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Abstract

Seasonal precipitation forecasting is highly challenging for the northwest

fringes of Europe due to complex dynamical drivers. Hybrid dynamical–
statistical approaches offer potential to improve forecast skill. Here, hindcasts

of mean sea level pressure (MSLP) from two dynamical systems (GloSea5 and

SEAS5) are used to derive two distinct sets of indices for forecasting winter

(DJF) and summer (JJA) precipitation over lead-times of 1–4 months. These

indices provide predictors of seasonal precipitation via a multiple linear regres-

sion model (MLR) and an artificial neural network (ANN) applied to four Irish

rainfall regions and the Island of Ireland. Forecast skill for each model, lead

time, and region was evaluated using the correlation coefficient (r) and mean

absolute error (MAE), benchmarked against (a) climatology, (b) bias corrected

precipitation hindcasts from both GloSea5 and SEAS5, and (c) a zero-order

forecast based on rainfall persistence. The MLR and ANN models produced

skilful precipitation forecasts with leads of up to 4 months. In all tests, our

hybrid method based on MSLP indices outperformed the three benchmarks

(i.e., climatology, bias corrected, and persistence). With correlation coefficients

ranging between 0.38 and 0.81 in winter, and between 0.24 and 0.78 in sum-

mer, the ANN model outperformed MLR in both seasons in most regions and

lead-times. Forecast skill for summer was comparable to that in winter and for

some regions/lead times even superior. Our results also show that climatology

and persistence performed better than direct use of bias corrected dynamical

outputs in most regions and lead-times in terms of MAE. We conclude that the

hybrid dynamical–statistical approach developed here—by leveraging useful

information about MSLP from dynamical systems—enables more skilful sea-

sonal precipitation forecasts for Ireland, and possibly other locations in west-

ern Europe, in both winter and summer.
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1 | INTRODUCTION

Seasonal forecasts of climate- and water-related variables
are increasingly used, especially within industrial, agricul-
tural, environmental, water, and urban sectors (Agrawala
et al., 2001; Hewitt et al., 2013). Consequently, recent
decades have seen considerable advances in the develop-
ment of monthly and seasonal forecasting systems at global
to regional scales (e.g., MacLachlan et al., 2015; Yuan
et al., 2015; Tompkins et al., 2017; Emerton et al., 2018).
There is recognition that seasonal climate variability can be
attributed to atmospheric teleconnections, with many stud-
ies showing relationships between local climate conditions
and large-scale modes as predictors for skilful seasonal
precipitation and streamflow forecasting (e.g., Svensson
et al., 2015; Mekanik et al., 2016; Bell et al., 2017; Mariotti
et al., 2018).

Statistical methods for seasonal forecasting employ
techniques include simple linear regression (Ranhao
et al., 2008; Hall et al., 2017; Wang et al., 2017) and more
sophisticated artificial intelligence (AI) based methods
(e.g., da Paz et al., 2011; Nourani et al., 2019). These
transfer functions typically relate climate signals such as
sea surface temperatures (SSTs), sea level pressure (SLP)
(and/or their derivatives), to precipitation, temperature,
or streamflow at target locations (e.g., Ding and Ke, 2013;
Mekanik et al., 2016; Devi et al., 2020). Among climate
indices, those based on mean sea level pressure (MSLP),
such as the North Atlantic Oscillation (NAO), are known
to predict climate conditions over regions of the mid–high
latitudes in the Northern Hemisphere, especially western
Europe, including the UK and Ireland (Wilby et al., 1997;
2004; Wedgbrow et al., 2002; 2005; Troccoli, 2010). For
example, Murphy and Washington (2001) showed that
there is a strong correlation between NAO and precipita-
tion in some parts of the UK and Ireland, particularly in
winter. Similarly, Fowler and Kilsby (2002) note the strong
connection between the NAO and winter precipitation in
Yorkshire, UK. Hurrell and Deser (2010) found that posi-
tive phases of the NAO are associated with mild and wet
winters in western Europe. West et al. (2019) show a
spatial–temporal relationship between monthly precipita-
tion and NAO with a clear divide in rainfall patterns
across the north/west and south/east regions of the UK
during winter months. The NAO can also influence sum-
mer precipitation, but signals tend to be weaker compared
with winter (Folland et al., 2009; Dunstone et al., 2018).

The above associations have been incorporated within
various statistical approaches to seasonal forecasting of cli-
matological and hydrological variables (e.g., Wilby, 2001;
Wedgbrow et al., 2002; 2005; Wilby et al., 2004; Rodrigues
et al., 2014; Hall and Hanna, 2018; Lled�o et al., 2020).
Others have indirectly employed these relationships to

condition persistence-based forecasts and ensemble stream-
flow predictions (e.g., Svensson, 2016; Donegan et al., 2021).
Furthermore, Murphy et al. (2020) demonstrated that
monthly and seasonal precipitation in England and Wales
and Ireland can be reconstructed from MSLP and climate
indices, especially those based on concurrent SLP.

There have also been developments in seasonal fore-
casts based on numerical weather prediction models that
represent the climate system via physical equations to
forecast climate evolution several months in advance
(e.g., Doblas-Reyes et al., 2006; MacLachlan et al., 2015;
Johnson et al., 2019). Two widely used dynamical forecast
systems are the European Centre for Medium-Range
Weather Forecasts (ECMWF) Seasonal Forecasting
System (SEAS5) and the UK Met Office's Global Seasonal
forecast system version 5 (GloSea5) (MacLachlan
et al., 2015). Climate signals from SEAS5 and GloSea5
have been used widely by researchers to forecast temper-
ature, precipitation, and wind speed (Baker et al., 2018b;
Thornton et al., 2019; Wang et al., 2019; Gubler
et al., 2020), including for the European agricultural
(Ceglar and Toreti, 2021) and energy sectors (Clark
et al., 2017). In another example, Scaife et al. (2014)
showed that GloSea5 provides skilful forecasts for winter
NAO up to 4 months ahead. Others have evaluated the
dynamical predictions of these two systems. For example,
Baker et al. (2018a) found that although SEAS5 and
GloSea5 both have significant skill in predicting MSLP
for the North Atlantic region in wintertime, the skill of
GloSea5 is higher in this region. Moreover, previous stud-
ies have reported limited skill by dynamical models in
directly predicting precipitation (e.g., Scaife et al., 2014;
Baker et al., 2018a; Lled�o et al., 2020), highlighting the
need to post-process output to reduce systematic model
errors (Manzanas et al., 2019). Others have combined sta-
tistical and dynamical methods for subseasonal to sea-
sonal precipitation and streamflow forecasting (Schepen
et al., 2012; Strazzo et al., 2019). For instance, Baker
et al. (2018b) used MSLP hindcasts from GloSea5 to com-
pute linear combinations of two MSLP-based indices for
regional forecasting of precipitation in nine UK regions.
They found that precipitation forecast skill was improved
by using MSLP hindcasts from GloSea5 compared to
direct GloSea5 precipitation output.

Despite advances in statistical and dynamical appr-
oaches to seasonal forecasting, there have been few
assessments of their potential application to Ireland. Situ-
ated on the Atlantic margins of Europe with a highly
dynamic climate, Ireland offers a stern test of seasonal
forecasting capabilities. Recent attempts at seasonal hydro-
logical forecasting highlight the potential value-added by
skilful precipitation forecasts for the water sector, particu-
larly in winter. For example, Foran Quinn et al. (2021)
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assessed the seasonal forecast skill of persistence-based
methods applied to river flows in 46 Irish catchments.
They found that skill was greatest when initialized in
summer months in catchments with significant ground-
water storage. Likewise, Donegan et al. (2021) applied
an ensemble streamflow prediction (ESP) method and
found greatest skill in summer. Also, they showed that
by conditioning the ESP with GloSea5 NAO hindcasts,
discrimination skill for low flows in winter improved
over lead-times of 1–3 months, particularly during dry
winters.

