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Abstract

The U.S. Tox21 program has developed in vitro assays to test large collections of environmental 

chemicals in a quantitative high-throughput screening (qHTS) format, using triplicate 15-dose 

titrations to generate over 100 million data points to date. Counter screens are also employed 

to minimize interferences from non-target specific assay artifacts, such as compound auto 

fluorescence and cytotoxicity. New data analysis approaches are needed to integrate these data 

and characterize the activities observed from these assays. Here, we describe a complete analysis 

pipeline that evaluates these qHTS data for technical quality in terms of signal reproducibility. We 

integrate signals from repeated assay runs, primary readouts and counter screens to produce a final 

call on on-target compound activity.
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1. Introduction

The U.S. Tox21 program [1–4], a collaboration among the National Institute of 

Environmental Health Sciences (NIEHS)/National Toxicology Program (NTP), the U.S. 

Environmental Protection Agency’s (EPA) National Center for Computational Toxicology 

(NCCT), the National Institutes of Health (NIH) National Center for Advancing 

Translational Sciences (NCATS), and the U.S. Food and Drug Administration (FDA), is 

aimed at developing alternative testing methods that can quickly and efficiently assess the 

toxic potential of tens of thousands of environmental chemicals. Working toward this goal, 

the Tox21 program has successfully developed various cell-based assays to serve as in 

vitro models for toxicity assessment [5–7,4,8–13]. These assays have been miniaturized and 

validated in a 1536-well plate format at NCATS for quantitative high-throughput screening 

(qHTS) [14]. These assays are currently being screened against a collection of ~10,000 

compounds (Tox21 10K) [15] composed of environmental chemicals and approved drugs as 

triplicate 15-dose titrations, generating over 100 million data points to date [16,17,8].
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The use of qHTS to produce high quality and biologically relevant data is critical in 

correlation to in vivo activity, low dose extrapolation, and risk assessment. However, as with 

any technology, these assays are not immune to noise or artifacts that may interfere with the 

true biological activity. When a signal is observed in an assay, it is important to be able to 

distinguish a true biological effect from an artifact. In addition to “noise” and experimental 

variations, common artifacts found with fluorescence or luminescence based reporter assays, 

such as those employed by Tox21, include compound auto fluorescence [18,19], interference 

with the assay reporter gene [20], and cytotoxicity [6,9]. Compound auto fluorescence 

often interferes with agonist mode assays, in which an increase in signal indicates activity. 

Compound interaction with the assay reporter gene itself could be mistaken for either 

agonist activity, when the compound activates the reporter gene, or antagonist activity, 

when the compound inhibits the reporter gene. Luciferase and β-lactamase reporters are 

commonly used in Tox21 and other HTS assays. Finally, cell-based antagonist mode assays 

are often confounded with cytotoxicity interference because both cell death and inhibition of 

the target of interest result in a decrease in assay signal.

To minimize compound or assay technology dependent artifacts, all compounds in the Tox21 

10K library are tested for auto fluorescence at wavelengths used for assay readouts and for 

luciferase activity. In addition, each assay is multiplexed with cell viability measurements 

to identify cytotoxicity interference. The challenge is then to devise methods to 1) evaluate 

these qHTS data for technical quality, e.g. signal reproducibility, and 2) integrate signals 

from repeated assay runs, primary readouts and counter screens to produce a final call on 

on-target compound activity. Here, we describe a complete qHTS data analysis pipeline 

developed at NCATS that begins with plate level raw data processing, followed by 

concentration response curve fitting and classification, data reproducibility evaluation, and 

assignment of activity outcomes to compounds through integration of data from multiple 

readouts and counter screens. This approach has been applied to all the qHTS data generated 

from the Tox21 assay validation runs and 10K screens, and can be adapted to analyze other 

qHTS data generated in a similar fashion.

