confirmed-

cases-of-covid-19-in-south-africa/). Domenico Benvenuto et al.45 used

the amino acid change stability analysis and showed that mutations in

NSP6 decrease the stability of the protein structures. P323L mutation in

NSP12 can reduce the fidelity of viral gene replication.46 Johnson and

colleagues reported that the R203K+G204R mutation increases N

protein phosphorylation and impacts the local charge of the N protein,

and the R203K/G204R mutations may promote the binding of RNA by

increasing the positive charge to increase the RNP assembly efficiency,

which can accelerate virus replication.47,48

Altogether, the Omicron lineages has the largest number of

mutations throughout the genome. All these mutations can affect the

biological characteristics of the Omicron lineages, including increas-

ing the transmissibility ans causing immune escape compared to the

WT and the previous VOCs (Alpha, Beta, Gamma, Delta).

1.2 | Virological characteristics of SARS‐CoV‐2
Omicron lineages

In vitro, cell culture experiments show that BA.2 is more replicative in

human nasal epithelial cells and more fusogenic than BA.1, and the

morphology of syncytia infected with BA.2 was significantly (1.52‐

fold) larger than BA.1.13 In vivo, in the lung periphery, the viral RNA

load of BA.2 was 9.3‐fold and 11‐fold higher than those of BA.1 and

B.1.1 at the same timepoint, respectively.13

Statistical analysis from a Bayesian model, which represents the

epidemic dynamics of SARS‐CoV‐2 lineages, shows that the effective

reproduction number (Rt) of BA.2 is 2.51‐fold (Rt, 95% CI:

2.48–2.55)49 and 1.26 −1.4‐fold (Rt, 95% CI: 1.25–1.52) higher than

Delta and BA.1, respectively (Rt, which measures how many

secondary cases are generated by a single primary case at time t).13

Similarly, epidemiological studies indicated that Ct mean values for

positive swabs infected with BA.2 (E gene: 23.7, N gene: 25.9) were

lower (p < 0.005) than BA.1 (E gene: 26.3, N gene: 27.7) and BA.1.1 (E

gene: 24.5, N gene 26.6).50,51

Pseudovirus studies indicated that the Rt of BA.4, BA.5, and

BA.2.12.1 were 1.19‐, 1.21‐, and 1.13‐fold higher than BA.2,

respectively. In particular, pseudovirus infectivity showed that the

infectivity of BA.4/5 pseudovirus was 18.3‐fold higher than BA.2.

Cell culture experiments showed that BA.2.12.1 and BA.4/5 more

efficiently replicate in human alveolar epithelial cells than BA.2, with

the levels of viral RNA in the supernatant of rBA.4/5‐infected

cultures being 34‐fold higher than rBA.2.52 In addition, a multinomial

logistic regression model showed that the growth advantages for

BA.4 and BA.5 per day over BA.2 in South Africa.53

Altogether, the Rt of BA.2 is higher than BA.1 and BA.1.1, while

the effective Rt of BA.4 and BA.5 are higher than BA.2. Particularly,

the risk of BA.4 and BA.5 for global health is potentially higher

than BA.2.

1.3 | The outbreak of BA.2, BA.4, and BA.5

According to the data from NICD, BA.1 is the dominant strain in

November (73%), December (94%), and January (55%) in South Africa.

Sequence analysis showed that the proportion of confirmed cases of

BA.2 increased from 43% (1175/2721) to 94% (764/811), while the

proportion of confirmed cases of the BA.1 variant decreased from 55%

(1479/2721) to 2% (36/811) from January to March in South Africa.

Subsequently, BA.4 and BA.5 have rapidly replaced BA.2, reaching more

than 50% of sequenced cases in South Africa by the first week of April

2022. While BA.1 was the predominant sublineage in January (55%),

BA.2 dominated in February (86%) and March (78%). BA.4 and BA.5 are

together dominant in April (73%), May (93%), June (91%), July (93%) in

South Africa (Data available from: https://www.nicd.ac.za/latest-

confirmed-cases-of-covid-19-in-south-africa/).