This paper advances the above techniques by evaluating
the extent to which hybrid statistical–dynamical methods
provide skilful forecasts of winter and summer precipi-
tation across Ireland, over various lead times. Although
anomalies in North Atlantic SLP are known to influence
climate variability in the UK and Ireland (Comas-Bru and
McDermott, 2014; Hameed and Riaz, 2020), we assess the
extent to which hindcasts of North Atlantic MSLP from
SEAS5 and GloSea5 can be used as potential predictors in
two data-driven models (linear regression, and an Artificial
Neural Network [ANN]). The rest of the paper is organized
as follows. Section 2 describes the data used and the frame-
work for deriving climate indices based on MSLP. Section 3
presents the model skill for four rainfall regions and the
Island of Ireland, followed by a discussion of the findings
and conclusions in section 4.

2 | DATA AND METHODS

2.1 | Data

We use output from SEAS5, the latest version of the
ECMWF seasonal forecasting system (Johnson et al., 2019);
and GloSea5, a high-resolution seasonal forecasting system
developed by the UK Met Office (Maidens et al., 2013). For
SEAS5, we use ensemble hindcasts of MSLP covering the
period 1994–2016, consisting of 25 members with 1- to
6-month lead-times. Similarly, MSLP hindcasts from
28 ensemble members were employed from GloSea5 for the
period 1993–2016, also for lead times of 1–6 months. Similar
to others, we analyse the ensemble mean hindcasts of
SEAS5 and GloSea5 which are known to outperform the
median as well as individual ensembles (e.g., Al Samouly
et al., 2018; Baker et al., 2018b; Gubler et al., 2020). All
SEAS5 and GloSea5 data were obtained from the Climate
Data Store of the Copernicus Climate Change Service
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/
seasonal-monthly-single-levels?tab=overview) at 1� grid res-
olution (ECMWF, 2019). We apply the same domain as Hall
and Hanna (2018), namely 90�W–40�E and 20�–80�N. This
area was used to develop the input indices for seasonal

forecasting precipitation in winter (DJF) and summer (JJA).
In addition to MSLP, we also extracted precipitation
hindcasts from GloSea5 and SEAS5 for the Island of Ireland
during the period 1993–2016. These data were used to eval-
uate the value-added by the statistical step in our modelling
framework.

Observed MSLP from ERA5 reanalysis (Hersbach
et al., 2020) with 0.25� grid resolution was also used. This
dataset has served as a reference dataset in previous stud-
ies (e.g., Lloyd et al., 2018). Observed daily 0.1� grid-
resolution precipitation for the period 1950–2019 was
obtained from E-OBS precipitation (Cornes et al., 2018),
provided by the European Climate Assessment and
Dataset consortium. E-OBS data were used to derive pre-
cipitation regions for the Island of Ireland (section 2.2).
This dataset has been used by many researchers to assess
other precipitation simulations. For example, Navarro
et al. (2019) evaluated the performance of IMERG precip-
itation over Europe with E-OBS as the reference, while
Crhov�a and Holtanov�a (2018) compared the outputs from
two regional climate models and four global climate
models with E-OBS.

2.2 | Deriving precipitation regions

To aggregate results and reduce spatial heterogeneity, we
derived homogenous precipitation regions to explore the
relationship between precipitation and climate signals
derived from MSLP. Precipitation regions were derived by
K-means clustering of daily E-OBS data. The number of
clusters was determined based on a plot of total within-
group sum of squares versus the number of clusters (not
shown). Figure 1 presents the four resulting precipitation
regions with daily mean values in parenthesis. Regions
2 and 4 have relatively low precipitation and are in the
Midland and East regions of Ireland. Regions 1 and 3 are
in the western part of the Island with higher precipitation
and greater variation in topography. For each precipitation
region, monthly area-average precipitation series were pro-
duced for the period 1993–2016 and used as the target
(predictand) in our data-driven forecast models.

2.3 | Derivation of MSLP indices

Two sets of indices were derived from SEAS5 and GloSea5
MSLP hindcasts and used as predictors for precipitation
forecasts. The first follows the simple standardized MSLP
index of Baker et al. (2018b). The second comprises
the three leading components of a rotated empirical
orthogonal function (REOF) (Hall and Hanna, 2018; Liu
et al., 2019) applied to the ensemble mean MSLP hindcasts
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from each model and lead time. Figure 2 shows the flow-
chart of the methodology employed. Further details on the
indices are provided below.

2.3.1 | Standardized MSLP index

To avoid overfitting real relationships by prescreening
predictors directly from model output (DelSole and
Shukla, 2009), correlation maps for seasonal mean MSLP
from ERA5 versus observed precipitation were first gen-
erated for each precipitation region to identify locations
of maximum and minimum correlation. We used MSLP
with the same spatial domain as Baker et al. (2018b), that
is, 50�W–50�E and 20�–80�N. Like Baker et al. (2018b)
fixed points of maximum and minimum correlation
between MSLP and precipitation from observations are
used to derive the standardized MSLP index from model
hindcasts for each precipitation region. Depending on the
source of the MSLP hindcasts (i.e., GloSea5 or SEAS5),
the index MSLPGloSea5=SEAS5 is defined as the standardized
(i.e., centred about the mean and divided by the standard
deviation over the time series) MSLP difference between
the fixed maximum and minimum points of correlation
from ERA5 MSLP (see Equations (1) and (2)). This index
was derived for each precipitation region and lead time
separately using the ensemble mean,

Stand:_MSLPmax=min
t =

MSLPt−μMSLP

σMSLP
, ð1Þ

MSLPGloSea5=SEAS5=Stand:_MSLPmax
t −Stand:MSLP

min
t ,

ð2Þ

where t is time (year), Stand:_MSLPmax=min
t is the stan-

dardized MSLP from GloSea5 or SEAS5 at the maximum
or minimum correlation point (derived from ERA5
MSLP) and μMSLP and σMSLP are the mean and standard
deviation of MSLP.

2.3.2 | Rotated empirical orthogonal
equation indices

To derive the EOF indices we applied a REOF as in Hall
and Hanna (2018). Rotated EOF analysis can avoid artifi-
cial dipole-type patterns which can be produced by tradi-
tional EOF analysis (Lian and Chen, 2012; Liu et al., 2019).
Application of REOF to MSLP anomalies was undertaken
separately for winter and summer with respect to the long-
term seasonal mean (1993–2016 for GloSea5; 1994–2016
for SEAS5). To account for latitudinal variation in grid cell
areas, MSLP anomalies were weighted by the cosine of the
latitude prior to analysis. The three leading vectors of the
cross-correlation matrix calculated from monthly MSLP
from GloSea5 and SEAS5 hindcasts were used to construct
two sets of indices namely EOF1GloSea5, EOF2GloSea5,
EOF3GloSea5 and EOF1SEAS5, EOF2SEAS5 and EOF3SEAS5.

2.4 | Empirical models

Using the MSLP indices described above, an exhaustive
search was undertaken of every possible combination of
predictors when developing our MLR and ANN models.
To avoid overfitting, each combination of predictors was
tested for collinearity and predictors selected based on
adjusted R-squared (Adj-R2) which shows the incremental

FIGURE 1 Homogenous

regions identified for the Island

of Ireland by K-means clustering

of EOBS daily precipitation

[Colour figure can be viewed at

wileyonlinelibrary.com]
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gain in explained variance for every new predictor included.
Adj-R2 is calculated based on the value of r-squared, num-
ber of independent variables (predictors), and sample size.
Predictors were checked for multicollinearity using the vari-
ance inflation factor (VIF) and only those with VIF < 4
were retained for further analysis (cf. Lin, 2008).

Models were developed to predict seasonal precipita-
tion up to 4 months in advance, that is, lead-times
(LT) from one to 4 months (henceforth LT1, LT2, LT3,
and LT4). We used MSLP hindcasts from both SEAS5 and
GloSea5 for lead times of up to 6 months. Therefore, using
the average seasonal MSLP derived from monthly MSLP
values, the maximum lead-time which could be provided
is 4 months in advance for the first month of each season,
followed by 5- and 6-months lead-time for the second and
third months of that season, respectively. As an example,
for winter at four-month lead time (LT4), MSLP is taken
as the average of hindcasts from August (i.e., LT4 for
December, LT5 for January and LT6 for February).
Table S1, Supporting Information shows the various start
months used to calculate seasonal precipitation and MSLP
with different lead-times in winter and summer. Model
performance was evaluated using the correlation coeffi-
cient (r) and mean absolute error (MAE).

