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Abstract
The rapid finding of effective therapeutics requires efficient
use of available resources in clinical trials. Covariate adjust-
ment can yield statistical estimates with improved preci-
sion, resulting in a reduction in the number of participants
required to draw futility or efficacy conclusions. We focus on
time-to-event and ordinal outcomes. When more than a few
baseline covariates are available, a key question for covariate
adjustment in randomised studies is how to fit a model relating
the outcome and the baseline covariates to maximise precision.
We present a novel theoretical result establishing conditions
for asymptotic normality of a variety of covariate-adjusted esti-
mators that rely on machine learning (e.g., 𝓁1-regularisation,
Random Forests, XGBoost, and Multivariate Adaptive Regres-
sion Splines [MARS]), under the assumption that outcome
data are missing completely at random. We further present a
consistent estimator of the asymptotic variance. Importantly,
the conditions do not require the machine learning methods
to converge to the true outcome distribution conditional on
baseline variables, as long as they converge to some (possibly
incorrect) limit. We conducted a simulation study to evaluate
the performance of the aforementioned prediction methods
in COVID-19 trials. Our simulation is based on resampling
longitudinal data from over 1500 patients hospitalised with
COVID-19 at Weill Cornell Medicine New York Presbyterian
Hospital. We found that using 𝓁1-regularisation led to esti-
mators and corresponding hypothesis tests that control type
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1 error and are more precise than an unadjusted estima-
tor across all sample sizes tested. We also show that when
covariates are not prognostic of the outcome, 𝓁1-regularisation
remains as precise as the unadjusted estimator, even at small
sample sizes (n = 100). We give an R package adjrct that
performs model-robust covariate adjustment for ordinal and
time-to-event outcomes.
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1 INTRODUCTION

Coronavirus disease 2019 (COVID-19) has affected more than 125 million people and caused
more than 2.7 million deaths worldwide (World Health Organization, 2021). Governments and
scientists around the globe have deployed an enormous amount of resources to combat the
pandemic with remarkable success, such as the development in record time of highly effective
vaccines to prevent disease (e.g., Baden et al., 2021; Polack et al., 2020). Global and local organ-
isations are launching large-scale collaborations to collect robust scientific data to test potential
COVID-19 treatments, including the testing of drugs re-purposed from other diseases as well as
new compounds (Kupferschmidt & Cohen, 2020). For example, the World Health Organization
launched the SOLIDARITY trial, enrolling almost 12,000 patients in 500 hospital sites in over 30
countries (WHO Solidarity Trial Consortium, 2021). Other large initiatives include the RECOV-
ERY trial (The RECOVERY Collaborative Group, 2021) and the ACTIV initiative (Collins &
Stoffels, 2020). To date, there are approximately 2400 randomised trials for the treatment of
COVID-19 registered in clinicaltrials.gov.

The rapid finding of effective therapeutics for COVID-19 requires the efficient use of available
resources. One area where such efficiency is achievable at little cost is in the statistical design and
analysis of the clinical trials. Specifically, a statistical technique known as covariate adjustment
may yield estimators with increased precision (compared to unadjusted estimators), and may
result in a reduction of the time, number of participants, and resources required to draw futility
or efficacy conclusions. This results in faster trial designs, which may help accelerate the delivery
of effective treatments to patients who need them (and may help rule out ineffective treatments
faster).

Covariate adjustment refers to pre-planned analysis methods that use data on patient base-
line characteristics to correct for chance imbalances across study arms, thereby yielding more
precise treatment effect estimates. The ICH E9 Guidance on Statistical Methods for Analyzing
Clinical Trials (FDA & EMA, 2019) states that ‘Pretrial deliberations should identify those covari-
ates and factors expected to have an important influence on the primary variable(s), and should
consider how to account for these in the analysis to improve precision and to compensate for any
lack of balance between treatment groups’. Even though its benefits can be substantial, covariate
adjustment is underutilised; only 24%–34% of trials use covariate adjustment (Kahan et al., 2014).

We focus on estimation of marginal treatment effects, defined as a contrast between study
arms in the marginal distribution of the outcome. Many approaches for estimation of marginal
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treatment effects using covariate adjustment in randomised trials invoke a model relating the out-
come and the baseline covariates within strata of treatment. Recent decades have seen a surge
in research on the development of model-robust methods for estimating marginal effects that
remain consistent even if this outcome regression model is arbitrarily mis-specified (e.g., Austin
et al., 2010; Benkeser et al., 2020; Moore & van der Laan, 2009a; Tsiatis et al., 2008; Yang &
Tsiatis, 2001; Zhang & Gilbert, 2010; Zhang et al., 2008). We focus on a study of the model-robust
covariate-adjusted estimators for time-to-event and ordinal outcomes developed by Moore and
van der Laan (2009a), Díaz et al. (2016, 2019).

All potential adjustment covariates must be pre-specified in the statistical analysis plan. At
the end of the trial, a pre-specified prediction algorithm (e.g., random forests, or using regulari-
sation for variable selection) will be run and its output will be used to construct a model-robust,
covariate-adjusted estimator of the marginal treatment effect for the trial’s primary efficacy anal-
ysis. We aim to address the question of how to do this in a model-robust way that guarantees
consistency and asymptotic normality, under some regularity conditions weaker than related
work (described below). We also aim to demonstrate the potential value added by covariate
adjustment combined with machine learning, through a simulation study based on COVID-19
data.

As a standard regression method for high-dimensional data, 𝓁1-regularisation has been stud-
ied by several authors in the context of covariate selection for randomised studies. For example,
Wager et al. (2016) present estimators that are asymptotically normal under strong assump-
tions that include linearity of the outcome–covariate relationship. Bloniarz et al. (2016) present
estimators under a randomisation inference framework and show asymptotic normality of the
estimators under assumptions similar to the assumptions made in this paper. Both of these papers
present results only for continuous outcomes. The method of Tian et al. (2012) is general and can
be applied to continuous, ordinal, binary, and time-to-event data, and its asymptotic properties
are similar to the properties of the methods we discuss for the case of 𝓁1-regularisation, under
similar assumptions.

More related to our general approach, Wager et al. (2016) also present a cross-validation pro-
cedure that can be used with arbitrary non-parametric prediction methods (e.g. 𝓁1-regularisation,
random forests, etc.) in the estimation procedure. Their proposal amounts to computation of a
cross-fitted augmented inverse probability weighted estimator (Chernozhukov et al., 2018). Their
asymptotic normality results, unlike ours, require that their predictor of the outcome given base-
line variables converges to the true regression function. Wu and Gagnon-Bartsch (2018) proposed
a ‘leave-one-out-potential outcomes’ estimator where automatic prediction can also be performed
using any regression procedure such as linear regression or random forests, and they propose
a conservative variance estimator. It is unclear as of yet whether Wald-type confidence inter-
vals based on the normal distribution are appropriate for this estimator. As in the above related
work that compares the precision of covariate-adjusted estimators to the unadjusted estimator,
we assume that outcomes are missing completely at random (since otherwise the unadjusted
estimator is generally inconsistent).