A first study conducted in Denmark reported a higher contagious-

ness with the 21 L/BA.2 Omicron variant (n=2122) than with the

Omicron 21K/BA.1 variant (n=5,702).49 Since then, the prevalence of

BA.1 increased from 2.8% in Week 48% to 71.9% in Week 51 in 2021,

thereafter declining to 7% by Week 5 in 2022, accompanied by BA.2

increased from less than 0.1% to 89.2% of sequenced samples during this

period.19 Recently, there is an increasing trend in the proportions for BA.5

observed in Portugal, BA.5 already accounted for ∼37% of the positive

cases as of May 8, 2022. From July 4 to 17, 2022, BA.4/BA.5 accounted

for 93.2% of the total sequence from 14 European countries

(Data available from: https://www.ecdc.europa.eu/en/news-events/

epidemiological-update-sars-cov-2-omicron-sub-lineages-ba4-and-ba5).
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In the United Kingdom in mid‐November 2021, an increase in a

second Omicron sublineage BA.2 was observed in early January

2022.54,55 Among 1195 positive samples, only one (0.1%: 0.0–0.5)

corresponded to the Delta variant and the remainder were Omicron

lineages: 32.7%, 39.6%, 27.7% were BA.1, BA.1.1, BA.2, respectively.51

Specifically, of the 212 positive swabs with determined sublineages from

participants living in London to February 21, 2022, all sublineages were

Omicron and 94 (44.3%; 95% CI: 37.8–51.1) were BA.2. In the

United Kingdom, of the sequenced episodes from July 10 to 17, 2022,

78.7%, 17.2%, 3.4% were BA.5, BA.4, BA.2, respectively, and 0.7%

were classified as other (Data available from: https://www.gov.uk/

government/news/covid-19-variants-identified-in-the-uk).

BA.2 was first identified in the United States from a sample

collected on December 14, 2021, in New Jersey. As of April 16, 2022,

the sequence of BA.2 accounts for 75.9%, BA.2.12.1 accounts for

18.2%, BA.1.1 accounts for 4.8%, BA.1 accounts for 0.7% of the total

sequence in the United States. BA.2.12.1 was the dominant strain in

May, as of the late of May 2022, the sequence of BA.2.12.1

accounted for 61.3%. Notably, BA.5 increased from 9.4% in June 4 to

56% in July 2. As of July 30, 2022, the sequence of BA.5 accounts for

85.5% of the total sequence (Data available from: https://covid.cdc.

gov/covid-data-trackerhttps://covid.cdc.gov/covid-data-tracker/#

variant-proportions).

In conclusion, BA.4 and BA.5 variants may be more transmissible

than the other Omicron lineages and spread widely in many countries

worldwide.

1.4 | Low risk of severe clinical outcomes of
patients infected with Omicron lineages

Epidemiologic surveillance has revealed that the proportion of

hospitalizations and deaths did not increase with the number of

COVID‐19 cases following emergence of the Omicron variant

globally, with a 20%–80% reduction in risk of hospital admis-

sion.56–61 Recently, multivariable analysis in Africa showed that,

after controlling factors associated with hospitalization and severity

(age, sex, presence of comorbidity, health care sector, province,

previous SARS‐CoV‐2 infection, and SARS‐CoV‐2 vaccination

status), the odds of hospital admission and severe disease did not

differ between individuals with BA.2 infection and those with BA.1

infection, with adjusted odds ratios (aORs) 0.96 (95% CI:

0.85–1.09) and (aORs) 0.91 (95% CI: 0.68–1.22), respectively.62,63

Similarly, one clinical study from southern California revealed that

30‐day risks of hospital admission, symptomatic hospital admission,

ICU admission, mechanical ventilation, and mortality were not

different among cases with BA.1/BA.1.1, and BA.2 infections

diagnosed over this period; 30‐day risks of these outcomes were

13.3 versus 14.7, 11.5 versus 12.6, 0.4 versus 0.5, 0.0 versus 0.5,

and 1.0 versus 0.5 per 1000 persons, respectively.64 Moreover, the

adjusted hazard of severe hospitalization or death in the BA.4/BA.5

wave was similar to the BA.1 wave (adjusted hazard ratio [aHR]

1.12; 95% CI: 0.93; 1.34).65

These data demonstrated that although BA.2, BA.4, and BA.5

might have a competitive advantage over BA.1, infections with BA.2,

BA.4, and BA.5 were not associated with differential risk of severe

outcomes compared to BA.1/BA.1.1.

1.5 | Decreased neutralization of Omicron lineages
by mAbs, vaccines, and convalescent plasma