2. qHTS data pipeline

2.1 Plate level data processing, curve fitting and classification

During the execution of the screen, quality metrics, such as CV, S/B, and Z-factor [21], are 

calculated using raw fluorescence or luminescence reads from each plate to monitor gross 

assay performance. These metrics are recorded for each plate and examined. “Failed plates,” 

identified by abnormally poor values, are inspected visually and, if necessary, excluded from 

further data analysis. Upon completion of an assay run, raw plate reads for each titration 

point are first normalized relative to the positive control compound (100% for agonist mode 

and −100% for antagonist mode assays) and DMSO-only wells (0%) placed in the first 

four columns of each plate as follows: % Activity = ((Vcompound − VDMSO)/(Vpos − 

VDMSO)) × 100, where Vcompound denotes the compound well values, Vpos denotes the 

median value of the positive control wells, and VDMSO denotes the median values of the 

DMSO-only wells, and then corrected using compound-free control plates (i.e., DMSO-only 
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plates) at the beginning and end of the compound plate stack to remove background patterns 

and subtle abnormalities such as tip effects or blotting from cell dispenses [22].

Corrected plate data are pivoted to form concentration–response series, which are 

subsequently fit to a four-parameter Hill equation [23] yielding concentrations of half-

maximal activity (AC50) and maximal response (efficacy) values [24]. Concentration-

response curves are designated as Class 1–4 based on efficacy, the number of data 

points observed above background activity, and the quality of fit [25]. Curve classes are 

heuristic measures of data confidence. The qHTS curve classification scheme has been later 

amended to better suit the needs of toxicology research (Table 1) [6]. The most problematic 

concentration responses are automatically assigned curve class 5 based on considerations 

like the direction of activity (observing alternately both increases and decreases in signal 

over a short concentration range) and unusually large signal at low sample concentrations 

(activity at zero concentration is estimated to be >3SD of control) [6]. Class 5 curves 

and other cases in which an inconsistency between the highest compound activity and the 

curve class assigned is identified, such as assigning a compound with a positive response 

a negative curve class, are manually inspected to correct the curve class, if necessary. 

Adjustment is normally done by masking or by unmasking data points improperly masked 

by the automated curve fitting process to adjust the curve fit (Figure 1). To facilitate analysis 

and activity profiling, each curve class is further combined with an efficacy cutoff and 

converted to a numerical curve rank such that more potent and efficacious compounds with 

higher quality curves are assigned a higher rank (Table 2). Curve ranks should be viewed as 

a numerical measure of compound activity.

2.2 Assay performance measured by reproducibility

After manual curation, the “clean” curve fitting results from the replicate assay runs 

are assessed for activity reproducibility to determine the final assay performance. Each 

sample curve is first assigned an activity outcome based on its curve class as follows: 

inactive (class 4), active agonist/antagonist (class 1.1, 2.1; class 5 due to super potency 

(AC50<lowest test concentration)), agonist/antagonist (class 1.2, 2.2), inconclusive agonist/

antagonist (all other non-5 classes), no call (other cases of class 5). Each activity outcome 

category (excluding the “no call” category, which is treated as missing data) is then assigned 

a score: active agonist (3), agonist (2), inconclusive agonist (1), active antagonist (−3), 

antagonist (−2), inconclusive antagonist (−1), inactive (0). The pair-wise activity outcome 

score differences for all replicate curves of each sample are then averaged and the % 

of inactive calls for the sample calculated to determine the final reproducibility call of 

the sample: active match (average score difference <1.1, %inactive call <25%), inactive 

match (average score difference <1.1, %inactive call >50%), mismatch (average score 

difference >2.5), inconclusive (all other cases). Each assay is assigned a performance score 

as follows: reproducibility score = 2×%active match + %inactive match − %inconclusive − 

2×%mismatch.

2.3 Identification of auto fluorescence and cytotoxicity artifacts

In fluorescence based agonist mode assays, auto fluorescent compounds can show the 

same phenotype as those of agonists. Two approaches are used to identify potential auto 
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fluorescent artifacts to distinguish them from true agonists. One approach is using the auto 

fluorescence detection counter screen [18,19] measured at the same wavelength as the assay 

readout (e.g., 460 nm for β-lactamase assays). Any compound with the agonist phenotype in 

the assay signal channel that also shows activation in the auto fluorescence counter screen 

with an AC50 difference <3 fold is flagged as a potential auto fluorescent false positive. 