In Section 3.3, we present our main theorem. It shows that any of a large class of predic-
tion algorithms (e.g. 𝓁1-regularisation, random forests, XGBoost, and MARS) can be combined
with the covariate-adjusted estimator of Moore and van der Laan (2009b) to produce a con-
sistent, asymptotically normal estimator of the marginal treatment effect, under regularity
conditions. These conditions do not require consistent estimation of the outcome regression
function (as in key related work described above); instead, our theorem requires the weaker
condition of convergence to some (possibly incorrect) limit. We also give a consistent, easy to
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compute variance estimator. This has important practical implications because it allows the
use machine learning coupled with Wald-type confidence intervals and hypothesis tests, under
the conditions of the theorem. The above estimator can be used with ordinal or time-to-event
outcomes.

We next conduct a simulation study to evaluate the performance of the aforementioned
machine learning algorithms for covariate adjustment in the context of COVID-19 trials. We
simulate two-arm trials comparing a hypothetical COVID-19 treatment to standard of care. The
simulated data distributions are generated by re-sampling longitudinal data on approximately
1500 patients hospitalised at Weill Cornell Medicine New York Presbyterian Hospital prior to 15
May 2020. We present results for two types of endpoints: time-to-event (e.g. time to intubation or
death) and ordinal (e.g., WHO scale, see Marshall et al., 2020) outcomes. For survival outcomes,
we present results for two different estimands (i.e. targets of inference): the survival probability
at any given time and the restricted mean survival time. For ordinal outcomes we present results
for the average log-odds ratio, and for the Mann–Whitney estimand, interpreted as the probabil-
ity that a randomly chosen treated patient has a better outcome than a randomly chosen control
patient (with ties broken at random).

Benkeser et al. (2020) used simulations based on the above data source to illustrate the
efficiency gains achievable by covariate adjustment with parametric models including a small
number of adjustment variables (and not using machine learning to improve efficiency). In
this paper we evaluate the performance of four machine learning algorithms (𝓁1-regularisation,
random forests, XGBoost, and MARS) in several sample sizes, and compare them in terms of
their bias, mean squared error, and type-1 and type-2 errors, to unadjusted estimators and to
fully adjusted main terms logistic regression with all available variables included. Furthermore,
we introduce a new R package adjrct (Díaz & Williams, 2021) that can be used to perform
model-robust covariate adjustment for ordinal and time-to-event outcomes, and provide R code
that can be used to replicate our simulation analyses with other data sources.

2 ESTIMANDS

The ICH E9(R1) addendum on Estimands and Sensitivity Analysis in Clinical Trials (U.S. Food
and Drug Administration, 2021b) postulates several attributes that may be used in the construc-
tion of an estimand. In addition to the specification of a treatment, an endpoint, and a population
of interest, these attributes include the specification of a population-level summary and meth-
ods for handling intercurrent events such as treatment discontinuation or terminal events that
preclude the occurrence of the endpoint of interest (e.g. death).

We assume the target population is the entire trial population, and construct estimands as
marginal summaries (e.g. means or probabilities) across the entire population. We focus on esti-
mation of marginal treatment effects, defined as a contrast between study arms in the marginal
distribution of the outcome.

Non-terminal intercurrent events such as post-randomisation changes in treatment or
non-compliance with the assigned treatment arm are handled using a treatment policy strategy,
under the intention-to-treat principle. The estimands we consider do not take into account ter-
minal intercurrent events that preclude observation of the endpoint of interest. The literature
on competing risks and truncation by death discusses several estimands that may be used for
such cases, such as the sub-distribution risk, the survivor average causal effect, etc. (Comment
et al., 2019; Young et al., 2020).
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We further assume that we have data on n trial participants, represented by n independent and
identically distributed copies of data Oi ∶ i = 1, … ,n. We assume Oi is distributed as P, where
we make no assumptions about the functional form of P except that treatment is independent of
baseline covariates (by randomisation). We denote a generic draw from the distribution P by
O. We use the terms ‘baseline covariate’ and ‘baseline variable’ interchangeably to indicate a
measurement made before randomisation.

We are interested in making inferences about a feature of the distribution P. We use the word
estimand to refer to such a feature. We describe example estimands, which include those used in
our simulations studies, below.

2.1 Ordinal outcomes

For ordinal outcomes, assume the observed data is O = (W ,A,Y ), where W is a vector of base-
line covariates, A is the treatment arm, and Y is an ordinal variable that can take values in
{1, … ,K}. Let F(k, a) = P(Y ≤ k |A = a) denote the cumulative distribution function (CDF) for
patients in arm A = a, and let f (k, a) = F(k, a) − F(k − 1, a) denote the corresponding probability
mass function. For notational convenience we will sometimes use the ‘survival’ function instead:
S(k, a) = 1 − F(k, a). The average log-odds ratio is then equal to

LOR = 1
K − 1

K−1∑

k=1
log

[
F(k, 1)∕{1 − F(k, 1)}
F(k, 0)∕{1 − F(k, 0)}

]

,

and the Mann–Whitney estimand is equal to

MW =
K∑

k=1

{

F(k − 1, 0) + 1
2

f (k, 0)
}

f (k, 1).

The Mann–Whitney estimand can be interpreted as the probability that a randomly drawn patient
from the treated arm has a better outcome than a randomly drawn patient from the control arm,
with ties broken at random (Ahmad, 1996). The average log-odds ratio may be interpreted as a
non-parametric extension of the parameter 𝛽 estimated by the commonly used proportional odds
model logit {F(k, a)} = 𝛼k + 𝛽a (Díaz et al., 2016).

While the MW statistic may seem more desirable than the LOR statistic because its interpreta-
tion does not depend on a parametric model, the MW also has drawbacks that may be undesirable
in some situations. For example, it is a non-transitive measure, meaning that in a multi-arm trial,
superiority of treatment A to treatment B and superiority of treatment B to treatment C do not
guarantee that treatment A is superior to treatment C.

2.2 Time to event outcomes

For time to event outcomes, we assume the observed data is O = (W ,A,Δ = 1{Y ≤ C}, ̃Y =
min(C,Y )), where C is a right-censoring time denoting the time that a patient is last seen, and
1{E} is the indicator variable taking the value 1 on the event E and 0 otherwise. We further
assume that events are observed at discrete time points {1, … ,K} (e.g. days) as is typical in
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clinical trials. For a restriction time 𝜏 ≤ K, the difference in restricted mean survival time is
given by

RMST = E(min(Y , 𝜏) |A = 1) − E(min(Y , 𝜏) |A = 0)

=
𝜏−1∑

k=1
{S(k, 1) − S(k, 0)},

and can be interpreted as a contrast comparing the expected survival time within the first 𝜏 time
units for the treated arm minus the control arm (Chen & Tsiatis, 2001; Royston & Parmar, 2011).
The risk difference at a user-given time point k is defined as

RD = S(k, 1) − S(k, 0),

and is interpreted as the difference in survival probability for a patient in the treated arm minus
the control arm. We note that the MW and RD parameters may be meaningful for both ordinal
and time-to-event outcomes.

