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Abstract

The issue of spatial confounding between the spatial random effect and the fixed effects in 

regression analyses has been identified as a concern in the statistical literature. Multiple authors 

have offered perspectives and potential solutions. In this paper, for the areal spatial data setting, we 

show that many of the methods designed to alleviate spatial confounding can be viewed as special 

cases of a general class of models. We refer to this class as Restricted Spatial Regression (RSR) 

models, extending terminology currently in use. We offer a mathematically based exploration 

of the impact that RSR methods have on inference for regression coefficients for the linear 

model. We then explore whether these results hold in the generalized linear model setting for 

count data using simulations. We show that the use of these methods have counterintuitive 

consequences which defy the general expectations in the literature. In particular, our results 

and the accompanying simulations suggest that RSR methods will typically perform worse 

than non-spatial methods. These results have important implications for dimension reduction 

strategies in spatial regression modeling. Specifically, we demonstrate that the problems with RSR 

models cannot be fixed with a selection of “better” spatial basis vectors or dimension reduction 

techniques.
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1. INTRODUCTION

In our increasingly data rich world, large spatial data sets are becoming abundant. A 

booming field of research involves incorporating spatial dependence into models in a 

computationally efficient way. As is often the case with spatial statistics, much of this 

research has initially focused on developing and analyzing methods for spatial process 

models: models developed to make predictions at unobserved locations (e.g., Banerjee et al., 

2008; Wikle, 2010; Fuentes, 2007; Stein, 2014). There have been few attempts to understand 

how these methods impact inference on regression coefficients.
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Recently, however, there has been a line of work designed to efficiently incorporate spatial 

dependence into regression models when the primary interest is on inference for the 

regression coefficients. In many ways, this set of work mirrors the work done in the spatial 

process model research. For some examples, in the context of areal data, Hughes and 

Haran (2013) presented a reduced-rank approach, Prates et al. (2019) developed a sparse 

approximation technique, and Burden et al. (2015) introduced an approximate likelihood 

method. Bradley et al. (2015) extended ideas of basis selection techniques to multivariate 

spatio-temporal mixed effects models, while Murakami and Griffith (2015) incorporate 

spatial dependence through eigen-vector spatial filtering. More recently, Thaden and Kneib 

(2018) introduced a structural equation approach for estimating regression coefficients when 

there is an unobserved spatially dependent covariate.

In contrast to the work in the spatial process model realm, these methods are either 

designed or inspired by methods designed to alleviate “spatial confounding.” The first 

explicit reference to spatial confounding is often attributed to Clayton et al. (1993), who 

observed what he referred to as “confounding by location”: the situation where estimates of 

a regression coefficient associated with a spatially-structured covariate are affected by the 

presence of a spatial random effect in the model. In recent work, the phenomenon is often 

explained as the presence of multicollinearity between the covariates, X, and the spatial 

random effect (Prates et al., 2019; Hanks et al., 2015; Thaden and Kneib, 2018; Hefley et al., 

2017).

Reich et al. (2006) and Hodges and Reich (2010) brought recent attention to the issue 

(see also, Paciorek, 2010, for a study on the effects of spatial confounding on inference 

for regression coefficients). This work highlighted for the first time that in the presence 

of spatial confounding, not only can the estimates for regression coefficients change, but 

the uncertainty associated with these estimates can be “overinflated.” To address these dual 

concerns, Reich et al. (2006) proposed a method employing synthetic predictors to smooth 

orthogonally to the fixed effects. Hughes and Haran (2013) then extended this work by 

suggesting the use of eigenvectors of the Moran operator as synthetic predictors. They 

argued these basis functions would allow for dimension reduction through the selection of 

only those synthetic predictors associated with “attractive” spatial dependence (as opposed 

to “repulsive” spatial dependence). The intuitive appeal of this set of work inspired a series 

of follow-up investigations (Prates et al., 2019; Burden et al., 2015; Bradley et al., 2015; 

Thaden and Kneib, 2018). However, it has been observed that these methods can lead to 

elevated levels of Type-S errors, the Bayesian analogue of Type I error (Prates et al., 2019; 

Hanks et al., 2015, the latter paper suggested a posterior predictive approach to address this 

concern). Recently, Hanks et al. (2015) and Prates et al. (2019) have noted that there is a 

need to better understand when it is appropriate to utilize such methods. Indeed, with the 

exception of Reich et al. (2006), there has been a lack of mathematical formalism to assess 

the impact of smoothing orthogonally to the fixed effects has on inference for regression 

coefficients.

In this work, we propose to fill that void. To do so, we consider a Bayesian analysis 

of Gaussian areal spatial data. We show that with respect to inference on regression 

coefficients, the current methods proposed to smooth orthogonally to the fixed effects can 
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be thought of as a subset of a larger class of models. Extending the terminology currently 

in use for these proposed methods, we will refer to this larger class as Restricted Spatial 
Regression (RSR) models. We find that RSR models transform a mixed-effects model 

into an overfit linear model. Specifically, any of these models will produce a posterior 

mean for the regression coefficients which is equivalent to the posterior mean obtained in 

the corresponding non-spatial model. The various approaches to smoothing orthogonally 

to fixed effects were designed to ensure that all the marginal posterior variances of 

the regression coefficients are greater than the corresponding posterior variances of 

the non-spatial model. However, we show that the exact opposite is often true. The 

reduction in the posterior variances is caused solely by the addition of the spatial basis 

functions. Furthermore, our analytic results and the included simulation studies indicate that 

sufficiently large credible intervals for the regression coefficients will generally be nested 

within the corresponding credible intervals from the non-spatial model. Importantly, these 

results are invariant to the spatial structure of the covariates and any spatial structure in 

the residuals. In short, our results indicate that with respect to coverage and Type-S error, 

one would be better off fitting a non-spatial model than any RSR model. Furthermore, 

simulations indicate that when there is spatial dependence unexplained by the covariates, 

RSR models for Gaussian data exasperate the decrease in coverage and increase in Type-S 

rates - even if the true unexplained spatial dependence in the response variable is generated 

orthogonally to the covariates. A simulation study and example application of RSR models 

suggest similar results might hold for count data.

The rest of the paper proceeds as follows: Section 2 provides an overview of deriving 

inference on regression coefficients in a spatial random effects model and a discussion of 

the methods developed to alleviate spatial confounding. Section 3 contains the results of this 

paper. Section 4 includes simulation studies, and Section 5 compares various approaches on 

the Slovenia stomach cancer data set. The proofs for all theorems are contained in Appendix 

C of the online supplement.

2. BACKGROUND

2.1. Inference on Regression Coefficients in Random Effects Models.

The spatial generalized linear mixed model (SGLMM), popularized by Diggle et al. 

(1998), assumes that Y = {yi, …, yn}T  is a realization from a random field where yi is 

observed at spatial location si, i = 1 … n. The vector of transformed conditional means 

Z = {g(E(y1|η(s1))), …, g(E(yn|η(sn)))}T  for a given link function g is then related to fixed 

effects and a spatial random effect:

Z = 1β0 + XβX + η . (1)

Here, 1 is the n × 1 column vector of 1’s, X = [X1, …, Xp] is the n × p design matrix 

whose ith row consists of the p covariates associated with Zi , β∗ = (β0, βX) ∈ ℝp + 1 is a 

vector of regression parameters, and η = (η1, …, ηn)T  is a zero-mean random effect with a 
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spatial covariance matrix Σ(θ) parameterized by θ ∈ ℝm. In this paper, the notation denoting 

dependence on location will be dropped when the meaning is unambiguous. We define 

X∗ ≡ [1 X]. The distinction between X and X* is important when we compare different 

models. However, unless otherwise stated, the points about one in this section are true for 

both.

