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Abstract

Objective diagnosis and prognosis in major depressive disorder (MDD) remains a

challenge due to the absence of biomarkers based on physiological parameters ormedical

tests. Numerous studies have been conducted to identify functional magnetic resonance

imaging-based biomarkers of depression that either objectively differentiate patients

with depression from healthy subjects, predict personalized treatment outcome, or char-

acterize biological subtypes of depression. While there are some findings of consistent

functional biomarkers, there is still lack of robust data acquisition and analysis method-

ology. According to current findings, primarily, the anterior cingulate cortex, prefrontal

cortex, and default mode network play a crucial role in MDD. Yet, there are also less con-

sistent results and the involvement of other regions or networks remains ambiguous.We

further discuss image acquisition, processing, and analysis limitations that might under-

lie these inconsistencies. Finally, the current review aims to address and discuss possible

remedies and futureopportunities that could improve the search for consistent functional

imaging biomarkers of depression. Novel acquisition techniques, such as multiband and

multiecho imaging, and neural network-based cleaning approaches can enhance the sig-

nal quality in limbic and frontal regions. More comprehensive analyses, such as directed

or dynamic functional features or the identification of biological depression subtypes, can

improve objective diagnosis or treatment outcome prediction and mitigate the hetero-

geneity ofMDD. Overall, these improvements in functionalMRI imaging techniques, pro-

cessing, and analysis could advance the search for biomarkers and ultimately aid patients

withMDD and their treatment course.
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INTRODUCTION

Major depressive disorder (MDD) is a prevalent neuropsychiatric

disorderwith at least one episode occurring in the lifetime of 15%-18%

of the people worldwide.1 Various hypotheses have been proposed

regarding its underlying pathology that involve abnormal levels of
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monoamine, cortisol, inflammatory processes, or structural and/or

functional abnormalities of the brain.1 Many researchers have

attempted to explore the latter hypothesis by identifying brain imaging

biomarkers and biological subtypes (biotypes) of depression. Ulti-

mately, these insights andbiomarkers could contribute to abetter diag-

nosis and an improved prediction of depression treatment outcome.
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To study the functional hypothesis of MDD, one of the most

frequently employed modalities in depression studies is functional

magnetic resonance imaging (fMRI), both in task-based and resting-

state conditions. This technique indirectly measures brain activity and

therefore provides a powerful way of examining the underlying aber-

rant brain mechanisms in psychiatric disorders.2 fMRI detects changes

in blood deoxyhemoglobin concentrations that reflect the oxygen

consumption. The Blood-Oxygen-Level-Dependent (BOLD) signal, an

indirectmeasureof the concentrationof (de)oxygenatedhemoglobin in

blood, changes in active brain regions due to hemodynamic responses

that occur as a consequence of the oxygen consumption.2,3

MDD studies have used fMRI to identify biomarkers for different

purposes, including understanding of affected functioning and con-

nectivity of brain regions or networks and prediction of treatment

response.4 Here, a biomarker is defined as an objectively measurable

image feature that is an indicator of the diagnosis—or reflects or pre-

dicts the treatment course—ofMDDsubjects.5 In order tomake a diag-

nosis of prognosis inMDD,both task-based fMRI (tb-fMRI) and resting-

state fMRI (rs-fMRI)—during which subjects perform dedicated tasks

or do not perform any task and lie still in the scanner, respectively—

have frequently been employed. Even though a small number of consis-

tentMDDbiomarkers has been found,many contradictory findings are

still present in the literature.6

In order to improve the search for functional imaging biomarkers in

depression, this review provides an overview of the most consistent

findings and pinpoints future opportunities in fMRI studies of MDD.

The current limitations and pitfalls that could underlie the discrepant

findings are also briefly discussed. The “FUTURE OPPORTUNITIES”

section focusses on promising developments and future directions in

image acquisition, processing, and analysis approaches. The principal

aim of the review is to address and discuss current developments

and future directions that could improve the search for consistent

functional imaging biomarkers in MDD. We will address the follow-

ing research questions: what are future opportunities for novel fMRI

acquisition, processing, and analysismethods to improve the search for

imaging biomarkers ofMDD?

FINDINGS AND DEVELOPMENTS

In task-based fMRI depression studies, subjects perform tasks requir-

ing activation of brain areas or circuits that are presumably affected in

MDD, which mostly assess the affective and cognitive domain. Activ-

ity in limbic (anterior cingulate cortex [ACC] and amygdala) and frontal

cortical areas (dorsolateral prefrontal cortex [dlPFC]) has been shown

to be altered in depression during viewing or processing of emo-

tional stimuli—mainly facial expressions.7–10 There is some consensus

that activity of limbic regions is increased, whereas in frontal regions

(involved in numerous cognition processes) the activity is decreased.

During cognitive tasks, mostly prefrontal activity increases have been

found in depressed subjects despite task performance scores thatwere

similar to healthy controls (HCs), whereas reduced activity is often

observed in combination with poor performance.11,12 This suggests

that depression is associated with cortical inefficiency and is compen-

sated by enhancement of brain activation in these regions.