3 ESTIMATORS

For the sake of generality, in what follows we use a common data structure O = (W ,A,Δ = 1{Y ≤
C}, ̃Y ) for both ordinal and survival outcomes, where for ordinal outcomes C = K if the outcome
is observed and C = 0 if it is missing.

Many approaches for estimation of marginal treatment effects using covariate adjustment in
randomised trials invoke a model relating the outcome and the baseline covariates within strata
of treatment. It is important that the consistency and interpretability of the treatment effect esti-
mates do not rely on the ability to correctly posit such a model. Specifically, in a recent draft
guidance (U.S. Food and Drug Administration, 2021a), the FDA states: ‘Sponsors can perform
covariate adjusted estimation and inference for an unconditional treatment effect … in the pri-
mary analysis of data from a randomized trial. The method used should provide valid inference
under approximately the same minimal statistical assumptions that would be needed for unad-
justed estimation in a randomized trial’. The assumption of a correctly specified model is not
typically part of the assumptions needed for an unadjusted analysis, and should therefore be
avoided when possible.

All estimands described in this paper can be computed from the CDF F(⋅, a) for a ∈ {0, 1},
which can be estimated using the empirical cumulative distribution function (ECDF) or the
Kaplan–Meier estimator. Model-robust, covariate adjusted estimators have been developed for
the CDF, including, for example, Chen and Tsiatis (2001), Rubin and van der Laan (2008), Moore
and van der Laan (2009b), Stitelman et al. (2011), Lu and Tsiatis (2011), Brooks et al. (2013),
Zhang (2014), Parast et al. (2014), Benkeser et al. (2018), Díaz (2019).

We focus on the model-robust, covariate-adjusted estimators of Moore and van der
Laan (2009b), Díaz et al. (2016, 2019). These estimators have at least two advantages com-
pared to unadjusted estimators based on the ECDF or the Kaplan–Meier estimator. First, with
time-to-event outcomes, some adjusted estimators can achieve consistency under an assumption
of censoring being independent of the outcome given study arm and baseline covariates
(C ⫫ Y |A,W), rather than the assumption of censoring in each arm being independent of the
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outcome marginally (C ⫫ Y |A) required by unadjusted estimators. The former assumption is
arguably more likely to hold in typical situations where patients are lost to follow-up due to
reasons correlated with their baseline variables. Second, in large samples and under regularity
conditions, the adjusted estimators of Díaz et al. (2016, 2019) can be at least as precise as the
unadjusted estimator (this requires that missingness/censoring is completely at random, i.e.,
that in each arm a ∈ {0, 1}, C ⫫ (Y ,W)|A = a), under additional assumptions.

Additionally, under regularity conditions, the three aforementioned adjusted estimators are
asymptotically normal. This allows the construction of Wald-type confidence intervals and
corresponding tests of the null hypothesis of no treatment effect.

3.1 Prediction algorithms

While we make no assumption on the functional form of the distribution P (except that treat-
ment is independent of baseline variables by randomisation), implementation of our estimators
requires a working model for the following conditional probability

m(k, a,W) = P(̃Y = k,Δ = 1|̃Y ≥ k,A = a,W).

In time-to-event analysis, this probability is known as the conditional hazard. The expression
working model here means that we do not assume that the model represents the true relationship
between the outcome and the treatment/covariates. Fitting a working model for m is equivalent
to training a prediction model for m (specifically, a prediction model for the probability of
̃Y = k,Δ = 1 given ̃Y ≥ k,A = a,W), and we sometimes refer to the model fit as a predictor.

In our simulation studies, we will use the following working models, fitted in a dataset where
each participant contributes a row of data corresponding to each time k = 1 through k = ̃Y :

• The following pooled main terms logistic regression (LR) logit {m
𝛽
(k, a,W)} = 𝛽a,0,k + 𝛽

⊤

a,1W
estimated with maximum likelihood estimation. Note that this model has (i) separate param-
eters for each study arm, and (ii) in each arm, intercepts for each possible outcome level
k.

• The above model fitted with an 𝓁1 penalty on the parameter 𝛽a,1, where the 𝓁1 penalty is chosen
using five-fold cross-validation (𝓁1-LR, Tibshirani, 1996; Park & Hastie, 2007).

• A random forest classification model (RF, Breiman, 2001), with hyper-parameters chosen based
on five-fold cross-validation.

• An extreme gradient boosting tree ensemble (XGBoost, Friedman, 2001), with
hyper-parameters chosen based on five-fold cross-validation.

• MARS(MARS, Friedman, 1991).

For RF, XGBoost, and MARS, the algorithms are trained in the whole sample {1, … ,n}. For
these algorithms, we also assessed the performance of cross-fitted versions of the estimators.
Cross-fitting is sometimes necessary to guarantee that the regularity assumptions required for
asymptotic normality of the estimators hold when using data-adaptive regression methods (Cher-
nozhukov et al., 2018; Klaassen, 1987; Zheng & van der Laan, 2011), and is performed as follows.
Let 1, … ,J denote a random partition of the index set {1, … ,n} into J prediction sets of
approximately the same size. That is, j ⊂ {1, … ,n};

⋃J
j=1j = {1, … ,n}; and j ∩ j′ = ∅. In
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addition, for each j, the associated training sample is given by j = {1, … ,n} ⧵ j. Let m̂j denote
the prediction algorithm trained in j. Lett j(i) denote the index of the prediction set which
contains observation i, cross-fitting entails using only observations in j(i) for fitting models
when making predictions about observation i. That is, the outcome predictions for each sub-
ject i are given by m̂j(i)(u, a,Wi). We let 𝜂j(i) = (m̂j(i), 𝜋A, 𝜋C) for cross-fitted estimators and 𝜂j(i) =
(m̂, 𝜋A, 𝜋C) for non-cross-fitted ones. RF, XGBoost, and MARS were fit using the ranger (Wright
& Ziegler, 2017), xgboost (Chen et al., 2021) and earth (Milborrow, 2020) R packages, respec-
tively. Hyperparameter tuning was performed using cross-validation with the origami (Coyle &
Hejazi, 2020) R package.

3.2 Targeted minimum loss-based estimation

Our simulation studies use the targeted minimum loss-based estimation (TMLE) procedure pre-
sented in Díaz et al. (2019). We will refer to that estimator as TMLE with improved efficiency, or
IE-TMLE. We will first present the TMLE of (Moore & van der Laan, 2009b), which constitutes
the basis for the construction of the IE-TMLE.