Historically, much of the statistical community’s intuition for the behavior of estimates of 

regression coefficients is based on work for the linear model when g is the identity mapping. 

A non-spatial (NS) analysis in this case would correspond to an assumption that Σ(θ)∝ I. 

In this setting, the best unbiased linear estimator for the regression coefficients is the well-

known ordinary least squares (OLS) estimator βNS
∗ = (X ∗ TX∗)−1X ∗ TY . Classical statistics 

textbooks remind us that if the assumption of i.i.d error structure is not met, these OLS 

estimates will be inefficient. Instead, if θ were known, the most efficient estimator would be 

the generalized least squares estimator (GLS) βGLS
∗ = (X ∗ TΣ−1(θ)X∗)−1X ∗ TΣ(θ)−1Y .

The two estimates will generally not be the same. However, in spatial statistics there is 

often an assumption that the addition of a spatial random effect should not change the 

point estimates of the regression coefficients. This expectation seems to be driven by 

the fact that geostatistical software developed to facilitate spatial process modeling often 

only implemented ordinary kriging and not universal kriging, the former allowing for an 

unknown, but constant mean and the latter allowing the mean to be an unknown linear 

combination of covariates associated with points in space (Waller and Gotway, 2004, pg. 

344). Conventional wisdom in the spatial statistics literature suggests that if there is spatial 

dependence unexplained by the covariates (i.e, processes in which things near in space are 

assumed to be more similar than things far away in space), the naive use of βNS
∗

 will 

underestimate the variance of this estimator. This intuition is driven by well-understood 

examples which illustrate that ignoring spatial dependence will result in an underestimate 

of the variance of the mean of a spatial process (see, e.g., Cressie, 1993, pages 13-15). 

Paciorek (2010) pointed out that there is a lack of formal quantification of this belief for 

regression coefficients in general. Working in a setting where X is stochastic, Paciorek 

(2010) showed that generally the naive variance estimator Var(βOLS
X ) will underestimate the 

uncertainty estimate of the correct variance estimator Var(βGLS
X ), thereby lending support to 

the common expectation in spatial statistics. In any case, the expectation that the estimates 

of the variance associated with regression coefficient estimators will increase in models 

accounting for the presence of residual spatial dependence extends beyond the linear model. 

In practice this expectation is often true, but there are examples in the literature where it 

does not hold (for an example, see Banerjee et al., 2003).

2.2. Spatial Confounding.

The term spatial confounding is used to describe the effect that multicollinearity between the 

fixed covariates X and the spatial random effect η has on the point estimates and variance 

of the regression coefficient estimates. Most of the work in spatial confounding involves a 

fully Bayesian analysis where the point estimates for the regression coefficients are defined 
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to be the posterior mean E(βX|Y ) and the variances of interest are the diagonal entries of 

Var(βX|Y ) (Reich et al., 2006; Hughes and Haran, 2013; Hefley et al., 2017; Hanks et al., 

2015; Prates et al., 2019). Efforts have been made to propose statistics designed to detect the 

presence of spatial confounding (Reich et al., 2006; Hefley et al., 2017; Prates et al., 2019). 

Thaden and Kneib (2018) provided a formalization of spatial confounding that assumes 

multicollinearity between X and the spatial random effect occurs because of the absence 

of another unobserved spatially varying covariate. However, there is not currently a formal 

definition of spatial confounding in a more general setting, in part because it is a difficult 

concept to quantify. It is easier to define what spatial confounding is not, and so that is what 

we do in Definition 1. As will be seen shortly, all the methods designed to address spatial 

confounding are designed in the hopes of achieving the properties in Definition 1.

Definition 1.—A method which results in posterior mean E(βX|Y ) and marginal posterior 

variances Var(βi
X|Y ), i = 1, … , p alleviates spatial confounding if the following conditions 

are met:

1. E(βX|Y ) = E(βNS
X |Y ), and

2. Var(βNS,i
X |Y ) ≤ Var(βi

X|Y ) ≤ Var(βSpatial,i
X |Y ) for i = 1, … , p,

where βNS
X  are the regression coefficients of the corresponding non-spatial model and 

βSpatial
X  are the regression coefficients from an unrestricted spatial random effect.

Hodges and Reich (2010) argued that spatial confounding can be a concern whenever a 

spatial random effect is included in a model. However, most of the proposed methods to 

address spatial confounding are developed in the context of Gaussian areal spatial data 

(Reich et al., 2006; Hodges and Reich, 2010; Hughes and Haran, 2013; Prates et al., 

2019). In the areal data setting, spatial dependence is described by the introduction of an 

underlying, undirected graph G = (V, E). Non-overlapping spatial regions that partition 

the study area are represented by vertices, V = {1, … , n}, and edges E defined so that 

each pair (i, j) represents the proximity between region i and region j. We represent G 
by its n × n binary adjacency matrix A with entries defined such that diag(A) = 0 and 

Ai, j = 1(i, j) ∈ E, i ≠ j. In models designed to address spatial confounding, the spatial random 

effect is typically assumed to follow the intrinsic conditional autoregressive (ICAR) model/

prior (Besag et al., 1991). We will refer to models utilizing this prior as ICAR models.

For Gaussian areal data, we observe that the ICAR model, the non-spatial model, and 

models designed to alleviate spatial confounding such as those proposed by Reich et al. 

(2006) (RHZ), Hughes and Haran (2013) (HH), and Prates et al. (2019) (PAR) are all special 

cases of the following more general form:

Y = XβX + W δ + ϵ

p(δ|τs)∝τsrank(F )/2exp{−τs
2 δTFδ},

(2)
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where ϵ ∼ N(0, τϵI), and τϵ and τs are precision parameters. W is a n × q set of basis vectors 

such that q ≤ n − p, and F is a symmetric, non-negative definite matrix. Table 1 illustrates 

how the three proposed RSR methods can be considered special cases of the form (2).

The distinction between the use of X and X* in Table 1 is a direct consequence of the 

impropriety of the ICAR prior. The ICAR model captures spatial dependence through a 

Gaussian Markov Random Field (GMRF). The precision matrix is the graph Laplacian Q 
= diag(A1) − A. Because the adjacency matrix A is defined to be the zero/one adjacency 

matrix on G, Q is the graph Laplacian of a simple graph. A well-known fact from spectral 

graph theory is that the kernel of Q will be constant on each connected component of G (Von 

Luxburg, 2007). This fact means that the prior p(δ|τs) will include an implicit intercept for 

each connected component of the graph in Bayesian analysis. For simplicity, this paper will 

assume that the G is connected and therefore there is a single global intercept included in the 

ICAR prior.

Reich et al. (2006) investigated in depth the effect multicollinearity between X and the 

spatial random effect induced by the ICAR prior has on E(βX|Y ) and Var(βX|Y ) using a 

re-parameterization of the ICAR model:

Y = XβX + V δ + ϵ,

p(δ|τs)∝τsκexp −τs
2 δTΛδ ,

(3)

where V ΛV T  is its eigendecomposition of Q, and Λ = diag(λ1, …, λn) where λ1 ≥ λ2, … ≥ λn. 

Under the assumptions of this paper (i.e., that G is connected), κ = n − 1
2 . Using a Bayesian 

approach with flat priors on βX and independent gamma priors on τs, τs, Reich et al. (2006) 

and Hodges and Reich (2010) illustrated that E[βX|Y , τs, τϵ] ≠ E[βNS
X |Y ] in the presence of 

multicollinearity between X and V. When regression coefficients are of primary interest, 

they argued that spatial random effects are added merely to account for spatial correlation in 

residuals when computing the posterior variance. Under this reasoning, the spatial random 

effect should not change the point estimates of the fixed effects. Furthermore, Reich et al. 