In termsofpredictionof treatmentoutcome, less consistent tb-fMRI

biomarkers have been identified so far with one exception: the ros-

tral ACC (rACC). Increased baseline activity of the rACC during view-

ing of images of negative emotional faces has often been found to be

predictive of antidepressant treatment response.8,10,13 Yet, there are

still many studies that find controversial results, for example, regard-

ing the role of the amygdala. This brain area is assumed to be essen-

tial in the altered brain networks of depression as it is associated

with fear and other emotional processing functions. Some researchers

have found differences in amygdala response during affective tasks,

whereas others found contradictory findings or no significant differ-

ences at all.14–17

rs-fMRI studies have identified several network functional connec-

tivity (FC) differences betweenMDDpatients andHCs. Networks that

have found to be altered include the default mode network (DMN),

salience network, central executive network (CEN; also sometimes

referred to as frontoparietal network), dorsal attention network, and

affective network, almost all of which play a role in affective process-

ing and cognitive control.18–20 More specifically, hyperconnectivity

within theDMNand hypoactivitywithin theCENhave frequently been

observed in reviews and meta-analyses. Contradictory, a recent mega-

analysis did not find decreases within the CEN and DMN, whereas

another reported DMNhypoactivation.21,22

rs-fMRI has also been studied to identify biomarkers of treat-

ment outcome. Increased FC within areas of the DMN such as the

posterior cingulate cortex and medial prefrontal cortex (mPFC) and

decreased FC within areas of the cognitive control network such as

the insula, ACC, and dlPFC have shown to separate antidepressant

treatment-resistant from treatment-responsive MDD patients.17,23,24

An overview of the most consistent tb-fMRI and rs-fMRI biomarkers

of objective diagnosis and treatment response in MDD is shown in

Figures 1A and 1B, respectively.

LIMITATIONS AND PITFALLS

Structural and functionalMRI studies ofMDDhave recently been criti-

cized. A crucial factor is the small sample size in case-control and brain-

behavioral association studies.25,26 Typical neuroimaging sample sizes

often lead to statistically underpowered results and low replication

rates. Multicohort, within-participant study designs with multivariate

and data-driven analyses have been suggested as improvements for

statistical power.26,27 Furthermore, effect size measures of HC-MDD

group differences are often small despite harmonization of study

acquisition and methodology.27 The previously highlighted consistent

biomarkers should therefore be taken with caution, even though they

been reported in numerous studies. Importantly, however, fMRI mea-

sures show less distributional overlap between groups and increased

out-of-sample replication rates on average compared to structuralMRI

and diffusion tensor imaging.26,27 Moreover, improvements in func-

tional image quality and more advanced analyses might enhance
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F IGURE 1 Identified relative consistent functional major depressive disorder biomarkers for task-based and resting-state fMRI for (A)
objective diagnosis (MDD>HC) and (B) treatment response. ACC, anterior cingulate cortex; AD, antidepressant treatment; Amyg, amygdala;
CCN, cognitive control network; CEN, central executive network; dlPFC, dorsolateral PFC; DMN, default mode network; HC, healthy controls; Ins,
insula; MDD,major depressive disorder; mPFC, medial PFC; PCC, posterior cingulate cortex; PFC, prefrontal cortex; rACC, rostral ACC

reproducibility and the chances of identifying robust MDD

biomarkers.26,27 In this review, we first provide further elucidation of

the received criticism by discussing the most notorious limitations and

pitfalls of fMRI image acquisition, processing, and analysis methods

in MDD studies. The topics that will be discussed explain why these

approaches may restrain researchers from identifying robust func-

tional biomarkers of depression. Subsequently, we highlight future

directions that could mitigate these problems and lead to improved

data acquisition and analysis methodology.

Acquisition limitations

Conventional fMRI acquisitions limit the reliability of quantification

of functional measures by several factors including susceptibility to

noise and artifacts, relatively low temporal and spatial resolutions,

and low signal-to-noise ratio (SNR). For example, regions such as the

orbitofrontal cortex (OFC), cingulate, parahippocampus, amygdala, and

striatum have been found to be functionally abnormal in MDD.28,29

These limbic and frontal areas are often affected by signal dropout as

their T2* values are dramatically reduced due to tissue-air boundaries

surrounding the nasal cavity, mastoid air cells, and sphenoid sinus.30,31

Tissue-air boundaries distort the field because they are diamagnetic

versus paramagnetic, bending the magnetic fields differently resulting

in increased dephasing and signal loss. Additionally, only a few depres-

sion studies acquired fMRI scans with a repetition time (TR) below

2 seconds to assess FC between brain regions or networks.19,24 Low

temporal resolutions time-series often suffer from a relatively high

amount of noise and decrease the power in statistical tests (less time

points) that are conducted to derive functional measures.32 Typical

TRs from a conventional echoplanar imaging acquisition demonstrated

lower signal-noise separation and test-retest reliability values in FC

analyses compared to acquisitions with lower TRs.33

Conventional cleaning methods

Presumably the most acknowledged disadvantage of fMRI is its sus-

ceptibility to contamination from motion, physiological, and scanner-

related (eg, thermal) sources. Respiratory (around 0.3 Hz) and cardiac

(1-2 Hz) signals can alias into the lower frequencies at typical TRs of

2 seconds or higher during acquisition.34 In addition, arteriole CO2,
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respiratory volume per time, and heart rate variability could intro-

duce low frequencies into the fMRI spectrum as they slowly fluctu-

ate at around the same frequency as the BOLD signal (<0.1 Hz).34

Notably, depression is being associated with reduced heart rate vari-

ability according to a meta-analysis.35 Prevention or cleaning of fMRI

data is therefore especially relevant inMDD studies. Model-based and

data-driven methods exist to limit the amount of aliased noise in the

fMRI data.