In Appendix S1 we present some of the efficiency theory underlying the construction of the
TMLE. Briefly, TMLE is a framework to construct estimators 𝜂j(i) that solve the efficient influence
function estimating equation n−1∑n

i=1D
𝜂j(i)
(Oi) = 0, where D

𝜂
(O) is the efficient influence function

for S(k, a) in the non-parametric model that only assumes treatment A is independent of base-
line variables W (which holds by design), defined in the supplementary materials. TMLE enjoys
desirable properties such as local efficiency, robustness to mis-specification of the outcome model
under censoring completely at random, and asymptotic normality, under regularity assumptions.

3.2.1 TMLE estimator definition

Given a predictor m̂ constructed as in the previous subsection and any k, a, the corresponding
TMLE estimation procedure for F(k, a) can be summarised in the next steps:

1. Create a long-form dataset where each participant i contributes the following row of data
corresponding to each time u = 0 through k:

(

u,Wi,Ai, 1{̃Yi ≥ u}, 1{̃Yi = u,Δi = 0}, 1{̃Yi = u,Δi = 1}
)

,

where 1{X} is the indicator variable taking value 1 if X is true and 0 otherwise.
2. For each individual i, obtain a prediction m̂(u, a,Wi) for each pair in the set {(u, a) ∶ a =

0, 1;u = 0, … , k}.
3. Fit a model 𝜋A(a,W) for the probability P(A = a|W). Note that, in randomised trials, this

model may be correctly specified by a LR logit 𝜋A(1,W) = 𝛼0 + 𝛼

⊤

1 W . Let 𝜋A(a,Wi) denote the
prediction of the model for individual i.

4. Fit a model 𝜋C(u, a,W) for the censoring probabilities P(̃Y = u,Δ = 0|̃Y ≥ u,A = a,W). For
time-to-event outcomes, this is a model for the censoring probabilities. For ordinal outcomes,
the only possibilities are that C = 0 (outcome missing) or C = K (outcome observed); in this
case we only fit the aforementioned model at u = 0 and we set 𝜋C(u, a,W) = 0 for each u > 0.



WILLIAMS et al. 9

For either outcome type, if there is no censoring (i.e. if P(Δ = 1) = 1), then we set 𝜋C(u, a,W) =
0 for all u. Let 𝜋C(u, a,Wi) denote the prediction of this model for individual i, that is, using
the baseline variable values from individual i.

5. For each individual i and each u ≤ k, compute a ‘clever’ covariate HY ,k,u as a function of m̂,
𝜋A, and 𝜋C as detailed in Appendix S1. The outcome model fit m̂ is then updated by fitting the
following LR ‘tilting’ model with single parameter 𝜖 and offset based on m̂:

P(̃Y = u,Δ = 1|̃Y ≥ u,A = a,W) = logit−1 {logit m̂(u, a,W) + 𝜀HY ,k,u
}
.

This can be done using standard statistical software for fitting a LR of the indicator variable
1{̃Y = u,Δ = 1} on the variable HY ,k,u using offset logit m̂(u, a,W) among observations with
̃Y ≥ u and A = a in the long-form dataset from step 1. The above model fitting process is iter-
ated where at the beginning of each iteration we replace m̂ in the above display and in the
definition of HY ,k,u by the updated model fit. We denote the maximum number of iterations
that we allow by imax.

6. Let m̃(u, a,Wi) denote the estimate of m(u, a,Wi) for individual i at the final iteration of the
previous step. Note that this estimator is specific to the value k under consideration.

7. Compute the estimate of S(k, a) = 1 − F(k, a) as the following standardised estimator

̃STMLE(k, a) = 1
n

n∑

i=1

k∏

u=1
{1 − m̃(u, a,Wi)}, (1)

and let the estimator of F(k, a) be 1 − ̃STMLE(k, a).

This estimator was originally proposed by Moore and van der Laan (2009b). The role of the
clever covariate HY ,k,u is to endow the resulting estimator ̃S(k, a) with properties such as
model-robustness and more efficiency compared to unadjusted estimators, by means of produc-
ing a solution to the efficient influence function estimating equation n−1∑n

i=1D
𝜂j(i) (Oi) = 0 (see

technical details for this in Moore & van der Laan, 2009b). In particular, it can be shown that this
estimator is efficient when the working model for m is correctly specified. The specific form of
the covariate HY ,k,u is given in Appendix S1. Throughout, the notation m̂ is used to represent the
predictor constructed as in Section 3.1 and which is an input to the above TMLE algorithm, while
m̃ denotes the updated version of this predictor that is output by the above TMLE algorithm at
step 6.

3.2.2 IE-TMLE estimator definition

In Section 4 we will compare several machine learning procedures for estimating m in finite sam-
ples. The estimators used in the simulation study are the IE-TMLE of Díaz et al. (2019), where in
addition to updating the initial estimator for the outcome regression m, we also update the esti-
mators of the treatment and censoring mechanisms. Specifically, we replace step 5 of the above
procedure with the following:

1. For each individual i construct ‘clever’ covariates HY ,k,u, HA, and HC,k,u (defined in Appendix
S1) as a function of m̂, 𝜋A, and 𝜋C. For each k = 1, … ,K, the model fits are then iteratively
updated using LR ‘tilting’ models:



10 WILLIAMS et al.

logit m
𝜀
(u, a,W) = logit m̂(u, a,W) + 𝜀HY ,k,u

logit 𝜋
𝛾,A(1,W) = logit 𝜋A(1,W) + 𝛾HA

logit 𝜋
𝜐,C(u, a,W) = logit 𝜋C(u, a,W) + 𝜐HC,k,u,

where the iteration is necessary because HY ,k,u, HA, and HC,k,u are functions of m̂, 𝜋A, and
𝜋C that must be updated at each step. As before, for ordinal outcomes we only fit the
aforementioned model at u = 0 and we set 𝜋C(u, a,W) = 0 for each u > 0.

We use ̃SIE−TMLE to denote this estimator. The updating step above combines ideas from Moore
and van der Laan (2009b), Gruber and van der Laan (2012) and Rotnitzky et al. (2012) to produce
an estimator with the following properties:

(i) Consistency and at least as precise as the Kaplan–Meier and inverse probability weighted
estimators;

(ii) Consistency under violations of independent censoring (unlike the Kaplan–Meier estima-
tor) when either the censoring or survival distributions, conditional on covariates, are
estimated consistently and censoring is such that C ⫫ Y |W ,A; and

(iii) Non-parametric efficiency (meaning achieving the smallest possible variance among a class
of admissible estimators) when both of these distributions are consistently estimated at rate
n1∕4.

Please see Díaz et al. (2019) for more details on these estimators, which are implemented in the
R package adjrct (Díaz & Williams, 2021).

Next, we present a result (Theorem 1) stating asymptotic normality of ̃STMLE using machine
learning for prediction that avoids some limitations of existing methods, and present a consis-
tent estimator of its variance. In Section 4 we present simulation results where we evaluate the
performance of ̃SIE−TMLE for covariate adjustment in COVID-19 trials for hospitalised patients.
We favour ̃SIE−TMLE in our numerical studies because, unlike ̃STMLE, it satisfies property (ii)
above. The simulation uses Wald-type hypothesis tests based on the asymptotic approximation of
Theorem 1, where we note that the variance estimator in the theorem is consistent for ̃STMLE but
it is conservative for ̃SIE−TMLE (Moore & van der Laan, 2009b).