(2006) suggested that this multicollinearity caused “overinflation” of the posterior variance 

of the regression coefficients. This overinflation was noted to be exacerbated when X was 

correlated with low frequency eigenvectors of the graph Laplacian. In spatial regression, 

Reich et al. (2006) argued that two factors can lead to an increase in the posterior variance 

of regression coefficients as compared to the NS model: 1) collinearity with the spatial 

random effects and 2) a reduction in the effective number of observations because of spatial 

clustering. They proposed a model that they claimed would eliminate the former of these 

factors while preserving the latter. In other words, the RHZ model was designed to alleviate 

spatial confounding according to Definition 1:

1. E(βRHZ
X |Y ) = E(βNS

X |Y )

2. Var(βNS,i
X |Y ) ≤ Var(βRHZ,i

X |Y ) ≤ Var(βICAR,i
X |Y ) for i = 1, … , p.
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The authors provided theoretical support for first inequality of the second claim.2 

To accomplish these goals, the authors proposed using synthetic predictors which are 

orthogonal to the column space of X. Define PX = X(XTX)−1XT  to be the projection matrix 

onto the column space of X, and PX
⊥ = I − PX to be its orthogonal complement. Let L be 

the n × (n − p) matrix composed of the eigenvectors of PX
⊥ associated with an eigenvalue of 

1 and let K be the n × p matrix composed of the eigenvectors associated with an eigenvalues 

of 0. Model (3) can be re-written as a function of δ1 = LTV δ and δ2 = KTV δ. The RSR 

method proposed by Reich et al. (2006) involves setting δ2 = 0. Using this notation, the RHZ 

model can be expressed as:

Y = XβX + Lδ1 + ϵ,

p(δ1|τs)∝τsκexp{−τs
2 δ1

TQsδ1},
(4)

where Qs = LTQL. Hodges and Reich (2010) explained that this solution assigns all 

variability explained by both V and X to X by restricting spatial smoothing to the orthogonal 

complement of the fixed effects.

Hughes and Haran (2013) also argued that variance inflation caused by spatial confounding 

is a concern in the SGLMM. However, they stated that the RHZ model (4) fails to account 

for the underlying graph in the construction of L, thereby permitting structure in the spatial 

random effects that corresponds to negative spatial dependence. Hughes and Haran (2013) 

suggested such negative spatial dependence should not be expected in the context in which 

spatial models are generally fit. They developed a model (hereafter the HH model) that 

they stated would eliminate negative dependence while alleviating the impact of spatial 

confounding on the marginal posterior variances. Utilizing a Bayesian framework with 

proper priors on the regression coefficients, they suggested that rather than using L, one 

should instead use Mq, where Mq is the n × q matrix composed of the eigenvectors of what 

they referred to as the Moran operator PX
⊥APX

⊥. In support of the argument that Mq should 

be preferred to L, the authors pointed out that the column vectors of Mq had more spatial 

structure than the column vectors of L.

Hughes and Haran (2013) also stated that this model naturally lent itself to dimension 

reduction. The Moran operator is the numerator of a generalization of the Moran’s I statistic, 

a popular non-parametric measure of spatial dependence introduced by Moran (1950). We 

will refer to this generalization of the Moran’s I as IX(A). Relying on work on the original 

Moran’s I statistic in the context of bounded regular tessellations by Boots and Tiefelsdorf 

(2000), Hughes and Haran (2013) noted the (standardized) spectrum of the Moran operator 

comprises all possible values of IX (A) and its eigenvectors comprise of all possible 

mutually distinct patterns of clustering after accounting for X and the graph. Importantly, 

2Section 3 of Reich et al. (2006) provides a mathematical argument that this should be true. However, the argument appears to rely 
on the stochastic ordering of a gamma distribution. It appears the authors assume they are using a gamma distribution with a scale 
parameter- which is stochastically increasing in the scale. Their work suggests they are instead working with a rate parameterization- 
which is stochastically decreasing in the rate parameter.
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they argued that choosing only “attractive” eigenvectors (those associated with positive 

eigenvalues) of the Moran operator would improve the inference on regression coefficients 

by eliminating patterns of “repulsive” spatial dependence (eigenvectors associated with 

negative eigenvalues). Furthermore, they suggested that for most graphs only selecting the 

first .1n eigenvectors should be sufficient to perform well for regression. The work in 

Hughes and Haran (2013) relied on simulations to illustrate the points made.

A downside to both the RHS and HH models is a loss of some of the computational 

efficiency inherent in the ICAR prior utilized in (3). ICAR models capture spatial 

dependence through a Gaussian Markov Random Field (GMRF). This is appealing because 

the precision matrix for the random field is very sparse, which allows the use of sparse 

matrix routines to facilitate efficient computations (Rue and Held, 2005; Paciorek, 2009). 

The matrix Qs need not be, and generally is not, sparse. Furthermore, the RHZ and HH 

methods do not extend naturally to spatial models that do not utilize the ICAR prior. Recent 

work by Prates et al. (2019) attempts to to overcome the computational limitations of RSR 

methods. Their work suggests projecting the vertices of the graph G onto the orthogonal 

space of the design matrix X. Using the projected vertices, they then construct a new sparse 

precision matrix Q⊥ for use in analysis. This model is referenced as the PAR model in 

Table 1. Guan and Haran (2018) also suggested a projection based approach to approximate 

covariance matrices of spatial random effects to improve the computationally efficiency of 

RSR methods. This method can also be extended to spatial models beyond the ICAR model.

RSR methods are not universally accepted; some find the assumption that the spatial random 

effect operates orthogonally to the fixed effects to be too strong (See e.g., Paciorek, 2010). 

Furthermore, recent work has highlighted that RSR methods can suffer from elevated rates 

of Type-S errors under model misspecification (Hanks et al., 2015; Prates et al., 2019). 

Type-S error is the Bayesian analogue to Type 1 error, and we define it to occur when the 

equal-tailed 95% credible interval for a regression coefficient that is truly 0 does not include 

0. The model misspecification studied has involved a generating model which include spatial 

random effects that do not operate orthogonally to the fixed effects. Currently, the prevalent 

belief is that the elevated Type-S error is caused by such misspecification. However, in this 

paper we will show that the phenomena occurs even without it.

It remains an open question when RSR methods should be preferred over traditional 

spatial models. Understanding when RSR methods perform well is important because RSR 

methods can lead to a very different interpretations of the effect of regression coefficients 

(Hanks et al., 2015). Attempts to understand when RSR methods are appropriate have led 

to suggestions that when X is correlated with low frequency eigenvectors of the graph 

Laplacian, RSR methods should be preferred (Reich et al. (2006); Prates et al. (2019), 

Hefley et al. (2017)).

3. CONSEQUENCES OF ORTHOGONAL SMOOTHING

In this section, we investigate the impact that methods designed to alleviate spatial 

confounding have on inference for regression coefficients. Formally, we state the following 

definition of an RSR model:
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Definition 2.

A Restricted Spatial Regression Model is any model of the form (2) with W chosen such that 

C(W ) ⊥ C(X).

Here and throughout the paper C( ⋅ ) denotes the column space of a matrix. Both the RHZ 

and HH models are special cases of this class of models. Note that the ICAR model is not 

a special case of an RSR model. For RSR models, any results stated for βX (relying on 

X) are also true for β* (by replacing X with X*). Since the PAR model is an attempt to 

approximate these methods, we will not spend time directly investigating its performance. 

All of the following results assume a Bayesian analysis that uses flat priors on the regression 

coefficients and independent gamma priors on the precision parameters τs and τϵ with 

respective shape parameters as, aϵ > 0 and scale parameters bs, bϵ > 0.