The second approach is examining the activity of each compound in all the assays screened 

having the same reporter (e.g. β-lactamase). Compounds with the agonist phenotype in 

the assay signal channel (e.g., the 460 nm channel of β-lactamase assays) that also had 

an >4 average curve rank in the signal channel of all the assays with the same reporter 

are considered promiscuously active in such reporter gene assays and potentially auto 

fluorescent. The compounds identified by either approach are assigned the “inconclusive 

agonist (fluorescent)” activity outcome category. The auto fluorescence counter screen data 

on the Tox21 10K have been made publicly available in PubChem [26] (assay IDs 720678, 

720680, 720679, 720681, 720682, 720683, 720687, 720675, 720674, 720685, 720686, 

720684). The same methods could be applied to luciferase reporter gene assays to identify 

compounds that are promiscuous luciferase stabilizers. Luciferase counter screens have also 

been conducted as an auxiliary approach to identify such compounds in the Tox21 10K 

library and the data are available in PubChem (assay ID 1224835).

In antagonist mode assays, cytotoxic compounds can show the same inhibitory phenotype 

as those of antagonists that need to be distinguished from true antagonists and flagged as 

cytotoxicity-related false positive responses. For this reason, each antagonist mode assay 

screened for Tox21 is accompanied with a cell viability readout that serves as the counter 

screen. Any compound with the antagonist phenotype in the assay signal channel that also 

shows inhibition in the cell viability counter screen with an AC50 difference <3 fold or 

p>0.05 (t-test) is flagged as a potential cytotoxic false positive. As an alternative to the 

cell viability counter screen, the control channel in assays with multiple channel readouts 

(e.g. the 530 nm readout of β-lactamase assays) can be used to identify potential cytotoxic 

compounds. Either activation or inhibition shown in this channel can be an indication 

of cytotoxicity [6]. The effectiveness of using the control readout to identify potential 

cytotoxicity artifacts has been compared with the cell viability counter screen. The two 

approaches achieve similar specificity in correctly distinguishing true antagonists from 

cytotoxic artifacts, while filtering with the cell viability counter screen results in better 

sensitivity compared to the control readout [27].

2.4 Compound activity assignment

Compounds are assigned one of the following activity outcome categories: active agonist, 

inconclusive agonist (due to poor curve quality), inconclusive agonist (due to auto 

fluorescence), active antagonist, inconclusive antagonist (due to poor curve quality), 

inconclusive antagonist (due to cytotoxicity), inconclusive (activity direction cannot be 

determined), or inactive. The antagonist outcome labels in agonist mode assays are for 

compounds that show inhibition, which does not necessarily reflect true antagonism but 

rather might reflect increased cytotoxicity or promiscuous reporter gene inhibition. The 

agonist outcome labels in antagonist mode assays are for compounds that show activation, 

which does not necessarily reflect true agonism but rather may reflect compound auto 
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fluorescence or promiscuous reporter gene activation. To generate these assignments, curve 

ranks from all replicates of a compound are first averaged for each of the assay readouts, 

and the activity outcome of the compound in the assay readout is assigned based on 

the compound’s average curve rank and reproducibility call as shown in Table 3. For 

luminescence assays with a single readout that is run in agonist mode, such as the estrogen 

receptor alpha luciferase reporter gene assay (BG1-ER-luc) [27], this activity outcome 

is assigned as the final activity outcome for a compound. For the same assay run in 

antagonist mode in complex with a cell viability counter screen, an activity outcome is 

assigned to both the antagonist mode readout and the cell viability readout first, and 

the final assay activity outcome for a compound is determined according to Table 4(c). 

For fluorescence based assays with multiple channel readouts (signal, control and ratio), 

such as the estrogen receptor alpha β-lactamase reporter gene assay (ER-bla) [27] or the 

mitochondrial membrane potential assay [16,12], the final activity outcome of a compound 

is determined based on its multi-channel activity as shown in Tables 4(a) and (b). For 

antagonist mode assays, the cell viability counter screen data are used to flag potential 

cytotoxic artifacts. For agonist mode assays, potential artifacts produced by compounds that 

auto fluoresce in the signal channel (e.g., 460 nm readout in the ER-bla assay) are flagged 

using both the compound auto fluorescence profiling data and the promiscuous compound 

activity shown in the signal readout of all the assays screened in Tox21 that have the same 

reporter (e.g. β-lactamase). The complete activity assignment process is illustrated in Figure 

2.