3.3 Asymptotically correct confidence intervals and hypothesis tests
for TMLE combined with machine learning

Most available methods to construct confidence intervals and hypothesis tests in the statis-
tics literature are based on the sampling distribution of the estimator. While using the exact
finite-sample distribution would be ideal for this task, such distributions are notoriously difficult
to derive for our problem in the absence of strong and unrealistic assumptions (such as linear
models with Gaussian noise). Thus, here we focus on methods that rely on approximating the
finite-sample distribution using asymptotic results as n goes to infinity.

In order to discuss existing methods, it will be useful to introduce and compare the following
assumptions:

Assumption A1. Censoring is completely at random, that is, C ⫫ (Y ,W)|A = a for each treat-
ment arm a.
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Assumption A2. Let ||f ||2 denote the L2(P) norm ∫ f 2(o)dP(o), for O = (W ,A,Δ = 1{Y ≤
C}, ̃Y ). We abbreviate m(k, a,W) and m̂(k, a,W) by m and m̂, respectively. Assume
the estimator m̂ is consistent in the sense that ||m̂ −m|| = oP(1) for all k ∈ {1, … ,K}
and a ∈ {0, 1}. We also assume that there exists a 𝛿 > 0 such that 𝛿 < m < 1 − 𝛿 with
probability 1.

Assumption A3. Assume the estimator m̂ converges to a possibly mis-specified limit m1 in the
sense that ||m̂ −m1|| = oP(1) for all k ∈ {1, … ,K} and a ∈ {0, 1}, where we emphasise that
m1 can be different from the true regression function m. We also assume that there exists a
𝛿 > 0 such that 𝛿 < m1 < 1 − 𝛿 with probability 1.

For estimators m̂ of m that use cross-fitting, the function m̂ consists of J maps (one for each train-
ing set) from the sample space of O to the interval [0, 1]. In this case, by convention we define
||m̂ −m|| in A2 as the average across the J maps of the L2(P) norm of each such map minus m.
Convergence of ||m̂ −m|| to 0 in probability is then equivalent to the same convergence where m̂
is replaced by the corresponding map before cross-fitting is applied. The same convention is used
in A3.

There are at least two results on asymptotic normality for ̃STMLE relevant to the problem we
are studying. The first result is a general theorem for TMLE (see appendix A.1 of van der Laan
& Rose 2011), stating that the estimator is asymptotically normal and efficient under regularity
assumptions which include A2. Among other important implications, this asymptotic normality
implies that the variance of the estimators can be consistently estimated by the empirical variance
of the efficient influence function. This means that asymptotically correct confidence intervals
and hypothesis tests can be constructed using a Wald-type procedure. As stated above, it is often
undesirable to assume A2 in the setting of a randomised trial, as it is a much stronger assumption
than what would be required for an unadjusted estimator.

The second result of relevance to this paper establishes asymptotic normality of ̃S(k, a) under
assumptions that include A3 (Moore & van der Laan, 2009a). The asymptotic variance derived
by these authors depends on the true outcome regression function m, and is thus difficult to esti-
mate. As a solution, the authors propose to use a conservative estimate of the variance whose
computation does not rely on the true regression function m. While this conservative method
yields correct type 1 error control, its use is not guaranteed to fully convert precision gains from
covariate adjustment into power gains.

We note that the above asymptotic normality results from related works rely on the additional
condition that the estimator m̂ lies in a Donsker class. This assumption may be violated by some
of the data-adaptive regression techniques that we consider. Furthermore, we note that resam-
pling methods such as the bootstrap cannot be safely used for variance estimation in this setting.
Their correctness is currently unknown when the working model for m is based on data-adaptive
regression procedures such as those described in Section 3.1 and used in our simulation
studies.

In what follows, we build on recent literature on estimation of causal effects using machine
learning to improve upon the aforementioned asymptotic normality results on two fronts.
First, we introduce cross-fitting (Chernozhukov et al., 2018; Klaassen, 1987; Zheng & van der
Laan, 2011) to avoid the Donsker condition. Second, and most importantly, we present a novel
asymptotic normality result that avoids the above limitations of existing methods regarding strong
assumptions (specifically A2) and conservative variance estimators (that may sacrifice power).

The following are a set of assumptions about how components of the TMLE are implemented,
which we will use in our theorem below:
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Assumption A4. The initial estimator of 𝜋A(1) is set to be the empirical mean n−1∑n
i=1Ai.

Assumption A5. For time-to-event outcomes, the initial estimator ̂ΠC(a,u) is set to be the
Kaplan–Meier estimator estimated separately within each treatment arm a. For ordinal out-
comes, ̂ΠC(a, 0) is the proportion of missing outcomes in treatment arm a and ̂ΠC(a,u) = 0
for u > 0.

Assumption A6. The initial estimator m̂(u, a,W) is constructed using one of the following:

1. Any estimator in a parametric working model (i.e. a model that can be indexed by a
Euclidean parameter) such as maximum likelihood, 𝓁1 regularisation, etc.

2. Any data-adaptive regression method (e.g., random forests, MARS, XGBoost, etc.) esti-
mated using cross-fitting as described above.

Assumption A7. The regularity conditions in theorem 5.7, p. 45 of van der Vaart (1998) hold
for the maximum likelihood estimator corresponding to each LR model fit in step (5) of the
TMLE algorithm.

Theorem 1. Assume A1 and A3–A7 above. Recall that D
𝜂

is the efficient influence function for
estimation of S(k, a) (given in Appendix S1). Define the variance estimator

𝜎

2 = 1
n

n∑

i=1
[D

𝜂j(i) (Oi)]2.

Then we have for all k ∈ {1, … ,K} and a ∈ {0, 1} that

√
n{ ̃STMLE(k, a) − S(k, a)}∕𝜎 ⇝ N(0, 1).

Theorem 1 is a novel result establishing the asymptotic correctness of Wald-type confidence
intervals and hypothesis tests for the covariate-adjusted estimator ̃STMLE(k, a) based on machine
learning regression procedures constructed as stated in A6. For example, the confidence inter-
val ̃STMLE(k, a) ± 1.96 × 𝜎∕

√
n has approximately 95% coverage at large sample sizes, under the

assumptions of the theorem. The theorem licenses the large sample use of any regression proce-
dure for m when combined with the TMLE of Section 3.2, as long as the regression procedure
is either (i) based on a parametric model (such as 𝓁1-regularisation) or (ii) based on cross-fitted
data-adaptive regression, and the assumptions of the theorem hold. The theorem states suffi-
cient assumptions under which Wald-type tests from such a procedure will be asymptotically
correct.