3.1. Properties of Marginal Posterior Distribution.

To begin to investigate the impact RSR models have on inference for regression coefficients, 

we consider the mean and variance of the marginal posterior distribution of βX. As 

previously noted, RSR models are developed in the areal data setting with the expectation 

that the marginal posterior mean of βX will be (XTX)−1XTY  . Working in a geostatistical 

setting and utilizing an empirical Bayes approach, Hanks et al. (2015) observed this would 

be the case for a RSR method in that context as well. However, all of the previous work 

has relied either on observations regarding distributions of βX conditional on the precision 

parameters (for example, Reich et al. (2006); Hodges and Reich (2010)) or on the full 

conditional distribution of βX (Hanks et al. (2015)). Theorem 1 offers the first rigorous proof 

of the existence of the mean and variance of the marginal posterior distributions of βX in 

RSR models, as well as the forms these moments take. It illustrates that the point estimates 

obtained from RSR models will be the same as the non-spatial point estimates. It also 

shows the variance of the distribution looks functionally similar to the variance we would 

have obtained in the non-spatial model. For the rest of the paper, we adopt the following 

notational shortcut: σϵ = 1
τϵ

.

Theorem 1.—Under conditions A(1)- A(5) of the online supplement, a RSR model with W 
a n × q matrix will give rise to the marginal posterior distributions of βX such that:

E[βX|Y ] = (XTX)−1XTY

Var[βX|Y ] = (XTX)−1E[ 1
τϵRSR |Y ] = (XTX)−1E[σϵRSR|Y ] .

Proof: See Appendix C.1 of the online supplement.

An immediate consequence of Theorem 1 is that the dimension of W will not impact the 

point estimates for the regression coefficients. Thus, any choice of q linearly independent 
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column vectors which are orthogonal to C(X) will give the same point estimates as 

a HH model using Mq. Of course, incorporating spatial dependence in a model is a 

computationally expensive and often theoretically complicated endeavor. If the concern were 

simply to obtain point estimates from a non-spatial model, there would be no need to use a 

spatial model. As noted previously, the focus in fitting a spatial model is often to account for 

spatial correlation in residuals when computing the posterior variance. Hence, our interest 

lies in Var[βX|Y ], which Theorem 1 illustrates is a function of E[σϵRSR|Y ].

The prevalent expectation is that the marginal posterior variances of the regression 

coefficients in RHZ and HH models will be greater than the marginal posterior 

variances obtained in the non-spatial model. In settings where RSR models are currently 

recommended for use, Theorem 2 illustrates that for a broader class of RSR models 

including the RHZ and HH model, the opposite is true. In the statement of Theorem 2, 

r =
τs
τϵ

 is the inverse of the signal-to-noise ratio.

Theorem 2.—Under conditions A(1)-A(4) of the online supplement, a RSR model with W 
a n × q matrix with orthonormal columns and F a positive definite and symmetric matrix 

will always result in a marginal posterior variance for βX
i, i = 1, … , p that is less than 

or equal to that of the posterior variance that would have been obtained in the non-spatial 

model whenever the following holds:

E[r|Y ]
E[τs] < E 1

TϵNS |Y = E[σϵNS|Y ],

where E[τs] is the prior expectation of τs under the RSR model.

Proof:  See Appendix C.2 of the online supplement.

As a practical matter, the conditions set forth in Theorem 2 will often be met. To see this, 

consider that spatial regression models, including RSR models, are typically used in settings 

in which the XβX in the NS model does not explain nearly all the variability in Y (i.e., when 

E[σϵNS|Y ] is not nearly zero). Spatial confounding is thought to be problematic in settings 

where r is “small” for traditional spatial regression models (see e.g., Reich et al. 2006 and 

Hodges and Reich 2010). “Small” is usually taken to mean substantially less than 1 (see e.g., 

Reich et al. 2006 and Prates et al. 2019 who consider values of r = .1 and .2 respectively). 

This corresponds to situations where there is residual spatial dependence unexplained by X 

(and hence larger E[σϵNS|Y ]). The better a RSR model is at explaining this residual spatial 

dependence, the smaller E(r|Y) will be. Finally, in the literature, E[τs] ranges in value from 1 

(see e.g., Hodges and Reich, 2010) to 1, 000 (see e.g., Hughes and Haran, 2013). Thus, the 

conditions in Theorem 2 will typically be satisfied for prominent examples of RSR models.

Theorem 2 offers the first fully rigorous proof detailing the bounds on the variance of the 

marginal posterior distribution of βX for RSR models. Working in a geostatistical setting 

with an empirical Bayesian analysis, Hanks et al. (2015) stated without proof that the 
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inequality related to posterior variances in Theorem 2 should hold for a particular RSR 

model. However, perhaps because of the difference in settings, this observation has not been 

perceived as contradicting the expectations for the more commonly studied RHZ and HH 

models, which are precisely the opposite. Interestingly, the work in Hanks et al. (2015) is 

often reported as illustrating that RSR methods can have elevated Type-S error rates under 
model misspecification (Prates et al., 2019; Page et al., 2017). Prates et al. (2019) further 

noted that these elevated Type-S error rates were exacerbated in settings in which r is small. 

Yet, Theorem 2 suggests that RSR models will have elevated Type-S error rates in the 

absence of model misspecification. In a frequentist setting, the OLS estimators would be 

normally distributed and an ordering of variance with the same mean would suggest that 

the 100(1 − α)% confidence intervals would be nested (with the interval of the distribution 

with less variance completely contained in the other). In that setting, Theorem 2 would 

indicate that any RSR model would have higher rates of Type I error and lower rates of 

Type II error than the non-spatial model. Since the non-spatial model yields estimators 

with sampling distributions whose coverage probability matches the nominal coverage 

probability, this indicates that the RSR coverage probability would always be less than the 

nominal coverage probability under the conditions of Theorem 2. Hence, Theorem 2 would 

explain the elevated levels of Type-S error observed for RSR models, and it would mean 

these elevated levels could exist even without model misspecification.

In Bayesian analysis, when inference on regression coefficients is of primary interest, 

practitioners typically utilize an equal-tail credible interval. This is especially true in settings 

like those of this paper where improper priors preclude the use of Bayes factors. Because 

the marginal posterior distribution f(βX|Y ) is not normal for any of the models discussed, 

the variance ordering in Theorem 2 need not necessarily indicate a relationship between the 

credible intervals.

Investigating the relationship between equal-tailed credible intervals for the non-spatial 

model and a RSR model for all possible choices of graph, data, and spatial basis vectors is 

difficult because these distributions will not generally be available in closed form. However, 

for the case that βX ∈ ℝ, it is possible to make some observations that shed light on the 

relationship between the credible intervals of a RSR model and the NS model. This is 

formalized in Theorem 3.

Theorem 3.—Assume βX ∈ ℝ, A.1[3] holds, and A.1[5] holds. Let g(βX|Y ) be the marginal 

posterior probability distribution (pdf) from a RSR model with choice of F which is a 

symmetric and positive definite q × q matrix. Let ℎ(βX|Y ) be the marginal posterior pdf from 

the non-spatial model. Then, g(βX|Y ) = O(ℎ(βX|Y )) as βX ∞ and βX − ∞.

Proof:  See Appendix C.3 of the online supplement.

An immediate corollary to this result is the following.

Corollary 1.—Define G and H to be the respective cumulative distribution functions of 

g(βX|Y ) and ℎ(βX|Y ). ∃ C > 0 such that:
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1. lim sup
βX − ∞

G(βX|Y )
H(βX|Y )

≤ C,

2. lim sup
βX ∞

1 − G(βX|Y )
1 − H(βX|Y )

≤ C

Furthermore, for Dg
∗ and K(Cq, Dh) as defined in the proof in Appendix C of the online 

supplement, if Dg
∗ > K(Cq, Dℎ), then ∃ β* > 0, β* < 0 such that:

1. G(β|Y ) ≤ H(β|Y )∀β < β∗

2. 1 − G(β|Y ) ≤ 1 − H(β|Y )∀β > β∗

Proof:  See Appendix C.3 of the online supplement.