3. Data sharing

As soon as the initial data parsing and assessment at the NCATS are complete, the 

concentration response data, curve fitting results, the raw plate reads, the assay conditions, 

and the sample mapping information are shared with the Tox21 partners through a suite 

of databases and software tools custom built by the NCATS for the Tox21 program (http://

tripod.nih.gov/tox/). Within the first six months of data generation, the assay data are 

only made available to the Tox21 partners through the aforementioned controlled-access 

site in which the data are further scrutinized for quality and utility. The data are then 

released to the public domain in a number of public databases including PubChem (http://

pubchem.ncbi.nlm.nih.gov/), CEBS (http://tools.niehs.nih.gov/cebs3/ui/), the EPA CompTox 

Chemicals Dashboard (https://comptox.epa.gov/dashboard/) and the NCATS Tox21 Data 

Browser (https://tripod.nih.gov/tox21/assays/). The high quality concentration response data 

generated on a wide spectrum of pathways and phenotypic toxicity endpoints provide a 

valuable resource for predictive toxicity modeling. These data can not only serve as in 

vitro signatures that can be used to predict in vivo toxicity endpoints and to prioritize 

chemicals for more in depth toxicity testing [28,12] that helps fulfill the goals of the Tox21 

program, but also provide rich training data sets for the QSAR (quantitative structure–

activity relationship) modeling community to build more robust models [29–33] such as the 

ones in the recent Tox21 Data Challenge hosted by NCATS in 2014 (https://tripod.nih.gov/

tox21/challenge/) [34].
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Figure 1. 
Example of outlier masking. Curves are manually inspected to mask or unmask data points 

improperly masked by the automated curve fitting process to adjust the curve fit when 

necessary.
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Figure 2. 
Compound activity assignment process. This flowchart shows the process of assigning a 

final assay activity outcome to a compound based on its qHTS data from replicate assay 

runs, multiple readouts and counter screens.
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Table 1.

Amended qHTS curve classification

Curve Class Description Efficacy p-value* Asymptotes Inflection

1.1 Complete curve
>6SD

† <0.05 2 Yes

1.2 Complete curve ≤6SD; >3SD <0.05 2 Yes

1.3 Complete curve >6SD ≥0.05 2 Yes

1.4 Complete curve ≤6SD; >3SD ≥0.05 2 Yes

2.1 Incomplete curve >6SD <0.05 1 Yes

2.2 Incomplete curve ≤6SD; >3SD <0.05 1 Yes

2.3 Incomplete curve >6SD ≥0.05 1 Yes

2.4 Incomplete curve ≤6SD; >3SD ≥0.05 1 Yes

3 Single point activity >3SD NA 1 No

4 Inactive ≤3SD ≥0.05 0 No

5
‡ Inconclusive NA NA NA NA

*
p-value is derived from a F-test that measures the quality of curve fit.

†
SD is the standard deviation of sample activities at the lowest tested concentration and values of the DMSO control wells.

‡
Class 5 is a special class for samples with activity at zero concentration (zero activity; extrapolated) exceeding 6SD or with zero activity>3SD and 

the difference between the maximal change in activity observed in the tested concentration range and zero activity is <3SD.
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Table 2.

Definition of curve rank as a numeric measure of compound activity

Curve class Efficacy Curve rank Activity Category

1.1 9 agonist

1.2 >50% 8 agonist

2.1 7 agonist

1.2 ≤50% 6 agonist

2.2 >50% 5 agonist

2.2 ≤50% 4 inconclusive

1.3 3 inconclusive

1.4 3 inconclusive

2.3 2 inconclusive

2.4 2 inconclusive

3 2 inconclusive

5 1 inconclusive

4 0 inactive

−2.3 −2 inconclusive

−2.4 −2 inconclusive

−3 −2 inconclusive

−1.3 −3 inconclusive

−1.4 −3 inconclusive

−2.2 ≤50% −4 inconclusive

−2.2 >50% −5 antagonist

−1.2 ≤50% −6 antagonist

−2.1 −7 antagonist

−1.2 >50% −8 antagonist

−1.1 −9 antagonist
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Table 3.