Insight into the correctness of the variance estimator proposed in Theorem 1 may be gained as
follows. Under Assumption A2, standard theory for the TMLE (e.g., Zheng & van der Laan, 2011)
shows that ̃STMLE(k, a) is asymptotically normal with asymptotic variance given by the variance
of the efficient influence function D

𝜂
(O). When Assumption A2 does not hold, and if 𝜋A and

𝜋C are estimated using correctly specified parametric models, the TMLE is still asymptotically
normal, but its variance is now equal to the variance of D

𝜂1(O) − C
𝜂1(O), where 𝜂1 = (m1, 𝜋A, 𝜋C)

and C
𝜂1(O) is a correction term that must be subtracted to account for inconsistent estimation of

m (see section 4.1.3 of Moore & van der Laan, 2009b). This correction terms is equal to zero in two
circumstances: if either A2 holds such that m1 = m, or if 𝜋A and 𝜋C are known and we use �̂�A = 𝜋A
and �̂�C = 𝜋C. The crux of the proof of Theorem 1 is to show that this correction term also equals
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zero under Assumptions A4 and A5, namely when 𝜋A and 𝜋C are estimated using non-parametric
maximum likelihood estimators that do not use covariates under censoring completely at random.
Readers interested in more technical details are encouraged to consult the proof of this theorem
in Appendix S1.

Assumption A3 states that the predictions given by the regression method used to con-
struct the adjusted estimator converge to some arbitrary function (i.e., not assumed to be equal
to the true regression function). This assumption is akin to Condition 3 assumed by Bloniarz
et al. (2016) in the context of establishing asymptotic normality of a covariate-adjusted estima-
tor based on 𝓁1-regularisation. We note that this is an assumption on the predictions themselves
and not on the functional form of the predictors. Therefore, issues like collinearity do not
necessarily cause problems. While this assumption can hold for many off-the-shelf machine
learning regression methods under assumptions on the data-generating mechanism, general
conditions have not been established and the assumption must be checked on a case-by-case
basis.

We note that assumption A1 is stronger than the assumption C ⫫ Y |A = a required by unad-
justed estimators such as the Kaplan–Meier estimator. However, if W is prognostic (meaning that
W⊥⊥∕ Y |A = a), then the assumption C ⫫ Y |A = a required by the Kaplan–Meier estimator cannot
generally be guaranteed to hold, unless A1 also holds. Thus, our theorem aligns with the recent
FDA draft guidance on covariate adjustment in the sense that ‘it provides valid inference under
approximately the same minimal statistical assumptions that would be needed for unadjusted
estimation in a randomized trial’ (U.S. Food and Drug Administration, 2021a).

The construction of estimators based on A5 such as ̃STMLE and the unadjusted estimator
should be avoided if A1 does not hold. In these cases, we recommend the use of the estima-
tor ̃SIE−TMLE, which can achieve consistency if censoring at random holds (i.e. C ⫫ Y |W ,A).
The variance estimator given in Theorem 1 is conservative for ̃SIE−TMLE (see Moore & van der
Laan, 2009b).

Consistency of ̃SIE−TMLE under C ⫫ Y |W ,A will typically require that at least one of two
assumptions hold: (a) that the censoring probabilities 𝜋C(u, a,w) are estimated consistently, or
that (b) the outcome regression m(u, a,w) is estimated consistently. To maximise the chances
of either of these conditions being true, we recommend the use of flexible machine learn-
ing for both of these regressions, including model selection and ensembling techniques such
as the Super Learner (van der Laan et al., 2007). The conditions for asymptotic normality of
̃SIE−TMLE under these circumstances are much stronger than those for Theorem 1, and typ-
ically include consistent estimation of both 𝜋C(u, a,w) and m(u, a,w) at certain rates (e.g.,
each of them converging at n1∕4-rate is sufficient, see appendix A.1 of van der Laan and
Rose (2011).

4 SIMULATION STUDIES

We performed a Monte Carlo simulation study with the following goals: (1) to evaluate the per-
formance of the covariate-adjusted estimators based on machine learning discussed in Section 3,
and compare them to unadjusted estimators in terms of efficiency and bias, (2) to illustrate the
performance of hypothesis tests based on the asymptotic approximation of Theorem 1, and (3)
to provide preliminary evidence to help guide the choice of regression algorithm for covariate
adjusted estimators. Code to reproduce our simulations may be found at https://github.com/nt-
williams/covid-RCT-covar.

https://github.com/nt-williams/covid-RCT-covar
https://github.com/nt-williams/covid-RCT-covar
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4.1 Data generating mechanisms

Our data generating distribution is based on a database of over 1500 patients hospitalised
at Weill Cornell Medicine New York Presbyterian Hospital prior to 15 May 2020. The
database includes information on patients 18 years of age and older with COVID-19 con-
firmed through reverse-transcriptase-polymerase-chain-reaction assays. For a full description
of the clinical characteristics and data collection methods of the initial cohort sampling,
see Goyal et al. (2020).

We evaluate the potential to improve efficiency by adjustment for subsets of the following
baseline variables: age, sex, BMI, smoking status, whether the patient required supplemental oxy-
gen within 3 h of presenting to the emergency department, number of comorbidities (diabetes,
hypertension, COPD, CKD, ESRD, asthma, interstitial lung disease, obstructive sleep apnea, any
rheumatological disease, any pulmonary disease, hepatitis or HIV, renal disease, stroke, cirrhosis,
coronary artery disease, active cancer), number of relevant symptoms, presence of bilateral infil-
trates on chest X-ray, dyspnea, and hypertension. These variables were chosen because they have
been previously identified as risk factors for severe disease (Goyal et al., 2020; Guan et al., 2020;
Gupta et al., 2020), and therefore are likely to improve efficiency of covariate-adjusted effect
estimators in randomised trials in hospitalised patients.

We consider two types of outcomes: a time-to-event outcome defined as the time from hospi-
talisation to intubation or death, and a six-level ordinal outcome at 14 days post-hospitalisation
based on the WHO Ordinal Scale for Clinical Improvement (Marshall et al., 2020). The
categories are as follows: 0, discharged from hospital; 1, hospitalised with no oxygen ther-
apy; 2, hospitalised with oxygen by mask or nasal prong; 3, hospitalised with non-invasive
ventilation or high-flow oxygen; 4, hospitalised with intubation and mechanical ventilation;
5, dead.

We simulate datasets for four scenarios where we consider two effect sizes (null vs. posi-
tive) and two baseline variable settings (prognostic vs, not prognostic, where prognostic means
marginally associated with the outcome). For each sample size n ∈ {100, 500, 1500} and for each
scenario, we simulated R = 5000 datasets as follows. To generate datasets where covariates are
prognostic, we draw n pairs (W ,Y ) randomly from the original dataset with replacement. This
generates a dataset where the covariate prognostic strength is as observed in the real dataset. To
simulate datasets where covariates are not prognostic, we first draw outcomes Y at random with
replacement from the original dataset, and then draw covariates W at random with replacement
and independent of the value Y drawn.