Generally, what these results indicate is that the tails of the marginal posterior distribution 

for the non-spatial model and the tails of the marginal posterior distribution for RSR models 

decay roughly at the same rate. The combination of Theorem 1 and Theorem 3 suggests 

that that RSR models offer inference very similar to a non-spatial model with respect 

to regression coefficients. Importantly, these results are invariant to the choice of graph, 

data, and spatial basis vectors. To see how the inference will be similar, note the posterior 

distribution f(βNS
X |Y ) is symmetric about its mean. While, f(βRSR

X |Y ) is not symmetric 

about its mean, two applications of Jensen’s inequality can bound the distance between 

a mean and median by the standard deviation. In practice, the standard deviation for an 

RSR model is always quite small. Thus, RSR and NS models produce marginal posterior 

distributions with a similar medians and similar tail decay. This result is important because 

RSR models are not offering much beyond what an NS model offers, yet they are much 

more computationally expensive. For example, Hughes and Haran (2013) reported that a NS 

model took under a minute, while their dimension reductions technique took over 6 hours.

If the condition put forth in Corollary (1) holds, it also means that for sufficiently large 

credible intervals, the credible interval for the RSR model will be completely contained 

in the corresponding credible interval for the non-spatial model. Importantly, these results 

require no assumptions about E(r|Y). Just as in the frequentist setting, this means that 

RSR methods will only capture the regression coefficient if the non-spatial model does. 

Furthermore, the RSR methods will always have higher rates of Type-S error than the 

non-spatial model - even if there is no spatial confounding. However, in practice determining 

whether the condition in Corollary (1) is satisfied will be impractical. Therefore, we further 

the investigation with simulation studies in Section 4.

3.2. Implications for Inference.

The premise of RSR models is that incorporating spatial dependence will yield better 

inference on the regression coefficients. In particular, the HH model and those influenced by 

it have emphasized choosing spatial basis vectors which are spatially smooth. This emphasis 

is inherited from work on dimension reduction techniques developed for spatial process 

modelling where this technique is quite useful (See e.g., Cressie and Wikle, 2015, pages 
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353-354). Recall our definition of RSR models includes both models designed to capture 

spatial dependence as well as models with arbitrary choices of W and F. Yet, the results 

of Theorem 1 – Theorem 3 hold whether the models are designed to incorporate spatial 

dependence or not. A natural question then is: For RSR models, do choices of W (and 

perhaps F) which exhibit spatial patterns behave any differently than those which do not?

Theorem 4 begins to explore the answer to this question. Recall that one of the criticisms of 

the RHZ model (4) is that the basis vectors L do not appear to be spatially smooth. Theorem 

4 states that when F is of the form WTQW, the inference on the regression coefficients 

will be invariant to C(W ). This result suggests that the choice of basis vectors which 

exhibit spatial patterns (such as those from the Moran operator) does not affect inference 

on regression coefficients in the ways expected. As an example, for moderate q, given a 

selection of spatially smooth basis vectors, we could pick a different basis of the column 

space (which may not appear spatially smooth), and inference for βX would be equivalent.

Theorem 4.—A RSR model with W1 a n × q matrix with orthonormal columns 

and F1 = W 1
TBW 1 for arbitrary non-null symmetric B will yield the same marginal 

posterior distribution f(βX|Y) as any other choice W2 with orthonormal columns such that 

C(W 1) = C(W 2) and F2 = W 2
TBW 2.

Proof:  See Appendix C.4 of the online supplement.

Theorem 4 suggests that the assumptions underlying the development of RSR models may 

be worth re-evaluating. The addition of the spatial basis vectors in RSR models is assumed 

to make the regression coefficient estimates less biased and more precise. However, further 

investigation into RSR models indicates that by choosing these spatial basis vectors to 

be orthogonal to the column space of X, RSR models are effectively transforming a mixed-

effects model into an overfit fixed effects model. Thus, RSR models may not be aiding in 

inference for regression coefficients as expected.

To understand the intuition behind this last claim, it is instructive to take a moment to review 

the non-spatial Gaussian model. The method of ordinary least squares makes the assumption 

that all the variability in the direction of X can be described by the linear combination of 

XβX. This assumption results in fitted values which are simply a projection of Y onto the 

column space of X. In other words, the point estimates are βX = (XTX)−1XTY . Importantly, 

this assumption is also reflected in the estimated variance of these point estimators. This can 

be seen in the familiar form for the estimated variance of the OLS estimators, where the ith 

regression coefficient βi
X

 is simply the (i, i) element of (XTX)−1σϵ
NS:

Var(βX
i) = (XTX)ii

−1σϵNS = (XTX)ii
−1 PX⊥Y 2

n − p .

The first component reflects the relationship between the different covariates, which is not of 

interest in this paper. The second term, however, is a consequence of the assumption that the 
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variation in the direction of X can be explained by XβX. Here, σϵ
NS is simply a function of 

the magnitude of the component of Y unexplained by any linear combination of the column 

space of X.

In Bayesian analysis, the assumption that all the variability in the direction of X can be 

explained by a linear combination of the columns of X has analogous implications. For the 

non-spatial model, the point estimates for the regression coefficients will simply be those of 

the OLS model. The associated posterior variance for the ith regression coefficient βX
i will 

be the (i, i) element of (XTX)−1E(σϵNS|Y ):

Var[βNS, i
X |Y ] = (XTX)ii

−1E(σϵNS|Y ) = (XTX)i, i
−1 bϵ

−1 + .5 PX Y⊥ 2

(aϵ − 1) + .5(n − p) . (5)

Although a bit messier than the OLS setting, this relationship again shows that the 

uncertainty associated with the regression coefficients is a function of the magnitude of 

the component of Y unexplained by the the column space of X. For n ≫ p and the typical 

choices of hyper-parameters (aϵ, bϵ
−1 < 1), this will in fact be quite similar to the estimate 

obtained via OLS.

In a fixed effects model, researchers are well aware that overfitting the model with 

the addition of synthetic predictors can distort the true relationship between Y and X. 

For example, consider the non-spatial model with new design matrix T = [X W], with 

C(X) ⊥ C(W ). Because W is constructed to belong to the orthogonal complement of the 

columns space of X, the point estimates remain unchanged. If W was a n × (n − p) matrix 

of rank n − p, T would be a basis of ℝn. Thus, by construction, PT
⊥Y = 0. More generally, 

because (TTT)−1 is a block diagonal matrix with diagonals (XTX)−1 and (WTW)−1, the 

following will be true:

Var(βX
i) = (XTX)ii

−1σT = (XTX)ii
−1 PT

⊥Y 2

n − p − q .

For fixed X, PT
⊥Y 2

 is monotonically decreasing as a function of the number of columns 

of W. If we add enough (linearly independent) columns to W, we will eventually explain 

the variation in Y. Of course, the n − p − q in the denominator ensures that σT  is not 

monotonically decreasing as the number of columns of W increases. However, a basis for the 

orthogonal complement to C(X) can still be added in such a way as to ensure that σT  will be 

very, very close to zero (see Appendix D.1 of the online supplement for an example). Thus, 

even if there is truly no relationship between Y and X, with enough synthetic covariates 

this approach can essentially ensure that the covariates are deemed “significant” (assuming 

that the columns X are not very strongly correlated). Of course, as noted this problem is 

well-understood in fixed effect models and this approach is not considered acceptable in the 

practice of regression analysis.
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Returning to RSR models, Theorem 1 illustrates that like the NS model, the point estimates 

for these models assume that all the variation in the direction of X can be explained by the 

linear combination XβX. However, Theorem 2 suggests that when it comes to the posterior 

variance, RSR models are going beyond this assumption. In RSR models, F and τs act 

as regularization parameters that can smooth some of the elements of δ to 0. These terms 

make it difficult to find a closed form expression for E[σϵRSR|Y ]. However, we can still gain 

intuition by looking at the behavior of E[σϵRSR|Y , r], where r =
τs
τϵ

 is again the inverse of the 

signal-to-noise ratio. Straightforward calculations show that E[σϵRSR|Y , r] can be expressed 

as:

1
bϵ

+ r
bs

+ .5Y T (PX
⊥ − W (I + rF )−1W T )Y

aϵ + as + .5(n − p) − 1 .