Of the model-based denoising methods, the most common is

RETROICOR.36 RETROICOR requires external recordings of cardiac

and respiratory signals and models them using low-order Fourier

series taking into account time-varying phases of physiological sig-

nals. The models are then treated as nuisance regressors and removed

from the fMRI signal.36,37 Despite high performance, RETROICOR

is model based and thus depends on the accuracy of the contribu-

tion of the models to the BOLD signals.38 In addition, monitoring of

external signals can be difficult and sensitive to noise induced in the

MR setting.39 The data-driven method CompCor generates nuisance

regressors from principal components of time-series of voxels with

a high standard deviation, in which cardiac and respiratory noise is

assumed tobeabundant.40 This assumption is invalid ifmotionartifacts

are dominating.40,41 Moreover, CompCor could introduce additional

artifacts into the signal.39 Other popular data-driven denoising meth-

ods are FMRIB’s independent component analysis-based Xnoiseifier

(FIX-ICA)42 and ICA-AROMA43 that have shown to perform well but

haveother limitations or restrictions.44,45 FIX-ICA, amethod to classify

independent components (ICs) as either noise or neural components, is

slow as it extracts over 180 features and depends on the pretraining

of the classifier with manually labeled data.46,47 Unlike FIX-ICA, ICA-

AROMA is fully automated but solely cleansmotion artifacts.44

Limitations of current analysis methods

Among depression studies, themost popular rs-fMRI analysis methods

are seed-based correlation analysis (SCA) and ICA, which provide

insights about the activation synchronicity between multiple brain

regions or networks. Other popular methods include regional homo-

geneity (ReHo) and amplitude of low-frequency fluctuations (ALFF),

which measure local synchronicity and power of low-frequency

oscillations, respectively.48

Some inconsistent findings have been found in the literature of

rs-fMRI and MDD that perform SCA to assess FC. For example,

connectivity between the anterior and posterior DMN is often altered

in MDD but both increases and decreases have been reported. More-

over, SCA is sensitive to the seed placement,20,49 which can differ

significantly even between adjacent voxels and is study specific or

standardized across subjects. Subject-specific defined seeds could

mitigate a part of this problem since individual spatial differences are

taken into account.50

ICA identifies functional resting-state networks that are statisti-

cally independent. Results from ICA inMDD patients have been found

to be more consistent than SCA.20 Consensus exists regarding the

clear distinction of the anterior and posterior DMN in MDD, which

were found to be spatially independent in depressed patients. Mostly,

increases are reported in both parts of the DMN compared to HCs.

The advantage of ICA is that this method does not require an a priori

assumption and identifies whole brain networks. A disadvantage is

that the number of components is rather an arbitrary choice, possibly

resulting in subnetwork components or spatially global network com-

ponents if the input number is chosen too large or small, respectively.51

The number of components is still variable over different fMRI studies

despite attempts to harmonize the number of components.52 Adding

to this, the underlying source of the independent networks is difficult

to trace as ICA is also very sensitive toward coherent nonneuronal

signals.20,48

ReHomeasures the synchronicity of the BOLD signal in a voxel with

its neighboring voxels, an indirectmeasure of local neural activity. Con-

troversial ReHo findings have been found in MDD studies. One meta-

analysis confirmed the presence of increases in ReHo in the left hip-

pocampus and decreases in the OFC, another found decreases in the

insula and superior temporal gyrus, and a third meta-analysis reported

a significant increase in the mPFC.53–55 An explanation for the differ-

ent findings could be attributed to the frequency dependence of ReHo

in MDD patients as alterations in brain regions have been found for

different low-frequency bands that might have distinct physiological

meaning.56 Finally, ReHo is very sensitive to smoothing because of its

local properties, whereas the studies of the meta-analyses applied dif-

ferent Gaussian kernel sizes.57

ALFF measures the regional brain activity and is calculated as the

sum of spectral amplitudes in the range of 0.01-0.1 Hz after Fourier

transforming each voxel’s time-series. Like ReHo, ALFF is similar with

regard to that it reflects neural activity but only provides local infor-

mation. Nowadays, methods such as SCA and ICA are more often

applied in neuroimaging studies of depression to discover potential

biomarkers such as large-scale networks alterations and their temporal

interactions that may be more predictive of antidepressant treatment

outcome.20,48

Task design inconsistencies

A possible reason for contradictory results is the dissimilar task

paradigms among depression studies. In MDD studies, affective and

cognitive tasks have been most commonly used, while some have

implemented reward-based and self-referential tasks.

MDD studies that have implemented affective facial recognition

tasks in MDD include various emotions such as fear, sadness, happi-

ness, and neutral faces that are processed differently in the brain. Yet,

there is still no consensus onwhich emotions are particularly regulated

abnormally in depression patients and which brain region or networks

are responsible for the processing of each valence. For example, in one

MDD study amygdala increases were only observed after viewing sad

faces but not fearful faces, whereas numerous of studies found simi-

lar increases toward fearful faces. Furthermore, some researchers use

contrasts between the BOLD signal of negative and positive stimuli
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TABLE 1 Summary of future directions of fMRI studies to improve the identification of biomarkers in major depressive disorder

Future opportunities Benefits

Image acquisition ∙ Highermagnetic field strength
∙ Multiband imaging
∙ Multiecho imaging

∙ SNR and BOLD sensitivity increase
∙ Less signal dropout
∙ Scanning time reduction

Image processing ∙ Neural network-based cleaning

methods

∙ Improved noise cleaning by:

▪ More accurate identification of non-BOLD independent components

▪ Optimizedmotion regressors

Image analysis ∙ Causality in brain activation
∙ Functional neurodynamics
∙ Identification of depression biotypes

∙ More extensive insights on potential functional abnormalities ofMDD
∙ AddressMDDheterogeneity

Note: A summary of future opportunities of functionalMRI studies to identify more consistent major depressive disorder biomarkers.