For each scenario, a hypothetical treatment variable is assigned randomly for each patient
with probability 0.5 independent of all other variables. This produces a data generating dis-
tribution with zero treatment effect, used to assess type 1 error. Next, a positive treatment
effect is simulated for time-to-event outcomes by adding an independent random draw from a
𝜒

2 distribution four degrees of freedom to each patient’s observed survival time in the treat-
ment arm. To simulate outcomes being missing completely at random, 5% of the patients are
selected at random to be censored, and the censoring times are drawn from a uniform dis-
tribution between 1 and 14. A positive treatment effect is simulated for ordinal outcomes by
subtracting from each patient’s outcome in the treatment arm an independent random draw
from a four-parameter Beta distribution with support (0, 5) and parameters (3, 15), rounded
to the nearest nonnegative integer. This approach to generating positive treatment effects
implies no treatment effect heterogeneity in the linear scale, but does not imply this on
other scales.
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4.2 Estimands

For time-to-event outcomes, we focus on evaluating the effect of treatment on the RMST at 14
days and the RD at 7 days after hospitalisation, and for ordinal outcomes we evaluate results for
both the LOR and the Mann–Whitney statistic (see Section 3). For survival outcomes, the data
generating mechanisms of Section 4.1 yield an effect size for RMST difference of 1.04, and RD
of 0.10, respectively. For ordinal outcomes, the data generating mechanism of Section 4.1 yields
effect sizes for LOR of 0.60 and for MW of 0.46. These values were approximated using formulas
given in Section 2, with population quantities replaced by empirical quantities in a dataset of size
107 generated according to the data generated processes of the previous subsection.

4.3 Estimators and methods evaluated

We evaluate several estimators. First, we evaluate unadjusted estimators based on substituting the
empirical CDF for ordinal outcomes and the Kaplan–Meier estimator for time-to-event outcomes
in the parameter definitions of Section 2. We then evaluate adjusted estimator ̃SIE−TMLE(k, a)
where the working models are:

LR: a fully adjusted estimator using LR including all the variables listed in the previous
section,

𝓁1-LR: 𝓁1 regularisation of the previous LR,
RF: random forests,

MARS: multivariate adaptive regression splines, and
XGBoost: extreme gradient boosting tree ensembles.

For estimators RF, MARS, and XGBoost, we further evaluated cross-fitted versions of the working
model. For all adjusted estimators the propensity score 𝜋A is estimated with an intercept-only
model (A4), and the censoring mechanism 𝜋C is estimated using a Kaplan–Meier estimator fitted
independently for each treatment arm (A5) (or equivalently for ordinal outcomes the proportion
of missing outcomes within each treatment arm).

Confidence intervals and hypothesis tests are performed using Wald-type statistics, which use
an estimate of the standard error based on the asymptotic Gaussian approximation described in
Theorem 1. We compare the performance of the estimators in terms of the probability of type
1 error, power, the bias, the variance, and the mean squared error. Monte Carlo errors in these
estimates resulting from using R = 5000 are computed using the formulas discussed in Morris
et al. (2019). These formulas assume normality of the effect estimators and therefore may not be
accurate at the smaller sample sizes where our asymptotic normality results may not provide a
good approximation.

4.4 Simulation results

We compute the relative efficiency RE of each estimator compared to the unadjusted estimator as
a ratio of the mean squared errors. This relative efficiency can be interpreted as the ratio of sample
sizes required by the estimators to achieve the same power at local alternatives, asymptotically
(van der Vaart, 1998). Equivalently, one minus the relative efficiency is the relative reduction (due
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to covariate adjustment) in the required sample size to achieve a desired power, asymptotically;
for example, a relative efficiency of 0.8 is approximately equivalent to needing 20% smaller sample
size when using covariate adjustment.

In the presentation of the results, we append the prefix CF to cross-fitted estimators. For
example, CF-RF will denote cross-fitted random forests.

Tables containing the comprehensive results of the simulations are presented in Appendix S1.
The maximum Monte Carlo SE for each quantity is presented for each scenario. Figures 1 and 2
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F I G U R E 1 Efficiency of adjusted estimators relative to an unadjusted estimator for LOR, MW, RD, and
RMST when there is (a) no effect of the exposure on the outcome and (b) when there is a positive effect of the
exposure on the outcome and covariates are prognostic of the outcome. Estimators are ordered by decreasing
order of efficiency and efficiency is truncated at two.
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F I G U R E 2 Probability of rejecting H0 for LOR, MW, RD, and RMST when covariates are prognostic of the
outcome and there is (a) no effect of the exposure on the outcome–estimators ordered by decreasing
probability–and (b) when there is a positive effect of the exposure on the outcome–estimators ordered by
increasing probability

show results for relative efficiency, power, and type 1 error for two of the scenarios evaluated.
Figures for the other two scenarios are available in Appendix S1.

In the remainder of this section we present a summary of the results. First, we note that the use
of random forests without cross-fitting exhibits very poor performance, failing to appropriately
control type 1 error when the effect is null, and introducing significant bias when the effect is
positive. We observed this poor performance across all simulations. Thus, in what follows we omit
a discussion of this estimator.
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At large sample sizes all cross-fitted estimators along with LR estimators yield correct
type I error, illustrating the correctness of Wald-type tests proved in Theorem 1. Our sim-
ulation results also show that Wald-type hypothesis tests based on data-adaptive machine
learning procedures fail to control type 1 error if the regressions procedures are not
cross-fitted.

Results for the LOR in Tables S3 and S11 show that covariate adjusted estimators have better
performance than the unadjusted estimator at small sample sizes, even when the covariates are
not prognostic. In these cases, the unadjusted estimator is unstable with large variance due to
near-empty outcome categories in some simulated datasets, which causes division by near-zero
numbers in the unadjusted LOR estimator. Some covariate adjusted estimators fix this problem by
extrapolating model probabilities to obtain better estimates of the probabilities in the near-empty
cells.

Tables S1–S4 display the results for the difference in RMST, RD, LOR, and MW estimands when
covariates are prognostic and there is a positive effect size. At sample size n = 1500 all adjusted
estimators yield efficiency gains, with CF-RF offering the best RE ranging from 0.51 to 0.67 com-
pared to an unadjusted estimator, while appropriately controlling type 1 error. In contrast, the RE
of 𝓁1-LR at n = 1500 ranged from 0.79 to 0.89.

At sample size n = 500, 𝓁1-LR, CF-RF, and XGBoost offer comparable efficiency gains, rang-
ing from 0.29 to 0.99. As the sample size decreases to n = 100 most adjusted estimators yield
efficiency losses and the only estimator that retains efficiency gains is 𝓁1-LR, with RE from 0.86
to 0.92. (An exception is in estimation of the LOR, where the RE of 𝓁1-LR was 0.1 due to the issue
discussed above.)