Note that the (n − p) term in the denominator will remain unchanged no matter how many 

columns are added to the spatial basis matrix W. If we consider the behavior of E[σϵRSR|Y , r]
as the signal-to-noise ratio increases (i.e., r → 0) for W a n × (n − p) matrix of full rank, then

lim
r 0

E[σϵRSR|Y , r] = 1
bϵ(aϵ + as + .5(n − p) − 1) .

For moderate p (relative to n) and the typical choices of aϵ and bϵ, this value will be quite 

small. Note that this is slightly smaller than the value that would be obtained in a Bayesian 

NS model if the fixed effects X alone completely explained the variation in Y (see Eq. (5) for 

the case when PX
⊥Y 2 = 0). However, this reduction is a function of how well the additional 

columns of W explain the variability in Y, and the signal-to-noise ratio will tend to increase 

as “useful” columns are added to W. In other words, if X did a poor job of explaining the 

variability of Y, the addition of columns to W will lead to a more dramatic decrease in 

E[σϵRSR|Y ] and hence Var[βX|Y ]. Because of the regularization induced by F and τs, this 

decrease will not necessarily be monotonic.

To understand the implications of this discussion as well as Theorem 4 on inference, we 

analyze a real world dataset with a series of RSR models. We consider the SAT data 

originally analyzed by Wall (2004). We use the data set provided as an example in Bivand 

et al. (2008). The data include statewide averaged verbal scores on the SAT and the percent 

of students eligible to take the test in 1999 for the 48 contiguous states of the United States. 

Let yi denote the statewide averaged SAT verbal score for the ith state and Y = (yi, … , 

y48). If X1 = Percent of students eligible to take the exam, then we consider a model with 

covariates X∗ = [1 X1 X1
2] with associated regression coefficients β0, β1, β2. We fit a series 

of HH models for various Mq, q = 1, … , 45. For all these analyses, as = .5, bs = 2000 as 

suggested by Hughes and Haran (2013).
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In Fig. 1, we plot the marginal posterior variance for β0, β1, and β2 for each of the various 

HH models. The green in the graphs represents vectors which are “attractive” and the red 

represents vectors which are “repulsive.” All RSR models result in approximately the same 

point estimates as those obtained as in the non-spatial model (590.5, −2.84, .022) and have 

marginal posterior variances less than those obtained in the non-spatial model. Based on the 

discussion above, we expect that as the number of columns of W increases, the posterior 

variances should tend to decrease. And in fact, that seems to be the general pattern. Since 

the “attractive” vectors are added to the model first, these tend to have a larger variance than 

models that include both “attractive” vectors and “repulsive” vectors. Note that this same 

pattern can be obtained by adding arbitrary synthetic covariates to a non-spatial model (see, 

Appendix D.1 of the online supplement).

However, note, that the distinction between “attractive” and “repulsive” eigenvectors is not 

directly linked to the posterior variances otherwise. For example, the posterior variance 

obtained for the set of “attractive” vectors proposed by Hughes and Haran (2013) is achieved 

again for choices that include up to 14 “repulsive” vectors, but is not obtained with the 

recommended dimension reduction to .1n. A restriction to “attractive” eigenvectors was 

originally proposed as a way to approximate the inference from the RHZ model (See, 

Section 7 of Hughes and Haran, 2013). However, there is no clear association between the 

variances that are obtained via the RHZ model and those obtained restricting the spatial 

basis vectors to “attractive” ones.

It has been claimed that RSR models assume that all the variability in the direction of X can 

be described by the linear combination XβX (Hodges and Reich, 2010; Hanks et al., 2015). 

In this section, we point out that the NS already makes this assumption. In order to gain an 

intuitive understanding of why the posterior variances are RHZ models are always bounded 

above by the posterior variance of the corresponding NS model, we offer an alternative 

interpretation which indicates the the reduction in the posterior variance for RHZ models is 

akin to what would be observed an overfit fixed effects model. When this intuition holds, 

we would expect that RHZ models would always have a higher Type-S error rate than NS 

models even in the absence of model misspecification. Importantly, these problems cannot 

be resolved by selecting different spatial basis vectors within the class of RSR models, 

and dimension reduction techniques designed to mimic smoothing orthogonally to the fixed 

effects will likely suffer from the same problems. However, just as is the case for the 

implications of Theorem 3, exploring this rigorously is impractical. Therefore, in the next 

section we use simulations to further our investigation.

4. SIMULATION STUDIES

In this set of simulations, we investigate the relative performances of the ICAR model, the 

RHZ model, and the NS model for continuous areal data and count areal data. In particular, 

we explore how and when the RHZ model offers inference different than the inference 

which would have been obtained with a NS model. We also explore whether RHZ models 

improve the inference for regression coefficients relative to the ICAR model in the presence 

of spatial confounding.
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Currently, spatial confounding is thought to be a concern when X is spatially dependent 

and there is residual spatial dependence unexplained by the covariates. Therefore, all of the 

following simulations involve covariates which are spatially dependent and residual spatial 

dependence (either with a spatial random effect or with “unobserved” covariate). To simulate 

the covariates, we rely on previous work in spatial confounding. In the context of areal 

data, statistics developed by Reich et al. (2006) and Prates et al. (2019) essentially define 

spatial dependence in X to be the existence of correlation between X and low frequency 

eigenvectors of the graph Laplacian. These statistics reflect a common assumption in the 

literature that the eigenvectors of the graph Laplacian Q associated with low eigenvalues 

exhibit spatially smooth patterns while those associated with high eigenvalues oscillate 

rapidly. In the continuous case, this phenomenon can be formalized. For the low frequency 

eigenfunctions, Bernstein estimates show smoothness (see e.g., Zelditch (2017) Theorem 

5.17); whereas for high frequency eigenfunctions, rapid oscillation can be shown using 

upper bounds on the size of nodal domains (see e.g., Zelditch (2017) Theorem 13.1). We 

are not aware of any formalization of the phenomenon in the discrete case. However it does 

seem true in practice, and we will utilize this assumption in the following work. Therefore, 

in the following simulations we generate covariates that are correlated with low frequency 

eigenvectors of the graph Laplacian. To do so, we utilize the fact that on a connected graph, 

any column vector l ∈ ℝn can be written as follows:

sl n − 1V ρlV + 1l (6)

where sl and l  are the sample standard deviation and sample mean of l, 

ρlV = (ρl, V i, …, ρl, V n − 1, 0)T  is a column vector where ρl,Vi is the correlation between l 

and the ith column of V.

In the following simulation studies, all models are fit using Markov Chain Monte Carlo 

algorithms with Gibbs updates and/or Metropolis-Hastings random-walk updates. Gibbs 

updates are used for all parameters in the Gaussian models and for τs in the Poisson 

model. For the Poisson model, the βX are updated as in Hughes and Haran (2013) using a 

random walk with proposal βX[j + 1] ∼ N(βX[j], U−1) where U is the estimated asymptotic 

covariance matrix from the non-spatial model, and δ is updated with multivariate random 

walks with a spherical normal proposal. For all models, where applicable, aϵ = as = .01 and 

bϵ = bs = 100. For the Gaussian models, βX has a flat prior and for the Poisson model βX has 

a normal prior with standard deviation of 1000.