Abbreviations: BOLD, blood-oxygen-level dependent; MDD,major depressive disorder; SNR, signal-to-noise ratio.

tasks, while others compare negative or positive valences to neutral or

scrambled faces.7,58–62

Most of the fMRI experiments in MDD require the participants

to respond to stimuli, for example, with an MRI-compatible keypad.

Responses can be categorized in explicit (emotion directed, eg, which

emotionwas shown) or implicit (not related to emotions, eg,which gen-

der was shown). Next to that, there are studies in which participants

are asked to passively view the images. Activation tasks, for example,

demanding the participant to press a button, could activate brain areas

involved in decision-making andmotor control, which could have a con-

founding effect on the affective or cognitive aspect of fMRI tasks.63 It

is therefore essential to implement task contrasts by not only including

rest but also control blocks that are designed to capture the confound-

ing factors without the activity of interest.14,64–67 An example is the

Hariri task in which not only faces arematched but also shapes.68

Differences in task difficulty could influence the observed brain

activity patterns between studies that assess cognition through exec-

utive tasks. In MDD, patterns of hyperactivation in cortical and

frontal brain areas are often observed combined with unaffected

cognitive performance and reduced cortical activation with poor

performance.12,69,70 These contradictory findings have prompted sug-

gestions that it is possible that this pattern is only evident in more

difficult tasks.12 Furthermore, some antidepressants might impair

cognitive functioning of depressed patients as a result of sedative

effects, while others have no or an improved effect on cognition.71

FUTURE OPPORTUNITIES

This sectiondiscusses the futureopportunities of fMRI studies inMDD,

supported by relevant approaches, findings, and recommendations of

novel depression research. It is divided into a subsequent order from

first acquiring MRI images, followed by image processing to the sub-

sequent analysis of the images. Some of the described sections are

also relevant for fMRI studies or psychiatric disorders in general. An

overview of the highlighted future opportunities and their benefits is

presented in Table 1.

Image acquisition

Higher magnetic field strengths

Higher SNR of fMRI scans can be obtained by imaging at a higher

magnetic field strength (B0).72 This is because the induced voltage

(MR signal) in the receiver coil is proportional to the square of B0
as it is dependent on the precession rate of the spins and the net

magnetization.72 With increasing B0, both the precession rate and net

magnetization increase linearly. The latter is a result of the larger

fraction of protons that flip to the high-energy state. The noise only

increases linearly with B0 and consequently the SNR increases lin-

early with B0. In line with this, an MDD study demonstrated signif-

icant increases in temporal SNR (tSNR) of brain scans at 7T. These

ultrahigh-field images enhanced sensitivity of detecting mood-related

neurocircuit disturbances.73 This is of special interest in psychiatric

diseases that are associated with affected subcortical brain regions

or networks. Moreover, the BOLD contrast increases as a result of

the increase in T2* dephasing from the more prominent local field

inhomogeneities.74 Yet, physiological noise is also more comprised at

higher magnetic field strengths.75 During fMRI imaging of subcor-

tical brain regions, physiological noise and BOLD sensitivity losses

due to high iron content and larger distances from the coil are more

pronounced.76 Despite the increased SNR, BOLD contrast, and per-

cent signal change, images acquired at higher magnetic fields suf-

fer from increased B0-inhomogeneities, particularly in subcortical and

midbrain regions. One way to minimize signal dropout is by using

multiecho (ME) imaging, which will be discussed later. Future stud-

ies minimizing the B0-imhomogeneities, for example, by improvements

in shimming, may further improve 7T fMRI imaging.77 Another way

to reduce the effect of susceptibility artifacts is by placing dielectric

pads close to the region of interest that increases the magnetic field

homogeneity.78 Next to that, optimization of fast imaging protocols

could prevent physiological noise from aliasing into the BOLD fre-

quency range. Such a protocol optimization study for 7T fMRI was

recently published in which BOLD sensitivity was optimized for sub-

cortical structures while maintaining sensitivity in cortical areas.79
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Lastly, advancements in receiver coils could diminish the effects of

physiological artifacts.80

Multiband imaging

Preventing aliasing of nonneural physiological signals would reduce

the abundance of noise to which fMRI is susceptible to. One way in

which this could be achieved is by significantly reducing the TR. Par-

allel imaging methods such as SENSitivity encoding and GeneRalized

Autocalibrating Partial Parallel Acquisition (GRAPPA) reduce scanning

time by partially acquiring k-space data and recovering signals by uti-

lizing properties and spatial sensitivity from multiple receiver coils.81

This comes at the cost of SNR loss due to undersampled data and

amplification of noise from the coils.82 Additionally, images are often

affected by distortions. Other acceleration techniques include com-

pressed sensing and k-t reconstruction.More recently, multiband (MB)

imagingwas introduced.83 MB imaging offers the opportunity to simul-

taneously acquire slices and thus decrease the total scan time. The SNR

penalty ofMB imaging is minimal and only reduced by amplified recon-

struction noise and lower net magnetization.84 Lastly, MB imaging can

cause slice leakage artifacts, that is, slice aliasing. A specific GRAPPA

technique has been developed that optimizes reconstruction of simul-

taneously acquired slices byminimizing the influenceof slice leakage.85

Some resting-state and task-based depression studies have already

shown the potential of MB acquisition, yielding TRs of around 1

second.73,86 Recently, an fMRI echoplanar imaging MB sequence with

a TR of 350millisecondswas developed, resulting in, both, an improved

SNR ratio compared to conventional fMRI images and more reliable

brain networks after only 3minutes of scanning.33

ME imaging

In ME sequences, each slice is acquired at multiple echo times (TEs).