2.4.1 | Regression models

Multiple linear regression was employed to predict precipi-
tation in different seasons, that is, winter and summer as
the target (predictand) with selected MSLP indices from
hindcasts as predictors. Regression models were built for
each season, lead time, and region (i.e., 2 seasons × 4 lead-
times × 5 regions, yielding 40 models). Using selected pre-
dictors, regression models were fitted using leave-one-out
cross-validation (LOOCV). In this method, first 1 year is
left out and the model is calibrated based on data in other
years and the error associated with prediction (of the year
omitted from calibration) is recorded. This procedure is
repeated for all years and the overall prediction error is
computed as the average of all test error estimates.

2.4.2 | Artificial neural network

A multilayer perceptron neural network with two hidden
layers, trained by backpropagation, was used as the sec-
ond model for precipitation prediction. The same predic-
tors identified for the MLR method for each region,
season and lead time were used. Logistic and linear

FIGURE 2 Workflow for

the dynamical–statistical
approach adopted in this study
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activation functions were employed for training hidden
and output layers, respectively. The optimum number of
neurons in each hidden layer was identified via trial-and-
error. Again, a separate ANN model was built for each
season, lead time, and region. Figure S1 shows an exam-
ple ANN architecture for the case of winter precipitation
at LT3 using MSLPGloSea5, EOF2SEAS5, and EOF2GloSea5 as
the best inputs. Two hidden layers were employed, com-
prising two neurons for the first hidden-layer and three
for the second. The performance of the ANN model was
also assessed using the LOOCV method.

2.4.3 | Benchmark models

To evaluate the added skill of the new methods, we apply
a zero-order forecast (ZOF) based on the persistence of
observed precipitation (following Dixon and Wilby,
2016). This method assumes that the precipitation at time
t+1ð Þ is the same as at time t (i.e., the previous time
step). In addition, the ensemble mean precipitation
hindcasts from GloSea5 and SEAS5 for each lead time
were first averaged over each precipitation region in
Figure 1, then bias-corrected via empirical quantile map-
ping (Cannon et al., 2015). The results were then com-
pared with precipitation derived from the developed
models over those regions. Finally, we derived a climatol-
ogy benchmark from EOBS for each region using a mov-
ing average method. In this case, for each prediction
year, the mean precipitation based on a subset of data
with length L (window size) up to that year (t) is consid-
ered as the predicted precipitation value for that year.
Then this averaging window is shifted forward by 1 year
to calculate the predicted value at year t+1. We evalu-
ated different window sizes ranging from 5 to 30 years to
determine the optimum (i.e., toughest to beat) climatol-
ogy benchmark based on MAE.

2.5 | Uncertainty analysis

Having identified the model with most satisfactory per-
formance for each rainfall region, season, and lead time,
an uncertainty analysis was conducted using different
combinations of input–output data for training–testing
the regression and ANN models. This provides an esti-
mate of uncertainty associated with the sampling period,
that is, due to climate variability. It should be noted that
this does not capture uncertainty among dynamical
model ensembles members (because we only consider
the ensemble mean as in Baker et al., 2018b), nor uncer-
tainties associated with the prediction models them-
selves, that is, from fitted coefficients of the regression

model or the weights of the ANN (see section 4). One
thousand random combinations of input–output data
were selected to train/test the statistical models for each
region-lead-time-season and the resultant forecasted pre-
cipitation time series was used to derive 95% confidence
intervals of predictions (2.5 and 97.5% percentiles), and
to calculate the precipitation with 50% likelihood. Next,
p- and r-factors were used to evaluate model perfor-
mance. The p-factor shows the percentage of observed
data bracketed by the 95% uncertainty range. The closer
to 1, the better the model performance. The r-factor eval-
uates the width of the uncertainty band and is calculated
using the following equations:

r− factor=
dx
σx

, ð3Þ

where σx is the standard deviation of variable X
(observed precipitation) and dx is calculated using follow-
ing equation:

dx=
1
n

Xn

i=1

XU−XLð Þ, ð4Þ

where n is number of observed data, XU and XL are
upper (97.5%) and lower (2.5%) boundaries of uncertainty
band. Again, an r− factor value closer to 1 is desirable
(Abbaspour, 2008).

3 | RESULTS

3.1 | Correlation analysis

The correlation between MSLP and precipitation was
found to be similar between regions, but varies by lead
time and season and also depends on the dynamical
model. Figure 3 shows example correlation surfaces for
observed winter and summer precipitation versus MSLP
with 1-month lead-time from GloSea5 for Regions 3 and
4 as the wettest and driest regions, respectively. Figure 4
shows the same information but for SEAS5. Plus signs
denote the locations of maximum and minimum correla-
tion values for each case based on observed MSLP from
ERA5. The correlation patterns for GloSea5 and SEAS5
are most similar in winter for LT = 1 (Figures 3a,b and
4a,b) but differ in summer (Figures 3c,d and 4c,d). The
MSLP values at maximum and minimum correlation
points on each map were used to calculate the standard-
ized MSLP-based indices for each lead-time and region.
Table S2 shows the correlation ranges obtained for
GloSea5 and SEAS5 derived from standardized MSLP
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indices and precipitation across all regions, lead times, and
seasons. The leading EOF patterns derived from GloSea5
and SEAS5 for the different seasons and 1-month lead-
time are shown in Figures S4–S7, respectively.

Correlation analysis between standardized MSLP
indices/EOFs and observed precipitation over each sea-
son, lead-time, region, and MSLP product was performed
to assess how well those potential predictors are related
to observed precipitation. The results are shown in
Figure 5. For all regions in winter, MSLPGloSea5 and EOF3
from GloSea5 have significant (p = .05) positive and neg-
ative correlations with winter precipitation, respectively
and are considered as potential predictors for regression
models for 1-month lead-time. For the 2-month lead-time
in winter, the strongest correlations between observed
precipitation in each region are for EOF3 from SEAS5
(r<−0.39 for all regions) and for EOF2 from GloSea5
(r> 0.33), respectively. For 3-month lead-time in winter,
EOF1 (r<−0.42) and EOF3 (r<−0.39) from SEAS5 show
significant negative correlations and are, therefore, candi-
dates for precipitation prediction over all regions,
together with EOF2 from GloSea5 (r> 0.30). For LT4, the
strongest positive and negative significant correlations
are evident for EOF3 from GloSea5 and EOF2 from
SEAS5, respectively.

Summer correlations show greater variation by lead
time and between regions (Figure 5b). For some lead-
times, multiple highly correlated indices which could be
a promising predictor for most regions are evident but at
other lead-times few predictors with significant correla-
tion with precipitation are found. For 1-month lead-time,
EOF1 from GloSea5 (r < −0.18), MSLPGloSea5 (r<−0.23)
and MSLPSEAS5 (r<−0.23) show significant negative cor-
relations and are potential predictors for statistical
models in all regions. For the 2-month lead-time, EOF3
from GloSea5 has the strongest negative correlation with
summer precipitation over all regions (r>−0.33), while
EOF3 from SEAS5 showed the strongest significant posi-
tive correlations (r> 0.22) among all signals. For the
3-month lead-time, again EOF3 from GloSea5 (r<−0.43)
and MSLPGloSea5 and MSLPSEAS5 can be used as a poten-
tial predictor for all regions. Finally, for the 4-month
lead-time, EOF3 from GloSea5 for all regions (r<−0.34)
and MSLPGloSea5 and MSLPSEAS5 may be useful candi-
dates for statistical models to predict summer precipita-
tion, returning statistically significant correlations at 5%
significance level.