To ensure that the Monte Carlo standard errors were sufficiently small, trial simulations were 

run until a sample path length was found that ensured all models had Monte Carlo standard 

error < .01. For the Gaussian models, a sample path of 80,000 was sufficient; while for the 

Poisson models, a sample path of 1,000,000 was sufficient. Monte Carlo standard errors 

were calculated using batch means (Flegal et al., 2008, 2012).

4.1. Simulation 1: Gaussian Model.

For this set of simulations we consider Gaussian models of the form (2) for the graph of 

the 48 contiguous states. We generate data from three models. All generating models are 
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of the form Y = 1β0 + X1βX + ν + ϵ where ϵ ∼ N(0, I), β0 = 1, βX = 2, and X1 is randomly 

generated to be correlated with .2n of the eigenvectors associated with the lowest non-zero 

eigenvalues. The vector ν is one of three options: 0 (i.e., the model is a non-spatial linear 

model), a realization from Lδ with δ ~ N(0, LT QL) (the RHZ model (4)), or a realization 

from the ICAR prior with τs = 1 (realizations from the ICAR prior are generated using 

Algorithm 2.6 in Rue and Held (2005)). For each of the choices of ν we simulated 1000 

realizations of Y and fit the NS model, RHZ model, and the ICAR model.

Table 2 lists these coverage probabilities based on 95% credible intervals with equal tail 

weights. 98% of the credible intervals from an analysis using the RHZ model were nested 

within the corresponding credible intervals derived from the NS model. To explore how the 

RHZ analysis model differs from the NS analysis model, we consider how the coverage 

differed for each data set in Table 3. We consider three outcomes:

1. The credible intervals for both models either both contained the true value of βX 

or both failed to contain it (Agree)

2. the credible interval of the RHZ model contained the true value of βX and the NS 

model did not (RHZ +)

3. The credible interval of the NS model contained the true value of βX and the 

RHZ model did not (NS +).

With respect to coverage, both the ICAR model and the NS model obtain higher coverage 

rates than the RHZ model, even when the data is generated from the RHZ model. When the 

data is generated from a NS or RHZ model, the differences between the three models are 

not substantial. These differences are driven primarily by the widths of the credible intervals. 

The ICAR model tends to have the largest width and the RHZ model tends to have the 

narrowest credible intervals.

Arguably, the setting of primary interest for this and the simulation studies that follow is 

when the data is generated with an ICAR prior. This setting is often thought to be most 

closely related to what would be seen in the real world. When the generating model is the 

ICAR model, both the RHZ model and the NS model achieve their lowest coverage rates. 

This suggests, as observed in Prates et al. (2019) and Hanks et al. (2015), that the RHZ 

model may suffer poor coverage in the presence of spatial random effects which do not 

operate orthogonally to the fixed effects. In investigating the cause of this poor performance, 

we found that it was a combination of bias and narrow credible intervals. Here, we define 

bias as βX − E[βX|Y ]. In Appendix D.2.1 of the online supplement, we find that the bias for 

the point estimates for the RHZ and NS models is at its highest when the generating model 

is an ICAR model. Since by Theorem 1, the point estimates of the RHZ and NS models 

are the same, the further reduction in coverage rates for the RHZ are caused by narrower 

credible intervals. There is not a single case in which the credible interval of the RHZ model 

obtained coverage when the NS model did not.
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4.2. Simulation 2: Type-S Error in the Gaussian Model.

For this set of simulations we consider Gaussian models of the form (2) for the graph of 

the 48 contiguous states. We again generate data from three models. All models are of 

the form Y = 1β0 + X1β1
X + X2β2

X + ν + ϵ where ϵ ∼ N(0, I), β0 = 1, β1
X = 2, and β2

X = 0. X1 

is again randomly generated by the process described above to be correlated with .2n of 

the eigenvectors associated with the lowest non-zero eigenvalues, and X2 is independently 

generated to be correlated with the .5n eigenvectors with the lowest non-zero eigenvalues. 

Once again, ν is one of the three options listed in Simulation 1.

With respect to inference on β1
X, we again consider coverage rates. For inference on β2

X

we now consider the Type-S error rate: the proportion of times a credible interval does 

not contain zero. As in Simulation 1, we use 95% equal-tailed credible intervals. We are 

interested in Type-S errors in the context of data which have spatial variation unexplained 

by the fixed effects. When the generating model is the RHZ or the ICAR model, ν itself 

provides such variation. In the context of a non-spatial model, the only way to achieve such 

dependence is by omitting a spatially varying covariate. Thus, when the generating model is 

the RHZ or ICAR, we use a design matrix of X* = [1 X1 X2]. When the generating model is 

the non-spatial model, we use X* = [1 X2], omitting the spatially varying X1. Recall that the 

associated X will always be used when fitting the ICAR model.

The results are contained in Table 4- Table 7. Both the ICAR model and the NS model have 

higher coverage rates than the RHZ model in every scenario. As before, there is not a single 

synthetic data set in which the resulting credible interval obtained coverage for β1
X under 

the RHZ model and the NS model did not. The RHZ model once again suffers from poor 

coverage when the generating model is the ICAR model. The differences in the coverage 

rates are driven by the same factors as discussed in Section 4.1.

In Table 6, the RHZ model has extremely inflated Type-S error rates - even when the data 

is generated from a RHZ model. Notably, the RHZ model performs the worst with respect 

to Type-S errors when a spatially varying covariate is omitted from the design matrix. In 

Appendix D.2.2 of the online supplement, we find that the bias for the NS and RHZ point 

estimates is at its highest in this setting. This bias leads to the elevated Type-S error rates for 

the NS model. The extreme inflation from the RHZ model relative to the NS model is caused 

by narrow credible intervals. We also compare the performance of the RHZ and NS analysis 

models for each synthetic data set with respect to Type-S error in Table 7. Every data set for 

which the NS model resulted in a Type-S error, the RHZ model did as well. However, there 

were a a number of data sets for which the RHZ model resulted in a Type-S error, and the 

NS model did not.

4.3. Simulation Study 3: Investigating Type-S Error in Poisson Model.

Much of the research in the literature as well as the results of this paper focus on Gaussian 

models. However, in practice most of the models discussed are typically used for areal count 

data. It is not altogether clear whether work in the linear case can be translated into results 

for the non-linear case. In this set of simulations, we attempt to investigate whether the 
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results for the linear case are relevant for count data. To our knowledge, this is the first 

extensive simulation study of count data for RSR methods.

For this set of simulations, we use the graph of 194 Slovenia municipalities considered in 

Reich et al. (2006) and Prates et al. (2019). We consider count data generated from a Poisson 

model of the form Z = β0 + X1β1
X + X2β2

X + ν using the log link function. The coefficients 

are defined as follows: β0 = 1, β1
X = 1, and β2

X = 0. We generate 100 datasets for each 

scenario. The set-up of the simulation study is otherwise the same as in Section 4.2. Fitting 

the RHZ model for the Poisson model is different from that of the Gaussian model. The 

details of the RHZ model in the non-linear context are given in Appendix B of the online 

supplement.

It should be noted that the credible intervals from the RHZ model are nearly always the 

same as the credible intervals from the NS model. As an example, Fig. 2 shows the credible 

intervals associated with 25 of the 300 simulated datasets. In Table 8 and Table 9 we see 

that that the RHZ model performs essentially the same as the NS model. There are three 

cases in which the RHZ credible intervals lead to different conclusions than the NS credible 

intervals. In these cases, the respective bounds for the NS and RHZ credible intervals are 

within .05 of one another.