Molecular evidence pointed out that mutations (such as K417N,

N440K, G446S, S477N, T478K, E484A, Q493K, G496S, and N501Y)

could cause a reduction in neutralizing activity of mAbs, convalescent

plasma, and serum‐induced by vaccines.35–37,66 BA.2 has an

additional three deletions and seven substitutions compared to

BA.1, three of which lie in the RBD.14 Structure and molecular

analysis demonstrated that mutations in BA.1 (S371L, G446S, and

G496S) and BA.2 (S371F, T376A, D405N, and R408S) have the

potential to affect antibody binding. In especial, BA.1 G446S, G496S

and BA.2 D405N, R408S lie at the edge of the ACE2 interaction

sites,67 these distant mutations undermine the neutralization of BA.2

by some therapeutic antibody.14 In silico structural analysis showed

that both L452R and L452Q conferred resistance largely to Classes 2

and 3 RBD mAbs, specially L452R. F486V broadly caused steric

hindrance to binding by Class 2 RBD mAbs such as REGN10933, and

LY‐CoV555.44

Cell culture infection assays revealed that BA.2 variant was

almost completely resistant to two therapeutic mAbs, casirivimab and

idevimab, in contrast to their significant neutralizing activities against

WT, Alpha, Gamma, and Delta. Similarly, BA.2 was 35‐fold more

resistant to sotrovimab than the ancestral D614G‐bearing

BA.1.1.13,68 The FRNT50 values of sotrovimab and imdevimab

+casirivimab combination therapy for BA.2 were 12.2 to 49.7‐fold,

43.0 to 143.6‐fold higher than WT and other VOCs (Alpha, Beta,

Gamma, and Delta). (FRNT50: the titer of monoclonal antibodies

required for a 50% reduction in the number of infectious foci).69

Moreover, pseudovirus neutralization showed that compared to BA.2

and BA.2.12.1, BA.4/5 showed substantially greater neutralization

resistance to two Class 2 RBD mAbs as well as modest resistance to

two Class 3 RBD mAbs.44 BA.4/BA.5 has been found to be 4–20

times more resistant to mAbs such as cilgavimab and evusheld

than BA.2.

Pseudovirus neutralization revealed that the geometric mean

neutralizing antibody titers (GMTs) of the initial two doses of the

BNT162b2 vaccine against WT, BA.1, and BA.2 were 658, 29, and

24, respectively. Six months after the initial two BNT162b2

immunizations, the GMTs was 129 against WT but less than 20

against all the Omicron lineages.70 The GMTs of 1‐month postdose 3

of BNT162b2 vaccine against BA.1‐, BA.2‐, BA.2.12.1‐, BA.3‐, BA.4/

5‐ were 3.4‐, 4.5‐, 4.2‐, 6.2‐, and 13.0‐fold lower than that WT GMT,

respectively.71,72. In particular, the GMTs of booster dose of

BNT162b2 against BA.2.12.1 and BA.4/BA.5 was decreased by

2.2‐ and 3.3‐fold lower than BA.1.73 Similarly, one report from UK

Health Security Agency demonstrated that vaccine effectiveness
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against symptomatic disease was 63.6% (95% CI: 58.8–67.8%) and

67.1% (95% CI: 54.2–76.3%) for BA.1 and BA.2, respectively, within

the first 2 weeks of receiving two doses of BNT162b2, ChAdOx1‐S

or mRNA‐1273. This dropped to 17.4% (95% CI: 15.2–19.4%) and

24.3% (95% CI: 20.3–28.0%) after 25 or more weeks for BA.1 and

BA.2, respectively.74 Additionally, individuals who received inacti-

vated vaccine (CoronaVac) or ZF2001 booster 6 months after two

doses of CoronaVac, BA.4/BA.5 showed even stronger antibody

escape than BA.1, BA.1.1, and BA.2.75

Animal experiments have shown that both BA.1 and BA.2 were

highly resistant to convalescent sera who had infected with WT,

Alpha, and Delta. BA.2 was significantly (2.9‐fold) more resistant to

BA.1‐infected convalescent hamster sera than BA.1.13 Moreover, one

preprint from University of Texas Medical Branch showed that the

neutralization activity of BA.1‐infected convalescent plasma against

BA.2 and BA.3 was 4.2‐, 4.4‐fold lower than against homologous

BA.1, respectively.76 Compared with the median neutralization titers

of plasma from individuals infected with BA.1 or BA.2 against BA.1,

the median titer was lower by 1.5‐ and 2.9‐fold against the BA.2.12.1

and BA.4/BA.5.73 The median neutralization titers of BA.1 con-

valescents plasma against BA.2.13, BA.2.12.1, and BA.4/5 were

reduced by 2.0‐, 3.7‐, and 8.0‐ fold, compared to that against BA.1,

respectively.75

These results suggest that the neutralizing activity against BA.4

or BA.5 by mAbs, vaccination and previous SARS‐CoV‐2 infection

were lower than against BA.1 and BA.2, which indicate that the

SARS‐CoV‐2 Omicron variant has continued to evolve with increas-

ing immune escape.

