Table 7.
Precision | Recall | Accuracy | F1-score | |
---|---|---|---|---|
EfficientNet V2 | 0.4023 | 0.4479 | 0.5132 | 0.3736 |
ResNet | 0.9487 | 0.9397 | 0.9541 | 0.9439 |
Vision transformer | 0.7112 | 0.6264 | 0.7373 | 0.6301 |
Swin transformer | 0.9488 | 0.9371 | 0.9548 | 0.9424 |
RegNet | 0.9492 | 0.9463 | 0.9568 | 0.9476 |
DenseNet | 0.9552 | 0.953 | 0.9608 | 0.9541 |
DeepDSR | 0.974 | 0.9653 | 0.9737 | 0.9695 |
The bold fonts represent the best performance in each column.