Previous research (e.g., Moore et al., 2013; Toši�c
et al., 2014), found that EOF1 is associated with the NAO
in both winter and summer, whereas EOF2 represents

FIGURE 3 Correlation surfaces for winter (DJF) MSLP with 1-month lead-time and winter precipitation (a, b) and summer (JJA) MSLP

with 1-month lead-time and summer precipitation (c, d) based on GloSea5 for the period 1994–2016 for Regions 3 and 4. Crosses show the

location of maximum and minimum correlation values in each case calculated using the ERA5 MSLP dataset. Green squares show the

location of max/min correlation between models and observations (GloSea5 MSLP v E-OBS precipitation) [Colour figure can be viewed at

wileyonlinelibrary.com]
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the East Atlantic (EA) pattern which is more prominent
in winter, comprising a north–south dipole of anomalies.
The EA pattern resembles the NAO, but with pressure
anomaly centres displaced southeastward and thus is
sometimes interpreted as a “southward shifted” NAO
(Barnston and Livezey, 1987). Some EOFs derived from
the MSLP hindcasts of GloSea5 and SEAS5 do not show
physical resemblance to associated climate signals, that
is, NAO or EA. It has previously been observed that when
different MSLP datasets are used, and due to the con-
straining (orthogonal) nature of the EOF analysis, pat-
terns may vary markedly between models (Walz
et al., 2018). Moreover, in similar studies in which EOFs
are connected to large climate signals, long-term sea level
pressure data have been used (e.g., MSLP data from 1925
to 1977 (Trenberth and Paolino Jr, 1981); 1900–2010
(Parker et al., 2019)). We used MSLP hindcast from 1994
to 2016 which might lead to different patterns or dis-
placement of centres of action. Also using the ensemble
mean can lead to differences as the observed EOFs con-
tain unpredictable as well as predictable components.
This might be another reason for absence of physically
interpretable EOFs in some cases.

3.2 | Forecast performance

To assess the added value of using EOFs in our analyses,
two sets of potential predictors are considered when

developing empirical models. First, only MSLP-based
indices are used as input to the models. Second, we used
all potential predictors including MSLP-based and EOFs
from GloSea5 and SEAS5 (Figures S8 and S9). An exhaus-
tive search method was employed to identify the best
combination of predictors for each region and lead-time
based on all predictors with significant correlation with
precipitation. Evidently, utilizing EOFs alongside MSLP-
based indices does improve forecast skill in most regions
and lead-times (Figure S8). Consequently, we retain all
potential predictors. Table 1 summarizes the selected pre-
dictors for each model (i.e., by region, season, and lead-
time). EOFs from SEAS5 were selected as predictors in
data-driven models for most regions, lead-times, and sea-
sons. The optimum architecture identified for each ANN
is presented in Table S3. A sensitivity analysis of the
length of moving average window for the climatology
benchmark (Figure S10) determined that a 30-year win-
dow minimizes MAE in both summer and winter across
all regions and was thus employed.

Hindcasts for winter and summer precipitation with
1-month lead-time are presented in Figures 6 and 7.
Overall, for both seasons, regression and ANN hindcasts
outperform the persistence, climatology, and bias-
corrected dynamical model output for all regions. More-
over, at the 1-month lead-time, the ANN and MLR show
some skill at predicting extreme seasons. For example,
the dry summer of 1995 and wettest winter on record
2015/2016 are captured well by our hybrid models.

FIGURE 4 As in Figure 3 but for MSLP from SEAS5 [Colour figure can be viewed at wileyonlinelibrary.com]
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Scaife et al. (2017) show that the intensified cyclonic flow
over the Atlantic in winter 2015/2016 were well predicted
by the GloSea5 system. However, the extremeness of the
wet 2013/2014 winter and sequence of exceptionally wet
summers in 2007–2009 are underestimated (Matthews

et al., 2014; 2016; Noone et al., 2016). Knight et al. (2017)
assert that the tropics played a significant role in the
development of the unusual extratropical circulation that
led to widespread high precipitation over the UK in win-
ter 2013–2014.

FIGURE 5 Correlations between dynamical model MSLP EOF indices and precipitation by lead time (LT) and region in (a) winter and

(b) summer [Colour figure can be viewed at wileyonlinelibrary.com]

5722 GOLIAN ET AL.

http://wileyonlinelibrary.com


Performance criteria (i.e., CC and MAE) derived from
the different hindcasts across seasons, lead-times, and
regions are shown in Figure 8. For MAE, both the ANN
and regression models have the best performance
(Figure 8) in winter for all lead-times compared with other
benchmark methods; the ANN outperforms regression at
most lead-times over most regions except LT1 in winter.
In this case, the average MAE for all regions is 88 mm for
the ANN model, compared with MAE of 85 mm for the
MLR model. Except for SEAS5 precipitation in winter for
LT3, climatology is the next best performing alterative to
the ANN/MLR models. MAE results again show that the
persistence method followed by SEAS5 yield the worst per-
formance in winter at lead-times 1 and 4 and GloSea5 for
most regions at lead-times 2 and 3. In summer, the persis-
tence method followed by SEAS5 has the worst perfor-
mance in most cases, except at lead-time 2 where SEAS5
performs worse than the persistence method (Figure 8). It
can also be seen that all hindcasts have slightly better per-
formance for Region 4 (driest region) and the weakest per-
formance over Region 3 (wettest region).

Based on the correlation coefficient, again ANN and
MLR have most skilful hindcasts for all lead-times,
regions, and seasons with average correlation values of
0.59 and 0.58 for the ANN and 0.50 and 0.56 for MLR in
winter and summer, respectively (Figures 8 and S11).
The ANN has superior performance in both winter and
summer except for LT1 in winter and LT4 in summer; for
LT1 and LT2 in summer the ANN and MLR models have
very similar performance. In winter, bias-corrected pre-
cipitation from SEAS5 has higher correlation with obser-
vations compared to the equivalent from GloSea5 for LT1
and LT3. At LT4, precipitation from GloSea5 performs
slightly better over Regions 1 and 2 and Ireland. In sum-
mer, the persistence method has higher correlation than
GloSea5 and SEAS5 precipitation for LT2.

In summary, our new dynamical–statistical methods
perform satisfactorily in prediction of precipitation up to
4 months ahead, surpassing all available benchmarks in
both winter and summer. The ANN performs better than
MLR in most regions in summer especially for LT1 and
LT3, and in winter for LT2, LT3 and LT4. However, the
MLR marginally outperforms ANN in most regions at
LT1 in winter and LT4 in summer (Figure S11). The skill
of bias-corrected precipitation forecasts from SEAS5 and
GloSea5 are generally not as good as climatology in win-
ter and only marginally better than persistence in sum-
mer for some lead-times/regions. For example, the
correlations between bias-corrected SEAS5 and GloSea5
and observed precipitation are −0.001 and 0.06 in winter,
and 0.06 and 0.03 in summer, respectively.

To test whether the choice of predictors influences
skill over different regions, we generalized the predictorsT
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selected for the Island of Ireland to other regions, that is,
used identical predictors for all regions. The results are
shown in Figure S12 in terms of the correlation

coefficient. Using fixed predictors for all regions margin-
ally increases skill in some cases (e.g., ANN in LT1 and
ANN and MLR methods in LT4), makes no difference in

FIGURE 6 Winter precipitation hindcasted for each region for LT1. Results are shown for EOBS observations (black line), the MLR

(green), the ANN (blue), persistence (grey dashed), bias corrected GloSea5 (orange), SEAS5 (red) and climatology (grey) precipitation

[Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 As in Figure 6 but for summer [Colour figure can be viewed at wileyonlinelibrary.com]
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others (e.g., MLR at LT2 and ANN and MLR methods at
LT3) or, in a few cases, decreases the correlation coeffi-
cient (e.g., MLR at LT1 over Regions 2, 3, and 4). Based
on these results there is no obvious evidence to suggest
any systemic overfitting.

3.3 | Uncertainty analysis

Given the consistently strong performance of the ANN
method across regions, lead-times, and seasons, uncer-
tainty due to sampling of calibration period was evalu-
ated by applying different combinations of train-test
periods as input to the ANN. For illustrative purposes,
Figures 9 and 10 show 95% confidence intervals (grey
area), with the median modelled precipitation (red
dashed-line) and observed precipitation (black line) for
different regions and seasons at LT1. It is noteworthy that

when varying the calibration period, hindcasts are more
successful at capturing extreme seasons. Moreover, the
wettest winters (including 2013/14 and 2015/16) are bet-
ter captured by hindcasts at LT1 and LT3 than other
lead-times. Table 2 shows the p− factor and r− factor
values for each region and lead-time. Sampling uncer-
tainty associated with ANN model forecasts is greater in
summer for all lead-times (i.e., there are larger r-factors
in summer compared to winter). However, the uncer-
tainty band brackets more observed precipitation in
summer than winter (as shown by the p-factors) for most
lead-times and regions. Although all regions have less
uncertainty in winter than summer, more of the observa-
tions lie within the uncertainty band of the LT1 forecast
(i.e., greater p-factor in winter compared to summer) in
Regions 2 and 3 and Ireland. For LT2, the uncertainty in
winter is less than summer while a higher proportion of
the observations are bracketed by the 95% uncertainty

FIGURE 8 Performance of the methods as evaluated using MAE, and correlation coefficient for different lead-times (LT) and regions in

winter (left column) and summer (right column) [Colour figure can be viewed at wileyonlinelibrary.com]
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band in summer compared to winter, except in Region
3. Finally, for LT4, sampling uncertainty associated with
summer is greater than winter, while more data are brack-
eted by the uncertainty band in summer in all regions.