This results in multiple time-series of the same run with different

signal intensities and contrasts. The number of time-series is equal to

the number of different TEs at which each slice has been acquired. Vol-

umes of the time-series acquired at smaller TEs contain higher voxel

intensities but lower contrast betweenwhite andgraymatter and cere-

bral spinal fluid. Vice versa, higher TEs lead to lower signal intensities

but higher contrast. By fitting the signal intensity decay over TE, one

estimates the so-calledT2*decay, reflecting themagnetic field inhomo-

geneities. TheT2* decay is different for non-BOLDsignals compared to

BOLD signals, where the latter is dependent on the TE.87 By taking this

into account, MRI signals can be decomposed into separate ICs using

ICA and classified as either BOLD or non-BOLD.88 Subsequently, they

canbe regressedout from the fMRI signal to reduce the amount of non-

BOLD signals.

As the T2* value is estimated per voxel, the T2* variation across

regions is taken into account with ME imaging.89 Moreover, ME

imaging decreases the effect of dropout. A recent study demon-

strated increases in test-retest reliability of individual-specific FC

in the subgenual cingulate, basal ganglia, and cerebellum in an ME

sequence.90 FC reliability of 10 minutes of ME fMRI was found to

be comparable with 30 minutes of single-echo fMRI. Moreover, reli-

ability of functional brain networks was enhanced in ME fMRI. The

researchers attributed these improvements partly to the decrease in

signal dropout and S0-dependent artifacts such as head motion or

MRI hardware instabilities. Finally, the results of this study are highly

valuable for the search of neuroimaging biomarkers. As demonstrated,

ME imaging increased the FC reliability on an individual level. Indi-

vidual differences are often neglected in group analysis studies. In

terms of individualized treatment outcome prediction, however, this

unshared variance could increase accuracy and should be taken into

account.

Time-series acquired at different TEs can be combined to a single

time-series in several ways.One of themostwidely applied approaches

is to calculate weights based on TE and T2* values and derive its

weighted average to obtain an “optimally combined” time-series rep-

resenting a balanced combination of signal intensity and contrast.88,91

By fitting a monoexponential function over the signal at each TE, the

decay rate, that is, the inverse of T2*, and the S0-value can be esti-

mated per voxel. TEs closer to the T2* value are weighted more heav-

ily to enhance BOLD contrast, whereas signals from shorter TEs are

also included as they contain higher signal intensities. The T2* and S0

values are calculated per voxel over the whole time-series in this opti-

mal combinationmethod.Recently, anotherMEcombinationapproach,

called T2*FIT-weighted combination, was proposed that calculates the

T2* and S0 values using the same algorithm per volume instead of over

thewhole-time series.92 Despite fitting themonoexponential decay on

significantly fewer data points, the tSNR of tb-fMRI and rs-fMRI time-

series increased the most compared to other weighted ME combina-

tion methods. Interestingly, when the T2* maps were used as time-

series—instead of deriving their weights and calculating the weighted

average—the highest effect sizes, functional contrasts, and temporal

contrast-to-noise ratio in motor and emotion processing tasks were

achieved. Signal quality gains of ME fMRI data could be maximized by

implementation of an optimal combination scheme in terms of effects

on signal loss, BOLD contrast and sensitivity. It is therefore of utter-

most importance to evaluate their differences on several functional

measures and investigate the opportunities in psychiatric studies in

which regions that are prone to susceptibility artifacts and lower SNR

are of exceptional interest.

The combination of novel acquisition techniques

As acquiring multiple echoes per slice comes at the cost of imaging

time, acceleration techniques such as MB imaging offer a solution by

speeding up the process.93 In addition, increases in spatial resolution,

while maintaining a good temporal SNR, can be achieved by using MRI

at higher magnetic field strengths.87 Nevertheless, more dropout of

signals is common in 7T as the magnetic field is more inhomogeneous

leading to faster signal decay. T2* values are even decreased by around

50% at 7T compared to 3T.87 ME imaging therefore seems essential in

7T fMRI studies focusing on orbitofrontal or inferior temporal regions.

The combination of ME in 7T requires further validation before wide

application in the neuroimaging research field.
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F IGURE 2 Novel acquisitionmethods that could increase the identification of robust functional biomarkers. Left: a higher magnetic field
strength (B0) increases the signal-to-noise ratio (SNR), and blood-oxygen-level-dependent sensitivity of fMRI data. In major depressive disorder
(MDD), 7T imaging revealed enhanced sensitivity of detectingmood-related neurocircuit disturbances. Centre: in multiband imaging, multiple
slices are acquired simultaneously (color coded here), allowing an increase in temporal or spatial resolution in the same scanning time. Right: in
multiecho imaging, multiple brain volumes are acquired from the same excitation pulse but at different echo times, resulting in different contrast
images. These different contrasts increase SNR and prevent signal loss in regions that are prone to susceptibility artifacts, which have frequently
been associated withMDD. B0, mainmagnetic field strength; tn, time at acquisition of volume n.