1.6 | Vaccine effectiveness against Omicron BA.2,
BA.4, and BA.5

UKHSA reported that effectiveness of only prior infection, only

three‐dose BNT162b2 vaccination, hybrid immunity of prior infection

and two‐dose BNT162b2 vaccination, and hybrid immunity of prior

infection and three‐dose BNT162b2 vaccination against symptomatic

BA.2 infection was 46.1% (95% CI: 39.5–51.9%), 52.2% (95% CI:

48.1–55.9%), 55.1% (95% CI: 50.9–58.9%), 77.3% (95% CI:

72.4–81.4%), respectively.74 Meanwhile, BNT162b2 vaccination

and hybrid immunity showed strong effectiveness >70% against

severe, critical, or fatal COVID‐19 due to BA.2 infection. However,

the highest protection was that of hybrid immunity of prior infection

and recent booster vaccination, at ∼80%. Similar levels and patterns

of effectiveness were observed for BA.2 by mRNA‐1273 vaccine.72

Among those who received any booster dose of vaccine (BNT162b2,

mRNA‐1273, ChAdOx1‐S), vaccine effectiveness increased to 71.3%

(95% CI: 69.6–72.9%) and 72.2% (95% CI: 67.0–76.5%) for BA.1 and

BA.2, respectively, after a week.74

In an analysis restricted to the BA.4/BA.5 period, prior diagnosed

infection remained strongly protective against severe hospitalization or

death (aHR 0.23; 95% CI: 0.10; 0.52) as did vaccination (the only vaccines

available in South Africa to date are BNT162b and Ad26. COV2.S) aHR

95% CI: 0.20 (0.08–0.49); 0.39 (0.25–0.59), and 0.51 (0.27–0.99) for

“boosted,”“two doses” and “single dose,” respectively.65

Although BA.2, BA.4, and BA.5 can evade polyclonal neutralizing

antibody responses, boosting vaccination with the current vaccine

(ChAdOx1, BNT162b2, mRNA‐1273) may provide sufficient protec-

tion against symptomatic disease caused by BA.2, BA.4, and BA.5.

1.7 | T‐cell mediated immune response against
Omicron lineage infection

Previous studies have shown that early induction of antigen‐specific

CD4 + T‐cells following vaccination is associated with generation of

antibody and CD8 + T‐cell responses against SARS‐CoV‐2 infec-

tion.77 Patients with mild COVID‐19 is associated with increased the

number of CD8 + T‐cells in bronchoalveloar lavage fluid,78 CD8 + T‐

cell mediated effectively eliminate the virus,79 and strengthen

CD8 + T‐cell reactivity to SARS‐CoV‐2 antigen.80

Recently, one study reported that the median effector T‐cell

reactivity against WT, Delta and Omicron spike was 152, 155, and

114 for individuals with prior infection, 43, 34, and 42 for individuals

after primary series vaccination (without prior infection), 311, 277,

and 315 for individuals with prior infection after primary series

vaccination, respectively. Moreover, T‐cell response increases by

20.1‐ and 20.4‐fold against WT and Omicron following the booster

vaccination, respectively.81 Similarly, several studies predicted that

the memory mediated by T cells in individuals with prior infection

(WT or previous VOCs) and vaccination (with EMA‐approved

vaccines) has preserved reactivity to the Omicron variant, especially

their reactivity is enhanced by booster vaccination.82–87 Surprisingly,

the percentage of participants with prior infection and/or vaccination

had a >50% reduction in T‐cell response to Omicron spike was higher

than Delta (21.2% vs. 9.7%), potentially due to escape of HLA‐I

restricted epitopes.83” Therefore, it is important to understand

protection against these VOCs may be hidden in cross‐reactive

SARS‐CoV‐2‐specific T‐cell mediated immunity.

In the future, more attention should be given to the effects of

mutations on specific T‐cell immune responses to explore the

dynamics and diversity of cellular immune responses. It is meaningful

to better understand SARS‐CoV‐2‐specific T‐cell immunity and its

vaccine for immunocompromised patients infected with Omicron

lineages, or even other future SARS‐CoV‐2 variants.

2 | CONCLUSION

To date, the Omicron lineage is the most frequently mutated variant

among VOCs. It has 50 mutations in the whole genome and 26–32

mutations in the spike protein. As of August 2022, Omicron is

classified into five main lineages, BA.1, BA.2, BA.3, BA.4, BA.5 and

some sub‐lineages (BA.1.1, BA.2.12.1, BA.2.11, BA.2.75, BA.4.6).

Many mutations of Omicron lineage spike are linked to heightened

infectivity and easily evasion the neutralizing activity of convalescent
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plasma and mAbs and vaccine sera compared with other VOCs

(Alpha, Beta, Gamma, Delta). In particular, BA.5 is becoming the main

epidemic variant in many countries worldwide instead of BA.2.
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