4 | DISCUSSION AND
CONCLUSION

We developed hybrid dynamical–statistical approaches to
seasonal forecasting of winter and summer precipitation
for Ireland over lead times of 1–4 months using hindcasts
of MSLP from two dynamical forecasting systems (SEAS5
and GloSea5). We used MLR and ANNs to relate MSLP
to observed precipitation over four distinct rainfall
regions as well as averaged across the Island of Ireland as
a whole. MSLP hindcasts from SEAS5 and GloSEA5 were
postprocessed in two ways before being used as potential
predictors in our statistical modelling approach. First, we
identified the locations of grids with most positive and
negative correlations based on ERA5 MSLP (over the
period 1993/1994–2016) when correlated with observed
(EOBS) precipitation for each region and season. Next,
standardized indices of MSLP anomalies were derived
from hindcasts of MSLP from dynamical models using
the same fixed max/min points of correlation specified
for each precipitation region, season, and lead-time. Sec-
ond, we deployed REOF analysis to hindcasts of MSLP

from SEAS5 and GloSea5 to identify the three leading
components for each forecast horizon. We evaluated the
performance of this dynamical–statistical approach
against bias-corrected precipitation forecasts from SEAS5
and GloSea5, all benchmarked against skill from persis-
tence and climatology alone.

As with Baker et al. (2018b), we find that our
dynamical–statistical approach improves forecast skill
relative to bias-corrected, dynamical forecast system out-
put. Our ANN and MLR approaches provide greatest skill
for all lead times and regions in both summer and winter;
they also outperform precipitation from dynamical
models, climatology, and persistence. Consistent with
Nobakht et al. (2021), precipitation forecasts from SEAS5
performed marginally better than GloSea5, except for
LT4 in winter over Regions 1 and 2. Although we used a
relatively simple bias correction method, future research
might achieve greater accuracy via more sophisticated
post-processing methods, such as quantile delta mapping
(Cannon et al., 2015; Mendez et al., 2020).

Among the potential predictors available, those based
on standardized MSLP showed strongest correlations
(spanning 0.35–0.63) with precipitation across both sea-
sons, all lead times and regions. This highlights that indi-
ces based on MSLP provide a reliable basis for forecasting
precipitation over the Island of Ireland, especially in win-
ter. MLSP might also enhance seasonal forecast skill for
other climate variables and regions where there is

FIGURE 9 ANN model results for different regions with LT = 1 month in winter, showing the 95% uncertainty band (grey shaded

area), the median forecast (red dashed line) and observed precipitation (black line) [Colour figure can be viewed at wileyonlinelibrary.com]
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covariance with precipitation, such as for atmospheric
humidity, air temperature, sunshine hours and wind
speeds (e.g., Hillier et al., 2020).

Interestingly, some of the strongest correlations were
found between summer precipitation and EOF3 from
GloSea5 data (EOF3_GloSea5), with this index selected as
a predictor for many regions/lead-times. This EOF is usu-
ally interpreted as the East Atlantic (EA) pattern (Hall
and Hanna, 2018), and has also been used in some
weather generators as a predictor variable (ATKINS,
2020). Hence, although the NAO has long been recog-
nized as a major driver of climate variability in

Northwest Europe, we note that an apparent EA pattern
emerges as a key signal of summertime predictability in
the dynamical models. EOF3 from SEAS5 also showed
strong negative correlation with precipitation in most
regions in winter. However, while for some lead-times
the EOFs from GloSea5 and SEAS5 are physically inter-
pretable (e.g., EOF1 from GloSea5 in winter and EOF1
from SEAS5 in summer are both similar to NAO),
others are not physically interpretable. For example sum-
mer EOF3 from GloSea5 is somewhat similar to Scandi-
navian pattern (SCA) but the negative centre has a more
northeasterly position. Undoubtedly, the physical

FIGURE 10 As in Figure 9, but for summer [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Summary of r- and

p-factors associated with the

uncertainty in application of the ANN

model for each lead time (LT), region

and season

Region

Winter Summer

LT1 LT2 LT3 LT4 LT1 LT2 LT3 LT4

r-factor Region1 1.05 1.21 1.48 1.13 1.41 1.94 1.96 1.92

Region2 0.96 0.87 1.04 0.99 1.67 2.51 1.98 1.64

Region3 1.07 1.43 1.37 0.95 1.97 1.71 1.82 2.14

Region4 1.07 0.82 1.19 0.76 2.65 1.85 2.05 1.63

Ireland 1.18 0.91 1.33 0.93 1.49 2.54 2.03 1.92

p-factor Region1 0.59 0.88 0.99 0.75 0.79 0.92 1 1

Region2 0.99 0.51 0.99 0.71 0.83 1 1 1

Region3 0.98 0.99 0.99 0.76 0.96 0.88 0.96 1

Region4 0.96 0.38 0.96 0.58 1 0.96 1 1

Ireland 0.92 0.55 0.96 0.77 0.75 1 1 1
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interpretability is hampered by the brevity of available
hindcast MSLP data. Moreover, the MSLP data used for
EOF analysis are raw hindcasts from dynamical models,
not observations. We also used the ensemble mean rather
than ensemble members which could further explain the
unfamiliar EOF patterns.

The dynamical–statistical approach developed here
leverages two forecasting systems to develop prototype
predictions of winter and summer precipitation with up
to 4 months lead for regions across the Island of Ireland.
Our ANN and regression models show the most consis-
tently better results compared with bias corrected dynam-
ical outputs, climatology, and persistence methods. The
possibility of model overfitting was reduced by applying
leave-one-out cross validation, use of adjusted R-square
when evaluating different sets of predictors, as well as
use of a smaller set of predictors in all models
(Figure S12). Although our dynamical–statistical models
performed well in both winter and summer, the ANN
provided marginally higher skill in winter, and the MLR
in summer. Whereas the ANN and MLR models revealed
variability in skill for the wettest rainfall regions in win-
ter and the driest in summer, the MLR model returned
most skilful and consistent results in summer for LT1,
LT2, and LT4 with average correlation scores of 0.39,
0.59, and 0.64, respectively. However, the ANN model
achieved more skilful and consistent results in winter
across most regions and lead times, with an average cor-
relation coefficient of 0.61 over all regions for LT1. In
comparison, Baker et al. (2018b) obtained correlations up
to 0.70 between regression-based hindcasts and observed
precipitation in winter for the UK. The encouraging
performance of these models, particularly in summer,
is noteworthy and paves the way to improved drought
forecasting in summer and winter. Previous studies in
the region have primarily focused on winter predictions
(e.g., Scaife et al., 2014; Baker et al., 2018b; Stringer
et al., 2020) or the evaluation of predictors that could
be used for summer precipitation/temperature forecasts
but without evaluating predictive skill in summer
(e.g., Fowler and Kilsby, 2002). Also as Knight et al. (2017)
reported a significant role of tropical circulation in high
precipitation totals over the UK, for example, in winter
2013–2014, in future studies the domain to explore MSLP
might be expanded to include tropical regions. Finally, as
the availability of hindcasts increases future work may
also further assess model performances using out of sam-
ple tests for more recent years.