Few studies in MDD have examined the combination of these

novel image acquisitions. A study involving ME and MB imaging

at 7T improved tSNR and FC metrics with 200%-300% compared

to the same acquisition at 3T.73 The researchers showed the exis-

tence of mood-related neurocircuit disturbances in MDD patients and

increasedpower in regions related toMDDsuchas the ventral tegmen-

tal area, a small midbrain area that is prone to poor tSNR. Both find-

ingswerenot evident in the3Tacquisitionprotocol. Another study that

used ME-MB fMRI at 7T, including ME ICA denoising, examined rumi-

nation in MDD. They found that rumination was related to lower FC

within the DMN, in particular the connectivity of the left medial OFC

with the right precuneus.94

Single-echo fMRI scans may suffer from signal loss in iron-rich

subcortical regions. ME-MB imaging at 7T increases the tSNR,

contrast-to-noise ratio, and t-statistics in the caudate nucleus and

putamen.89 Interestingly, the iron concentration of subcortical regions

such as the bilateral putamen and left thalamus has been shown

to be altered in MDD and correlated positively with depression

severity.95

Overall, the combination of ME, MB, and 7T imaging seems to com-

plement one another and is warranted in fMRI studies of depres-

sion and other neuropsychiatric disorders. Nonetheless, the choice of

acquisition is highly dependent on the research question and hard-

ware and software availability. For example, if parallel imaging is not

an option, studies focusing on regions that are known to have rela-

tively low T2* values could benefit more from ME imaging and longer

acquisition times than increased temporal resolution to limit signal

loss and susceptibility-related artifacts. Likewise, shorter TRs could be

favored in studies that focus on obtaining clean functional networks in

healthy subjects as small TRs limit the amount of aliasing from nonneu-

ral signals. An overview of these acquisition improvements is shown in

Figure 2.

Image processing

Neural network-based cleaning methods

In the case when fast or ME-MB acquisition protocols are insufficient

or not available to minimize the confound from nonneuronal signals,

application of additional denoising steps is warranted. Recently, the rs-

fMRI data-driven denoising methods have entered the new era of neu-

ral networks. One of such novel machine learning studies described

the development of an automated classifier to assess whether an IC is

considered noise or neuronal signal.47 The classifier is based on three

fused convolutional neural networks (CNNs) of which each classifies

the IC spatial maps, time-series, or both simultaneously. Subsequently,

majority voting can be applied to allocate either a neuronal or artifact

label to each of the ICs. The models performed robust with accuracies

over 95%. Spatial maps only showed little improvement compared to

the model based on time-series.47 In the same category of component

classification, researchers developed a deep neural network that was

able to achieve over 98% accuracy in classifying ICs from an rs-fMRI

dataset consisting of 394 subjects. Several combinations and different

voting schemes demonstrated that spatial information provided the

highest performance compared with temporal and spectral features. A

voting schemewith a voting weight of 0.5 for the spatial CNN, 0.25 for

the temporal CNN, and 0.25 for a spectral CNN resulted in a balanced

sensitivity and specificity and a precision of 99.4%.96 It should still be

noted, however, that for both studies the components were rated by

trained experts so the ground truth is merely subjective. Moreover, a

single IC could contain BOLD and nonneural signals, potentially lead-

ing to inaccurate labelling.

Finally, another study introduced a CNN that is able to obtain opti-

mal motion regressors used for nuisance regression in rs-fMRI. After

head motion correction, six estimated motion parameters (translation
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and rotation in each direction) were used as input to the CNN network

consisting of two temporal convolutional layers. Following the second

layer, the 12 output regressors were correlated with voxel time-series

of the white matter and cerebral spinal fluid to calculate the loss func-

tion and update the model. Lower variance and higher network modu-

laritywas found in filtered data of 76 healthy subjectswith the 12CNN

regressors compared to the 12 traditional regressors (including first-

order derivative) and FC difference before and after regression was

higher for the 12CNN regressors, suggesting improvedmotion regres-

sion with the CNN.97

The high-performancemetrics of these studies indicate the promise

of data-driven noise cleaning methods in fMRI. Its main applications

for now are the classification of components, particularly spatial maps,

and development of optimized motion regressors. In order to imple-

ment these cleaning approaches in other clinical studies, the neural

networks should be trained on neuropathological fMRI data as noise

and artifact patterns might differ in psychiatric disorders compared to

HCs.98 Future optimization studies of motion regressors could focus

on more local, for example, voxel-specific corrections. External cardiac

and respiratory signals could be integrated to further enhance clean-

ing of the fMRI signals.96 A combination of both, improved acquisitions

and novel noise removal methods, would be a promising approach for

enhancement of the reliability of detecting altered functional activity

or connectivity in deeper located brain regions in psychiatric disorders,

including depression.

Image analysis

Causality in brain activation

Most fMRI studies involving MDD patients have implemented undi-

rected FCmeasures. Yet, it has been demonstrated that directional FC

is altered inMDDpatients compared toHCs99–102 andbefore andafter

antidepressant treatment.103

The most common methods for assessing fMRI causality are

Granger causality and dynamic causal modeling (DCM). Granger

causality, which is model free, is based on the principle that informa-

tion, that is, samples, of the past from a network can predict future

information of another network.104 DCMrelies onmodels that link the

firing of neural populations to BOLD signals.57

DCM analyses of tb-fMRI have highlighted the enhanced effec-

tive connectivity from the dorsal ACC to the rostral ACC in the cog-

nitive Stroop task105 and in another study, direction- and valence-

dependent abnormal effective connectivity between the subgenual

ACC, amygdala, and ventromedial prefrontal cortex in an implicit emo-

tional face task.106 Moreover, efficient connectivity from the amyg-

dala to the subgenual ACC was found to be lower in MDD patients

following a task involving negative emotion processing.107 In remit-

ted depressed patients, DCM has revealed bidirectional connectivity

alterations within frontotemporal connections and from the fusiform

gyrus to the OFC compared to controls while viewing happy and

sad faces, respectively.108 In a recent larger study, decreased effec-

tive connectivity from the mPFC to the striatum was correlated with

increased depressive symptoms.109 In short, there is some evidence

of the involvement of the ACC, amygdala, and PFC in the direc-

tional connectivity in depression; its role in predicting treatment

outcome is still largely unknown. It is also important to note that

many of the studies implementing these effective connectivity anal-

yses had low sample sizes, while all of them were cross-sectional

studies.