Compound single channel activity outcome assignments based on curve rank and reproducibility

Curve rank Reproducibility call Activity outcome

>−1 and <1 inactive match inactive

>−1 and <1 inconclusive inconclusive

>=1 mismatch inconclusive agonist

>=1 active match active agonist

>4 inconclusive active agonist

>=1 and <=4 inconclusive inconclusive agonist

<=−1 mismatch inconclusive antagonist

<=−1 active match active antagonist

<−4 inconclusive active antagonist

>=−4 and <=−1 inconclusive inconclusive antagonist
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Table 4.

Compound activity outcome assignments based on multi-channel assay readouts (a) multi-channel 

fluorescence agonist mode assay (b) multi-channel fluorescence antagonist mode assay (c) luminescence 

antagonist mode assay with cytotoxicity counter screen

(a)

*Ratio outcome
Signal channel 
outcome

Same reporter assay 
promiscuity Auto fluorescence outcome Activity outcome

inactive N/A N/A N/A inactive

inconclusive N/A N/A N/A inconclusive

active agonist agonist average curve rank ≤4
inactive or AC50 fluor/AC50 
signal ≥3 active agonist

inconclusive agonist agonist average curve rank ≤4
inactive or AC50 fluor/AC50 
signal ≥3 inconclusive agonist

agonist agonist average curve rank >4
agonist and AC50 fluor/AC50 
signal <3

inconclusive agonist 
(fluorescent)

active antagonist antagonist N/A N/A active antagonist

inconclusive antagonist antagonist N/A N/A
inconclusive 
antagonist

(b)

*Ratio outcome
Signal channel 
outcome Cell viability outcome Other conditions Activity outcome

inactive N/A N/A N/A inactive

inconclusive N/A N/A N/A inconclusive

active agonist agonist inactive or agonist N/A active agonist

active agonist agonist antagonist
AC50 viability/AC50 signal ≥3 
(p<0.05) active agonist

inconclusive agonist agonist N/A N/A inconclusive agonist

agonist agonist antagonist
AC50 viability/AC50 signal <3 
or p≥0.05

inconclusive agonist 
(cytotoxic)

active antagonist antagonist inactive or agonist N/A active antagonist

active antagonist antagonist antagonist
AC50 viability/AC50 signal ≥3 
(p<0.05) active antagonist

inconclusive antagonist antagonist N/A N/A
inconclusive 
antagonist

antagonist antagonist antagonist
AC50 viability/AC50 signal <3 
or p≥0.05

inconclusive 
antagonist 
(cytotoxic)

(c)

Signal channel 
outcome

Cell viability 
outcome Other conditions Activity outcome

inactive N/A N/A inactive

inconclusive N/A N/A inconclusive

active agonist inactive or agonist N/A active agonist

active agonist antagonist
AC50 viability/AC50 signal 
≥3 (p<0.05) active agonist

inconclusive agonist N/A N/A inconclusive agonist
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agonist antagonist
AC50 viability/AC50 signal 
<3 or p≥0.05 inconclusive agonist (cytotoxic)

active antagonist inactive or agonist N/A active antagonist

active antagonist antagonist
AC50 viability/AC50 signal 
≥3 (p<0.05) active antagonist

inconclusive antagonist N/A N/A inconclusive antagonist

antagonist antagonist
AC50 viability/AC50 signal 
<3 or p≥0.05

inconclusive antagonist 
(cytotoxic)

*
Ratio = signal channel/control channel

Abbreviations: AC50 fluor = AC50 in the auto fluorescence assay, AC50 signal = AC50 in the ratio channel

*
Ratio = signal channel/control channel

Abbreviations: AC50 viability = AC50 in the cell viability assay, AC50 signal = AC50 in the ratio channel

Abbreviations: AC50 viability = AC50 in the cell viability assay, AC50 signal = AC50 in the antagonist mode assay
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