Our findings demonstrate the feasibility of skilful sea-
sonal forecasts of winter and summer precipitation in
Ireland. Such forecasts could be of value to many sectors,
not least the water industry. However, before evaluating
their operational utility, future work should extend the

analysis of uncertainty presented here. For example,
individual ensemble members rather than just the
ensemble mean could be used to generate probabilistic
seasonal forecasts. The uncertainty analysis framework
used here evaluated uncertainties due to climate vari-
ability but not from the dynamical model ensembles. In
addition, uncertainties from the statistical models them-
selves (i.e., the uncertainty in fitted coefficients of
regression model and weights of the ANN) were not
included. Moreover, predictor–predictand relationships
were treated as stationary in this research; for opera-
tional purposes the ANN/regression models should be
re-calibrated using a moving window to capture any
evolution in the relationships. There is also the possibil-
ity of assessing other candidate predictors and domains
in future work. For instance, bias-corrected precipitation
forecasts from dynamical systems could be used as
inputs to data-driven models alongside the MSLP-based
indices employed here.

AUTHOR CONTRIBUTIONS
Saeed Golian: Conceptualization; formal analysis; meth-
odology; software; supervision; validation; visualization;
writing – original draft; writing – review and editing.
Conor Murphy: Conceptualization; methodology; pro-
ject administration; supervision; validation; writing –
review and editing. Robert L. Wilby: Methodology; vali-
dation; writing – review and editing. Tom Matthews:
Methodology; validation; writing – review and editing.
Se�an Donegan: Data curation; writing – review and
editing. D�aire Foran Quinn: Data curation; resources.
Shaun Harrigan: Methodology; validation; writing –
review and editing.

ACKNOWLEDGEMENTS
This research was funded through a Science Foundation
Ireland Career Development Award to CM (Grant/Award
No. SFI/17/CDA/4783). Open access funding provided by
IReL. [Correction added on 20 May 2022, after first online
publication: IReL funding statement has been added.]

ORCID
Saeed Golian https://orcid.org/0000-0001-5451-3977
Conor Murphy https://orcid.org/0000-0003-4891-2650
Se�an Donegan https://orcid.org/0000-0002-5957-2201
Shaun Harrigan https://orcid.org/0000-0002-0992-3667

REFERENCES
Abbaspour, K.C. (2008) SWAT-CUP: SWAT calibration and uncertainty

programs—a user manual (pp. 16–70). Dübendorf, Switzerland:
Eawag.

Agrawala, S., Broad, K. and Guston, D.H. (2001) Integrating climate
forecasts and societal decision making: challenges to an

5728 GOLIAN ET AL.

https://orcid.org/0000-0001-5451-3977
https://orcid.org/0000-0001-5451-3977
https://orcid.org/0000-0003-4891-2650
https://orcid.org/0000-0003-4891-2650
https://orcid.org/0000-0002-5957-2201
https://orcid.org/0000-0002-5957-2201
https://orcid.org/0000-0002-0992-3667
https://orcid.org/0000-0002-0992-3667


emergent boundary organization. Science, Technology, &
Human Values, 26(4), 454–477.

Al Samouly, A., Luong, C.N., Li, Z., Smith, S., Baetz, B. and
Ghaith, M. (2018) Performance of multi-model ensembles for
the simulation of temperature variability over Ontario, Canada.
Environmental Earth Sciences, 77(13), 1–12.

ATKINS. (2020) Regional climate data tools. Final report. Available
at: https://www.wrse.org.uk/media/ok1mtsoq/wrse_file_1338_
regional-climate-data-tools.pdf.

Baker, L.H., Shaffrey, L.C. and Scaife, A.A. (2018b) Improved sea-
sonal prediction of UK regional precipitation using atmospheric
circulation. International Journal of Climatology, 38, e437–e453.

Baker, L.H., Shaffrey, L.C., Sutton, R.T., Weisheimer, A. and
Scaife, A.A. (2018a) An intercomparison of skill and
overconfidence/underconfidence of the wintertime North
Atlantic Oscillation in multimodel seasonal forecasts. Geophysi-
cal Research Letters, 45(15), 7808–7817.

Barnston, A.G. and Livezey, R.E. (1987) Classification, seasonality
and persistence of low-frequency atmospheric circulation pat-
terns. Monthly Weather Review, 115(6), 1083–1126.

Bell, V.A., Davies, H.N., Kay, A.L., Brookshaw, A. and Scaife, A.A.
(2017) A national-scale seasonal hydrological forecast system:
development and evaluation over Britain. Hydrology and Earth
System Sciences, 21(9), 4681–4691.

Cannon, A.J., Sobie, S.R. and Murdock, T.Q. (2015) Bias correction
of GCM precipitation by quantile mapping: How well do
methods preserve changes in quantiles and extremes? Journal
of Climate, 28(17), 6938–6959.

Ceglar, A. and Toreti, A. (2021) Seasonal climate forecast can
inform the European agricultural sector well in advance of
harvesting. Npj Climate and Atmospheric Science, 4(1), 1–8.

Clark, R.T., Bett, P.E., Thornton, H.E. and Scaife, A.A. (2017) Skil-
ful seasonal predictions for the European energy industry. Envi-
ronmental Research Letters, 12(2), 024002.

Comas-Bru, L. and McDermott, F. (2014) Impacts of the EA and
SCA patterns on the European twentieth century NAO–winter
climate relationship. Quarterly Journal of the Royal Meteorologi-
cal Society, 140(679), 354–363.

Cornes, R.C., van der Schrier, G., van den Besselaar, E.J. and
Jones, P.D. (2018) An ensemble version of the E-OBS tempera-
ture and precipitation data sets. Journal of Geophysical
Research: Atmospheres, 123(17), 9391–9409.

Crhov�a, L. and Holtanov�a, E. (2018) Simulated relationship
between air temperature and precipitation over Europe: sensi-
tivity to the choice of RCM and GCM. International Journal of
Climatology, 38(3), 1595–1604.

da Paz, A.R., Uvo, C., Bravo, J., Collischonn, W. and da Rocha, H.
R. (2011) Seasonal precipitation forecast based on artificial neu-
ral networks. In: Computational Methods for Agricultural
Research: Advances and Applications. IGI Global, pp. 326–354.

DelSole, T. and Shukla, J. (2009) Artificial skill due to predictor
screening. Journal of Climate, 22(2), 331–345.

Devi, U., Shekhar, M.S., Singh, G.P. and Dash, S.K. (2020) Statisti-
cal method of forecasting of seasonal precipitation over the
Northwest Himalayas: North Atlantic Oscillation as precursor.
Pure and Applied Geophysics, 177, 1–11.

Ding, T. and Ke, Z. (2013) A comparison of statistical approaches
for seasonal precipitation prediction in Pakistan. Weather and
Forecasting, 28(5), 1116–1132.

Dixon, S.G. and Wilby, R.L. (2016) Forecasting reservoir inflows
using remotely sensed precipitation estimates: a pilot study for
the River Naryn, Kyrgyzstan. Hydrological Sciences Journal,
61(1), 107–122.

Doblas-Reyes, F.J., Hagedorn, R. and Palmer, T.N. (2006) Develop-
ments in dynamical seasonal forecasting relevant to agricul-
tural management. Climate Research, 33(1), 19–26.

Donegan, S., Murphy, C., Harrigan, S., Broderick, C., Foran
Quinn, D., Golian, S., Knight, J., Matthews, T.,
Prudhomme, C., Scaife, A.A. and Stringer, N. (2021) Condition-
ing ensemble streamflow prediction with the North Atlantic
Oscillation improves skill at longer lead times. Hydrology and
Earth System Sciences, 25(7), 4159–4183.

Dunstone, N., Smith, D., Scaife, A., Hermanson, L., Fereday, D.,
O'Reilly, C., Stirling, A., Eade, R., Gordon, M., MacLachlan, C.
and Woollings, T. (2018) Skilful seasonal predictions of summer
European rainfall. Geophysical Research Letters, 45(7), 3246–
3254.

ECMWF. (2019) Seasonal forecasts and the copernicus climate
change service. Available at: https://confluence.ecmwf.int/
display/CKB/Seasonal+forecasts+and+the+Copernicus+Climate
+Change+Service.

Emerton, R., Zsoter, E., Arnal, L., Cloke, H.L., Muraro, D.,
Prudhomme, C., Stephens, E.M., Salamon, P. and
Pappenberger, F. (2018) Developing a global operational sea-
sonal hydro-meteorological forecasting system: GloFAS-
Seasonal v1. 0. Geoscientific Model Development, 11(8), 3327–
3346.

Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S.
and Hurrell, J.W. (2009) The summer North Atlantic Oscilla-
tion: past, present, and future. Journal of Climate, 22(5), 1082–
1103.

Foran Quinn, D., Murphy, C., Wilby, R.L., Matthews, T., Broderick, C.,
Golian, S., Donegan, S. & Harrigan, S. (2021) Benchmarking sea-
sonal forecasting skill using river flow persistence in Irish catch-
ments. Hydrological Sciences Journal, 66(4), 672–688.

Fowler, H.J. and Kilsby, C.G. (2002) Precipitation and the North
Atlantic Oscillation: a study of climatic variability in northern
England. International Journal of Climatology, 22(7), 843–866.

Gubler, S., Sedlmeier, K., Bhend, J., Avalos, G., Coelho, C.A.S.,
Escajadillo, Y., Jacques-Coper, M., Martinez, R., Schwierz, C.,
De Skansi, M. and Spirig, C. (2020) Assessment of ECMWF
SEAS5 seasonal forecast performance over South America.
Weather and Forecasting, 35(2), 561–584.

Hall, R.J. and Hanna, E. (2018) North Atlantic circulation indices:
links with summer and winter UK temperature and precipita-
tion and implications for seasonal forecasting. International
Journal of Climatology, 38, e660–e677.

Hall, R.J., Scaife, A.A., Hanna, E., Jones, J.M. and Erdélyi, R. (2017)
Simple statistical probabilistic forecasts of the winter NAO.
Weather and Forecasting, 32(4), 1585–1601.

Hameed, S. and Riaz, S.M. (2020) Impact of the Icelandic Low on
British climate in winter. International Journal of Climatology.,
40, 6337–6345.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor�anyi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R.,
Schepers, D. and Simmons, A. (2020) The ERA5 global
reanalysis. Quarterly Journal of the Royal Meteorological Society,
146(730), 1999–2049.

GOLIAN ET AL. 5729

https://www.wrse.org.uk/media/ok1mtsoq/wrse_file_1338_regional-climate-data-tools.pdf
https://www.wrse.org.uk/media/ok1mtsoq/wrse_file_1338_regional-climate-data-tools.pdf
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService
https://confluence.ecmwf.int/display/CKB/Seasonal%2Bforecasts%2Band%2Bthe%2BCopernicus%2BClimate%2BChange%2BService


Hewitt, C., Buontempo, C. and Newton, P. (2013) Using climate
predictions to better serve society's needs. Eos, Transactions
American Geophysical Union, 94(11), 105–107.

Hillier, J.K., Matthews, T., Wilby, R.L. and Murphy, C. (2020)
Multi-hazard dependencies can increase or decrease risk.
Nature Climate Change, 10(7), 595–598.

Hurrell, J.W. and Deser, C. (2010) North Atlantic climate variabil-
ity: the role of the North Atlantic Oscillation. Journal of Marine
Systems, 79(3–4), 231–244.

Johnson, S.J., Stockdale, T.N., Ferranti, L., Balmaseda, M.A.,
Molteni, F., Magnusson, L., Tietsche, S., Decremer, D.,
Weisheimer, A., Balsamo, G. and Keeley, S.P. (2019) SEAS5:
the new ECMWF seasonal forecast system. Geoscientific Model
Development, 12(3), 1087–1117.

Knight, J.R., Maidens, A., Watson, P.A., Andrews, M., Belcher, S.,
Brunet, G., Fereday, D., Folland, C.K., Scaife, A.A. and
Slingo, J. (2017) Global meteorological influences on the record
UK rainfall of winter 2013–2014. Environmental Research Let-
ters, 12(7), 074001.

Lian, T. and Chen, D. (2012) An evaluation of rotated EOF analysis
and its application to tropical Pacific SST variability. Journal of
Climate, 25(15), 5361–5373.

Lin, F.J. (2008) Solving multicollinearity in the process of fitting
regression model using the nested estimate procedure. Quality &
Quantity, 42(3), 417–426.

Liu, L., Ning, L., Liu, J., Yan, M. and Sun, W. (2019) Prediction of
summer extreme precipitation over the middle and lower
reaches of the Yangtze River basin. International Journal of Cli-
matology, 39(1), 375–383.

Lled�o, L., Cionni, I., Torralba, V., Bretonnière, P.A. and Sams�o, M.
(2020) Seasonal prediction of Euro-Atlantic teleconnections from
multiple systems. Environmental Research Letters, 15(7), 074009.

Lloyd, G., Choularton, T.W., Bower, K.N., Gallagher, M.W.,
Crosier, J., O'shea, S., Abel, S.J., Fox, S., Cotton, R. and
Boutle, I.A. (2018) In situ measurements of cloud microphysical
and aerosol properties during the break-up of stratocumulus
cloud layers in cold air outbreaks over the North Atlantic.
Atmospheric Chemistry and Physics, 18(23), 17191–17206.

MacLachlan, C., Arribas, A., Peterson, K.A., Maidens, A.,
Fereday, D., Scaife, A.A., Gordon, M., Vellinga, M.,
Williams, A., Comer, R.E. and Camp, J. (2015) Global Seasonal
Forecast System version 5 (GloSea5): a high-resolution seasonal
forecast system. Quarterly Journal of the Royal Meteorological
Society, 141(689), 1072–1084.

Maidens, A., Scaife, A.A., Arribas, A., Knight, J., MacLachlan, C.,
Peterson, D. and Gordon, M. (2013) GloSea5: The new met
office high resolution seasonal prediction system. EGU General
Assembly Conference Abstracts, 2013, EGU2013-7649.

Manzanas, R., Gutiérrez, J.M., Bhend, J., Hemri, S., Doblas-
Reyes, F.J., Torralba, V., Penabad, E. and Brookshaw, A. (2019)
Bias adjustment and ensemble recalibration methods for sea-
sonal forecasting: a comprehensive intercomparison using the
C3S dataset. Climate Dynamics, 53(3), 1287–1305.

Mariotti, A., Ruti, P.M. and Rixen, M. (2018) Progress in subseasonal
to seasonal prediction through a joint weather and climate com-
munity effort. Npj Climate and Atmospheric Science, 1(1), 1–4.

Matthews, T., Mullan, D., Wilby, R.L., Broderick, C. and Murphy, C.
(2016) Past and future climate change in the context of memora-
ble seasonal extremes. Climate Risk Management, 11, 37–52.

Matthews, T., Murphy, C., Wilby, R.L. and Harrigan, S. (2014)
Stormiest winter on record for Ireland and UK. Nature Climate
Change, 4(9), 738–740.

Mekanik, F., Imteaz, M.A. and Talei, A. (2016) Seasonal rainfall
forecasting by adaptive network-based fuzzy inference system
(ANFIS) using large scale climate signals. Climate Dynamics,
46(9–10), 3097–3111.

Mendez, M., Maathuis, B., Hein-Griggs, D. and Alvarado-
Gamboa, L.F. (2020) Performance evaluation of bias correction
methods for climate change monthly precipitation projections
over Costa Rica. Water, 12(2), 482.

Moore, G.W.K., Renfrew, I.A. and Pickart, R.S. (2013) Multidecadal
mobility of the North Atlantic Oscillation. Journal of Climate,
26(8), 2453–2466.

Murphy, C., Wilby, R.L., Matthews, T.K., Thorne, P., Broderick, C.,
Fealy, R., Hall, J., Harrigan, S., Jones, P., McCarthy, G. and
MacDonald, N. (2020) Multi-century trends to wetter winters
and drier summers in the England and Wales precipitation
series explained by observational and sampling bias in early
records. International Journal of Climatology, 40(1), 610–619.

Murphy, S.J. and Washington, R. (2001) United Kingdom and Ireland
precipitation variability and the North Atlantic sea-level pressure
field. International Journal of Climatology, 21(8), 939–959.

Navarro, A., García-Ortega, E., Merino, A., S�anchez, J.L.,
Kummerow, C. and Tapiador, F.J. (2019) Assessment of IMERG
precipitation estimates over Europe. Remote Sensing, 11(21), 2470.