Interestingly, there is one paper that focused on treatment outcome

prediction using task-based directional connectivity features in MDD.

Following an emotional face perception task, these features were able

to distinguish fast remission from chronic depression trajectories in

a 2-year longitudinal study with an accuracy of 79%.110 Some of the

most contributing features that were found during this classification

were the connections from the right amygdala to the right fusiform

area for happy faces and many face-processing and emotion-sensitive

regions for negatively valenced emotions such as the fusiform area,

amygdala, and occipital face area. This study shows the potential in

predicting individual clinical depression trajectories in the long-term

using tb-fMRI and could therefore be valuable in future MDD stud-

ies with larger sample sizes, potentially in combination with other MRI

modalities.

From two rs-fMRI causality studies, the DMN appears to

play a major role in depression and response to antidepressant

treatment.101,103 Moreover, changes in causal dependencies in MDD

patients compared to HCs were found with or from the (anterior)

insula99,100 and from the lateral visual network.102

Functional neurodynamics

The FC measures that have been discussed so far are static in the

sense that each time-series is analyzed and correlated as an entity,

for example, resulting in a single FC value between two pairs of time-

series instead of a value per time point. The interaction between func-

tional brain networks might, however, be more complex than that

and could change over time depending on cognitive or emotional

states.111,112 The neuroimaging field has recognized this time-varying

nature as reflected by the increase in the number of these neurody-

namic fMRI studies, including various MDD studies. A recent study

showed increased temporal variability and efficiency and decreased

temporal clustering in MDD patients, mostly evident within the DMN

and some subcortical and sensorimotor structures. They speculate that

these results could indicate more aberrant brain connections and fluc-

tuations, possibly related to common MDD symptoms as rumination

and anhedonia.113 The finding of increased temporal variability within

the DMN in MDD patients is in agreement with many studies114–116

but contradictory to the results of another paper.117

Of those studies, dynamic FC has frequently been found to be

correlated with depression severity scores113,114,118 suggesting that

this metric could potentially serve as a biomarker of depression clas-

sification or treatment outcome. Not long ago, the former notion

was supported by two studies that improved MDD classification
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by including dynamic FC features in their prediction model.118,119

Another classification study found dynamic FC differences between

treatment-resistant MDD, MDD without treatment-resistance, and

healthy controls,120 thereby demonstrating the value of functional

neurodynamics in differentiating between treatment groups. Further

research is required to predict depression trajectories and treatment

outcomes in an early stage to improve treatment selection.

Similarly, wavelet coherence assesses the time-dependent activa-

tion patterns in functional time-series. In contradiction to dynamic

FC, wavelet coherence calculates the time-changing coherence, that

is, synchronous oscillations, per frequency of nonstationary time-

series.121 An rs-fMRI study demonstrated improved sensitivity of

detecting group differences in wavelet-based regularity (stability of

recurrent temporal patterns) of activity within the DMN and execu-

tive control networks between HCs and patients with mild cognitive

impairment.122 This instability of recurrent temporal patterns could be

attributed to disrupted information feedback or cognitive impairment

with which MDD is often characterized. In autism spectrum disorder,

an accuracy of over 86%was achieved for the classification of patients

based on time of in-phase coherence between the ventral stream net-

work and frontoparietal networks.123 Both studies indicate the poten-

tial of wavelet coherence in psychiatric disorders for classification pur-

poses. To date, no depression fMRI study has implemented wavelet

coherence. Nonetheless, in an electroencephalography study a CNN

relying on wavelet coherence of the DMN was able to reliably classify

MDD patients with over 98%.124

Concluding, there is a promise in neurodynamic analyses for iden-

tifying MDD-associated biomarkers, but the limited number of studies

so far only led to a relatively consistent finding of the instability of the

DMN network in MDD. More consistent findings of other potentially

affected networks related toMDD are needed to draw reliable conclu-

sions.

Identification of depression biotypes

MDD is a very heterogeneous disease as patients differ in symptoms,

trajectory course (chronic, recurrent, single episode), and treatment

response. This heterogeneity contributes to the divergent number of

potential biomarkers as suggested by researchers. Not long ago, sup-

ported by the development of novel machine learning methods, the

approach of biotyping gained attention.125 Biotyping is the identifica-

tion of subtypes of depression based on differences in biological char-

acteristics (eg, features derived from neuroimaging of the brain) that

are associated with specific symptoms. Genetic and neuroimaging bio-

typing studies are increasingly being conducted, whereas the latter

have investigated features mostly derived from rs-fMRI. These neu-

roimaging studies found several biotypes, which they claimed to be dis-

tinguishable by anxiety, anhedonia, childhood trauma, or depression

severity in combination with specific brain activation patterns.126–129

An important rationale for conducting these MDD biotyping studies is

that a certain treatmentmay bemore beneficial for particular biotypes

of depression compared to others.