Efficiency gains for 𝓁1-LR did not always translate into power gains of a Wald-type hypoth-
esis test compared to other estimators (e.g. LR at n = 100), possibly due to biased variance
estimation and/or a poor Gaussian approximation of the distribution of the test statistic. At
small sample size n = 100 power was uniformly better for a Wald-type test based on LR com-
pared to 𝓁1-LR. At sample size n = 500 a Wald-type test based on 𝓁1-LR seemed to dominate
all other algorithms, whereas at n = 1500 all algorithms had comparable power very close
to one.

Results when the true treatment effect is zero and covariates are prognostic are presented
in Tables S5–S8. At sample size n = 1500, CF-RF generally provides large efficiency gains with
relative efficiencies ranging from 0.66 to 0.77. For comparison, 𝓁1-LR has RE ranging from 0.88
to 0.92. As the sample size decreases to n = 500, 𝓁1-LR and CF-RF both offer the most effi-
ciency gains while retaining type 1 error control, with RE ranging from 0.74 to 0.88. At small
sample sizes n = 100, 𝓁1-LR consistently leverages efficiency gains from covariate adjustment
(RE ranging from 0.73 to 0.95) but its type 1 error (ranging from 0.07 to 0.09) is slightly larger than
that of the unadjusted estimator. For estimation of LOR and MW, XGBoost has similar results at
sample size n = 100.

Tables S9–S12 show results for scenarios where the covariates are not prognostic of the out-
come but there is a positive effect. This case is interesting because it is well known that adjusted
estimators can induce efficiency losses (i.e. RE > 1) by adding randomness to the estimator when
there is nothing to be gained from covariate adjustment. We found that 𝓁1-LR uniformly avoids
efficiency losses associated with adjustment for independent covariates, with a maximum RE of
1.03. All other covariate adjustment methods had larger maximum RE. At sample size n = 100,
the superior efficiency of the 𝓁1-LR estimator did not always translate into better power (e.g. com-
pared to LR) due to the use of a Wald-test which relies on an asymptotic approximation to the
distribution of the estimator.
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Results when the true treatment effect is zero and covariates are not prognostic are
presented in Tables S13–S16. In this case, 𝓁1-LR also avoids efficiency losses across all
scenarios, while maintaining a type 1 error that is comparable to that of the unadjusted
estimator.

5 RECOMMENDATIONS AND FUTURE DIRECTIONS

In our numerical studies we found that 𝓁1-regularised LR offers the best trade-off between type
I error control and efficiency gains across sample sizes, outcome types, and estimands. We found
that this algorithm leverages efficiency gains when efficiency gains are feasible, while protecting
the estimators from efficiency losses when efficiency gains are not feasible (e.g., adjusting for
covariates with no prognostic power). A direction of future research is the evaluation of bootstrap
estimators for the variance and confidence intervals of covariate-adjusted estimators, especially
for cases where the Wald-type methods evaluated in this manuscript did not perform well (e.g.
𝓁1-LR at n = 100).

We also found that LR can result in large efficiency losses for small sample sizes, with
relative efficiencies as large as 1.17 for the RMST estimand, and as large as 7.57 for the MW
estimand. Covariate adjustment with 𝓁1-regularised LR solves this problem, maintaining effi-
ciency when covariates are not prognostic for the outcome, even at small sample sizes. However,
Wald-type hypothesis tests do not appropriately translate the efficiency gains of 𝓁1-regularised
LR into more powerful tests. This requires the development of tests appropriate for small
samples.

We recommend against using the LOR parameter since it is difficult to interpret and the
corresponding estimators (even unadjusted ones) can be unstable at small sample sizes. Covari-
ate adjustment with 𝓁1-LR, CF-MARS, CF-RF, or CF-XGBoost can aid to improve efficiency
in estimation of the LOR parameter over the unadjusted estimator when there are near-empty
cells at small sample sizes. This improvement in efficiency did not translate into an improve-
ment in power when using Wald-type hypothesis tests, due to poor small-sample Gaussian
approximations or poor variance estimators.

We discourage the use of non-cross-fitted versions of the machine learning methods evaluated
(i.e., RF, XGBoost, MARS) for covariate adjustment. Specifically, we found in simulations that
non-cross-fitted random forests can lead to overly biased estimators in the case of a positive effect,
and to anti-conservative Wald-type hypothesis tests in the case of a null treatment effect. We found
that cross-fitting the random forests alleviated this problem and was able to produce small bias
and acceptable type 1 error at all sample sizes. This is supported at large sample sizes by our main
theoretical result (Theorem 1) which establishes asymptotic correctness of cross-fitted procedures
under regularity conditions. In fact, we found that random forests with cross-fitting provided the
most efficiency gains at large sample sizes.

Based on the results of our simulation studies, we recommend that cross-fitting with
data-adaptive estimators such as random forests and extreme gradient boosting be considered for
covariate selection in trials with large sample sizes (n = 1500 in our simulations). In large sample
sizes, it is also possible to consider an ensemble approach such as Super Learning (van der Laan
et al., 2007) that allows one to select the predictor that yields the most efficiency gains. Traditional
model selection with statistical learning is focused on the goal of prediction, and an adaptation
of those tools to the goal of maximising efficiency in estimating the marginal treatment effect is
the subject of future research.
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We have developed estimators that leverage efficiency gains from covariate adjustment while
delivering correct inference under approximately the same conditions as an unadjusted esti-
mator. Those conditions include A1. When A1 does not hold, neither our approach based on
Theorem 1 nor an unadjusted estimator delivers correct inference. In these cases, consistency
of the ̃STMLE(k, a) and ̃SIE−TMLE(k, a) estimators requires that censoring at random holds (i.e.
C ⫫ Y |W ,A), and that either the outcome regression or censoring mechanism is consistently
estimated. Thus, it is recommended to also estimate the censoring mechanism with machine
learning methods that allow for flexible regression. Standard asymptotic normality results for
the ̃STMLE(k, a) and ̃SIE−TMLE(k, a) require consistent estimation of both the censoring mecha-
nism and the outcome mechanism at certain rates (e.g. both estimated at a n1∕4 rate is sufficient).
The development of estimators that remains asymptotically normal under the weaker condition
that at least one of these regressions is consistently estimated has been the subject of recent
research (e.g., Avagyan & Vansteelandt, 2021; Benkeser et al., 2017; Díaz, 2019; Díaz & van der
Laan, 2017; Dukes & Vansteelandt, 2021). These recent methods require assumptions that are
more restrictive than those required by an unadjusted estimator under A1. Thus, our approach
is preferable to the above methods when A1 holds, such as when non-administrative censoring
is minimal.

Lastly, our methods are developed in a discrete-time setting. Outcomes in most trials
(e.g. in clinical research) are measured in discrete-time (e.g. survival is measured in days).
When the time-to-event outcomes are measured in continuous time, application of our meth-
ods will require the discretisation of time. The optimal time-window for discretisation is an
open question, but we recommend discretising time in terms of a time unit that is relevant
for the scientific question at hand. For example, for A/B testing a web page design it may
be most relevant to measure the number of seconds required for the users to complete a
given task.
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