Nobakht, M., Saghafian, B. and Aminyavari, S. (2021) Skill assess-
ment of Copernicus climate change service seasonal ensemble
precipitation forecasts over Iran. Advances in Atmospheric Sci-
ences, 38(3), 504–521.

Noone, S., Murphy, C., Coll, J., Matthews, T., Mullan, D., Wilby, R.L.
and Walsh, S. (2016) Homogenization and analysis of an
expanded long-term monthly rainfall network for the Island of
Ireland (1850–2010). International Journal of Climatology, 36(8),
2837–2853.

Nourani, V., Molajou, A., Uzelaltinbulat, S. and Sadikoglu, F. (2019)
Emotional artificial neural networks (EANNs) for multi-step
ahead prediction of monthly precipitation; case study: Northern
Cyprus. Theoretical and Applied Climatology, 138(3), 1419–1434.

Parker, T., Woollings, T., Weisheimer, A., O'Reilly, C., Baker, L.
and Shaffrey, L. (2019) Seasonal predictability of the winter
North Atlantic Oscillation from a jet stream perspective. Geo-
physical Research Letters, 46(16), 10159–10167.

Ranhao, S., Baiping, Z. and Jing, T. (2008) A multivariate regression
model for predicting precipitation in the Daqing Mountains.
Mountain Research and Development, 28(3), 318–325.

Rodrigues, L.R.L., Doblas-Reyes, F.J. and dos Santos Coelho, C.A.
(2014) Multi-model calibration and combination of tropical sea-
sonal sea surface temperature forecasts. Climate Dynamics,
42(3–4), 597–616.

Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.T.,
Dunstone, N., Eade, R., Fereday, D., Folland, C.K., Gordon, M.
and Hermanson, L. (2014) Skillful long-range prediction of
European and North American winters. Geophysical Research
Letters, 41(7), 2514–2519.

Scaife, A.A., Comer, R., Dunstone, N., Fereday, D., Folland, C.,
Good, E., Gordon, M., Hermanson, L., Ineson, S.,
Karpechko, A. & Knight, J. (2017) Predictability of European
winter 2015/2016. Atmospheric Science Letters, 18(2), 38–44.

5730 GOLIAN ET AL.



Schepen, A., Wang, Q.J. and Robertson, D.E. (2012) Combining the
strengths of statistical and dynamical modeling approaches for
forecasting Australian seasonal rainfall. Journal of Geophysical
Research: Atmospheres, 117(D20), 20107.

Strazzo, S., Collins, D.C., Schepen, A., Wang, Q.J., Becker, E. and
Jia, L. (2019) Application of a hybrid statistical–dynamical sys-
tem to seasonal prediction of North American temperature and
precipitation. Monthly Weather Review, 147(2), 607–625.

Stringer, N., Knight, J. and Thornton, H. (2020) Improving meteo-
rological seasonal forecasts for hydrological modeling in
European winter. Journal of Applied Meteorology and Climatol-
ogy, 59(2), 317–332.

Svensson, C. (2016) Seasonal river flow forecasts for the
United Kingdom using persistence and historical analogues.
Hydrological Sciences Journal, 61(1), 19–35.

Svensson, C., Brookshaw, A., Scaife, A.A., Bell, V.A., Mackay, J.D.,
Jackson, C.R., Hannaford, J., Davies, H.N., Arribas, A. and
Stanley, S. (2015) Long-range forecasts of UK winter hydrology.
Environmental Research Letters, 10(6), 064006.

Thornton, H.E., Scaife, A.A., Hoskins, B.J., Brayshaw, D.J.,
Smith, D.M., Dunstone, N., Stringer, N. and Bett, P.E. (2019)
Skilful seasonal prediction of winter gas demand. Environmen-
tal Research Letters, 14(2), 024009.

Tompkins, A.M., Ortiz De Z�arate, M.I., Saurral, R.I., Vera, C.,
Saulo, C., Merryfield, W.J., Sigmond, M., Lee, W.S., Baehr, J.,
Braun, A. and Butler, A. (2017) The climate-system historical
forecast project: providing open access to seasonal forecast
ensembles from centers around the globe. Bulletin of the Ameri-
can Meteorological Society, 98(11), 2293–2301.

Toši�c, I., Hrnjak, I., Gavrilov, M.B., Unkaševi�c, M., Markovi�c, S.B.
and Luki�c, T. (2014) Annual and seasonal variability of precipi-
tation in Vojvodina, Serbia. Theoretical and applied climatology,
117(1), 331–341.

Trenberth, K.E. and Paolino, D.A., Jr. (1981) Characteristic patterns
of variability of sea level pressure in the Northern Hemisphere.
Monthly Weather Review, 109(6), 1169–1189.

Troccoli, A. (2010) Seasonal climate forecasting. Meteorological
Applications, 17(3), 251–268.

Walz, M.A., Donat, M.G. and Leckebusch, G.C. (2018) Large-scale
drivers and seasonal predictability of extreme wind speeds over
the North Atlantic and Europe. Journal of Geophysical
Research: Atmospheres, 123(20), 11–518.

Wang, L., Ting, M. and Kushner, P.J. (2017) A robust empirical sea-
sonal prediction of winter NAO and surface climate. Scientific
Reports, 7(1), 1–9.

Wang, Q.J., Shao, Y., Song, Y., Schepen, A., Robertson, D.E.,
Ryu, D. and Pappenberger, F. (2019) An evaluation of ECMWF
SEAS5 seasonal climate forecasts for Australia using a new
forecast calibration algorithm. Environmental Modelling & Soft-
ware, 122, 104550.

Wedgbrow, C.S., Wilby, R.L. and Fox, H.R. (2005) Experimental
seasonal forecasts of low summer flows in the River
Thames, UK, using expert systems. Climate Research, 28,
133–141.

Wedgbrow, C.S., Wilby, R.L., Fox, H.R. and O'hare, G. (2002) Pros-
pects for seasonal forecasting of summer drought and low river
flow anomalies in England and Wales. International Journal of
Climatology, 22, 219–236.

West, H., Quinn, N. and Horswell, M. (2019) Regional rainfall
response to the North Atlantic oscillation (NAO) across Great
Britain. Hydrology Research, 50(6), 1549–1563.

Wilby, R.L. (2001) Seasonal forecasting of river flows in the British
Isles using North Atlantic pressure patterns. Water and Envi-
ronment Journal, 15(1), 56–63.

Wilby, R.L., O'hare, G. and Barnsley, N. (1997) The North Atlantic
Oscillation and British Isles climate variability, 1865–1996.
Weather, 52(9), 266–276.

Wilby, R.L., Wedgbrow, C.S. and Fox, H.R. (2004) Seasonal predict-
ability of the summer hydrometeorology of the River Thames,
UK. Journal of Hydrology, 295, 1–16.

Yuan, X., Roundy, J.K., Wood, E.F. and Sheffield, J. (2015) Seasonal
forecasting of global hydrologic extremes: System development
and evaluation over GEWEX basins. Bulletin of the American
Meteorological Society, 96(11), 1895–1912.

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher's website.

How to cite this article: Golian, S., Murphy, C.,
Wilby, R. L., Matthews, T., Donegan, S., Quinn, D.
F., & Harrigan, S. (2022). Dynamical–statistical
seasonal forecasts of winter and summer
precipitation for the Island of Ireland. International
Journal of Climatology, 42(11), 5714–5731. https://
doi.org/10.1002/joc.7557

GOLIAN ET AL. 5731

https://doi.org/10.1002/joc.7557
https://doi.org/10.1002/joc.7557

	Dynamical-statistical seasonal forecasts of winter and summer precipitation for the Island of Ireland
	1  INTRODUCTION
	2  DATA AND METHODS
	2.1  Data
	2.2  Deriving precipitation regions
	2.3  Derivation of MSLP indices
	2.3.1  Standardized MSLP index
	2.3.2  Rotated empirical orthogonal equation indices

	2.4  Empirical models
	2.4.1  Regression models
	2.4.2  Artificial neural network
	2.4.3  Benchmark models

	2.5  Uncertainty analysis

	3  RESULTS
	3.1  Correlation analysis
	3.2  Forecast performance
	3.3  Uncertainty analysis

	4  DISCUSSION AND CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	REFERENCES