A study based on rs-fMRI found two biotypes of depression, dif-

fering from each other by high DMN versus high dorsal ACC effec-

tive connectivity.130 The latter subgroup consisted of a high percent-

age of females (87%), comorbid anxiety diagnoses (43%), and recurrent

depression (63%). A second studydiscriminatedbiotypes of depression

based on FC between the right angular gyrus and areas in the DMN

and scores from a child abuse trauma questionnaire. Subjects from two

out of the three biotypes scored lower depression severity scores fol-

lowing a 6-week antidepressant treatment.129 The authors developed

a custom co-clustering approach that produces so-called “views” of the

datasets, which cluster both subjects and features simultaneously. The

most prominent view distinguished depression subjects in three clus-

ters based on differences in degree of FC, child abuse trauma, and

depression severity scores at baseline and after 6 weeks. Other views

could beprescribed to subjectswith fatigue symptomsor todurationof

depression episodes, both in combination with abnormal FC patterns

between specific regions. This algorithm has the advantage of gener-

ating several cluster solutions simultaneously, possibly revealing less

dominant clusters that would normally have been ignored.

A third and probably the most prominent biotype research recently

discovered four biotypes based on different resting-state FC and

symptomatology patterns.127 Subjects from biotypes 1 and 2 repre-

sented groups with anergia and fatigue symptoms in combination with

reduced connectivity in the ACC and OFC. Instead, patients from the

biotype group 3 and 4 showed the most severe anhedonic and psy-

chomotor retardation symptoms along with FC increases in the thala-

mus and frontostriatal networks. Biotype 1 and 4 suffered from severe

anxiety symptoms with reduced FC in frontoamygdala networks. Rev-

olutionary, it was found that 83% and 66% of patients with biotypes 1

and 3 responded to transcranial magnetic stimulation of the dorsome-

dial PFC, respectively, compared to only 25% and 30%of patients from

biotypes 2 and 4. The paper also received criticism from researchers

that replicated the same methodology on a separate dataset, arguing

that overfitting took place and p-values were inflated because their

feature reduction method was not taken into consideration in the sta-

tistical analyses. They showed that by leaving out a single subject from

the cluster population, clusterswere not stable anymore and theywere

unable to reject the null hypothesis that the distribution was non-

Gaussian.131

Overall, these studies show the promise of biotyping for predic-

tion of treatment outcome or supporting treatment decision-making in

depression. For example, a clinician might treat a patient with a more

invasive method such as electroconvulsive therapy earlier with the

support of such biotype models than without. Similar efforts could be

made for psychotherapy and pharmacotherapy, the most widely pro-

vided treatments for depression. Nonetheless, only a couple of biotyp-

ing studies have been conducted so far in MDD and published results

should still be taken with caution. One of the potential pitfalls in bio-

type studies is the high ratio of the number of subjects to variables.131

For a single subject, often a few dozen symptoms are correlated with

multiple thousands of FC values, while most sample sizes are less than

100. Overfitting is therefore likely to occur. Yet, these studies instigate

a potential future direction and approach the search for a biomarker
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F IGURE 3 An overview of recent developments in analysis methods of functionalMRI studies used inmajor depressive disorder (MDD). Top
left: causal modeling is a method that is directional and compares the functional connectivity (FC) between n regions or networks (Zn). Below:
neurodynamical analyses measure the difference in FC over time. On the bottom left, the FC is calculated in the beige and blue window between
two different networks, after which the dynamic FC over time is shown on the bottom right. Top right: fromMDD samples, multiple biotypes can
be identified (here A, B, and C) in which different connectivity patterns associated with specific symptoms.

from a different angle. Future biotype studies could limit the amount of

included symptoms and connections in the analyses by forming a priori

hypotheses, thereby increasing statistical power.26 If a large number of

features is includedor a large sample size is not realistic, however, iden-

tified subtypes should be verified on independent samples (test set)

or datasets. This ensures the generalizability and validity of the bio-

types. As shown recently, the replicability of multivariate FC correla-

tions with cognitive ability and psychopathology scores increases with

an increase in the number of samples and decreaseswith an increase in

the number of features after an optimum of about 20% explained vari-

ance has been reached.26 Examples of methods to test generalizabil-

ity include cross-validation, bootstrapping, or Jackknife resampling. An

overview of the discussed recent progress in rs-fMRI analysis methods

ofMDD is presented in Figure 3.

CONCLUSIONS

Despite the numerous published fMRI studies in MDD, only a few

biomarkers are consistently found tobealtered indepressionor associ-

ated with treatment outcome. In this review, first, the most prominent

findings and developments were discussed, followed by an overview

of limitations and pitfalls of fMRI studies in depression. Most notably,

we found that the most common functional outcome measures might

not suffice to represent the MDD patients’ brain and that analyti-

cal approaches thereof are not coherent among MDD studies. In this

review, an overview and discussion of future directions in functional

image acquisition, processing, and analysis in MDD studies was pre-

sented. Novel acquisitions techniques, such as ME and MB imaging,

as well as machine learning-based noise reduction methods improve

image quality and BOLD sensitivity as demonstrated by several MDD

studies. Regarding image analysis, more extensive functional features,

suchasdirectional FCorneurodynamics, and the segregationof biolog-

ical depression subtypes enhance the chances of identifying consistent

functional MDD biomarkers. Overall, we see promising developments

in fMRI data acquisition, processing, and analysis that potentially could

lead to objective diagnosis and prognosis inMDD.
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