Unlike in the Gaussian case, the performance of the NS model suffers greatly in the presence 

of spatial variation unexplained by the covariates. This poor coverage seems to be driven by 

both bias and very narrow credible intervals. In Appendix D.2.3 of the online supplement, 

we find that the bias for point estimates obtained by the RHZ and NS models is always 

greater than that of the ICAR model, regardless of the generating model. This phenomena 

is distinct than the patterns observed in the Gaussian case. With respect to coverage rates 

and Type-S error, the bias is compounded with very narrow credible intervals for the 

RHZ and NS models, as illustrated by Table 9. Although the Poisson model has not been 

heavily studied in simulations, we note that Hughes and Haran (2013) observed a similar 

phenomenon with a single simulated dataset. In that setting, the data was simulated from a 

HH model. The widths of the 95% credible intervals obtained from a NS, HH and ICAR 

models were, respectively, .24, .24, and 1.84. It is not clear why the credible intervals of the 

NS model are so narrow.

5. APPLICATION TO SLOVENIA DATA

In light of our findings, we now revisit the dataset which motivated the creation of RSR 

models. Reich et al. (2006) and Hodges and Reich (2010) used the Slovenia stomach 

cancer data as an example of how spatial confounding could distort inference on regression 

coefficients when they observed that the 95% credible interval for the NS model contained 0 

and the respective credible interval for the ICAR model did not contain 0. They believed that 

this discrepancy occurred because E[βICAR
X |Z] is biased and Var[βICAR

X |Z] is overinflated 

when X displays spatial dependence. This perspective and the Slovenia dataset has continued 

to influence subsequent research (See e.g., Prates et al. (2019)). However, the results of this 

paper offer an alternative interpretation of why there is a discrepancy between the NS and 
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ICAR models. To explore this, we now introduce the data and corresponding models in more 

detail.

The data was collected from 1995 to 2001 for each of the 194 municipalities in Slovenia. A 

full description of the data is available in Hodges (2016). The response variable Y is defined 

so that yi is the observed count of stomach cancer cases for the ith municipality. We will 

let Ei be the expected count of stomach cancer cases and X = [x1, … , x194] be the vector 

of standardized socioeconomic scores for the municipalities (see, Hodges and Reich, 2010, 

for a description). We consider five Poisson models for this model: 1) the non-spatial, 2) 

the RHZ model, 3) the HH model with all the attractive eigenvectors chosen, 4) the HH 

model with q = 19, and 5) the ICAR model. In other words, we assume that conditional on 

Wi, yi ∼ind Poisson(λi). For the non-spatial model, log(λi) = log(Ei) + β0 + xiβX. The RHZ model 

and the HH models are of the form: λi = log(Ei) + β0 + xiβX + W iδ. The details of the choices 

of W and the prior for δ are given in Appendix B of the online supplement. The ICAR model 

takes the form λi = log(Ei) + xiβX + δi where δ is assumed to have the ICAR prior. For all 

models, a normal prior with mean 0 and standard deviation 1,000 is given to the regression 

coefficients and τs is given a gamma prior with shape and scale, respectively, .01 and 100.

In Table 10, the ICAR model’s credible interval is the only one to include zero. In 

applications, researchers would typically conclude that the socioeconomic scores were not 

significant for the ICAR model but were significant in the other models. The prevailing 

belief in spatial confounding literature is that the RSR and NS models offer better inference 

than the ICAR model for this dataset. However, in Section 4.3, we observed that if there is 

residual spatial dependence (either through a missing spatially varying covariate or through 

a spatial random effect), the NS and RSR models tend to have more biased point estimates 

than the ICAR models. Similarly, the NS and RSR models suffer from low coverage rates in 

this setting. Thus, if there is residual spatial dependence unexplained by X, the NS and RSR 

models will likely offer poor inference for βX.

Unfortunately, the ICAR model also has drawbacks in this setting. Note unlike in Section 

4.3, the point estimates in Table 10 are quite small. In this setting, the ICAR model will still 

have smaller bias and higher rates of coverage than the NS and RHZ models (see Appendix 

D.3.3 of the online supplement). However, the Bayesian analogue of power, which we define 

as percentage of time that the 95% credible interval does not contain 0, will be very low for 

the ICAR model (see again Appendix D.3.3 of the online supplement). Practically speaking, 

Theorem 1 – Theorem 3 suggest that RSR models give essentially the same inference as 

the NS model in the Gaussian case, and Section 4.3 seems to support this insight extends to 

count data. In particular, we note that for each of the RSR models, the 95% credible intervals 

are nested within (or equivalent to) the credible interval obtained with the NS model. While 

it may not be clear when the NS or ICAR model should be preferred, it does seem likely 

that RSR models will typically be a more computationally intensive method of arriving at 

the same inference as the NS model with respect to bias and coverage rates.
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6. DISCUSSION

In this paper we examine the impact that methods designed to alleviate spatial confounding 

have on inference for regression coefficients of areal SGLMMs. We emphasis that our 

inferential focus is limited to assessing whether there is a linear association between the 

response and the covariates in settings where an assumption of (spatial) independence for the 

errors is apparently invalid (e.g., evidence of residual spatial dependence in the non-spatial 

model). We note that the distinction between inference related to a linear association and 

causal inference is often blurred in the literature related to spatial confounding. For instance, 

the work in Paciorek (2010) and Thaden and Kneib (2018) is arguably more closely related 

to concerns in causal inference. Teasing apart whether common expectations for regression 

coefficients in spatial models come from an interest in inference for causal relationships or a 

linear association will likely be important in future related work. However, the implications 

of RSR methods for formal causal inference are beyond the scope of the current paper.

The results of Section 3 reexamine the intuition that prompted the development of RSR 

methods. Despite the expectation that RSR methods will result in marginal posterior 

variances that are greater than would have been obtained in a non-spatial model, we have 

shown the opposite is usually true. Recently, there has been a call for more research to 

understand when the RSR methods should be used. This interest is driven in part by the 

fact that some RSR methods have high rates of Type-S error, particularly when 
τs
τϵ

 is small. 

Currently, RSR methods are recommended when the covariates X are correlated with low-

frequency eigenvectors of the graph Laplacian. Section 3 and Section 4 illustrate how and 

why the elevated Type-S error rates are occurring for Gaussian RSR models. In particular, 

these results indicate that it is not the spatial structure of the covariates that drives the 

performance of RSR models. Rather, the posterior distribution of the regression coefficients 

for RSR models is primarily a function of how well the spatially varying W (in RSR models) 

explains the residual spatial dependence. The question of when the RSR models should be 

preferred is typically asked with the implicit comparison is to that of a traditional spatial 

model. Surprisingly, our results indicate that in all cases studied, one would always be better 

off using a Gaussian non-spatial model than a Gaussian RSR model. For the count data, the 

RHZ model and non-spatial model result in almost equivalent inference for the regression 

coefficients and both perform poorly in the presence of spatial variation unexplained by the 

covariates. This work also shows that the ICAR model can provide poor inference as well, 

particularly in the context of small effect sizes.

In spatial statistics, expectations regarding dimension reduction strategies for areal data 

models have largely been shaped by work in the spatial process modeling realm. For 

example, in the process model setting, choosing “attractive” spatial vectors of the Moran 

operator is analogous to modeling low frequency components of spatial variation. This is the 

basic premise of approaches such as reduced rank approaches in spatial process modeling. 

It is quite likely that this method performs well for spatial process modeling. However, 

this paper shows that insights from spatial process modeling can lead to misleading and 

counterintuitive results when the interest is no longer on predicting the spatial process. Thus, 
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this work has important implications for dimension reduction when the primary interest is 

deriving inference about covariate effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

Gabriel Khan is credited for suggesting the clever use of Hölder’s Inequality in Theorem 1, which resulted in a 
relatively cleaner proof. The authors were partially supported by grant NIH NICHD R01-HD088545. They also 
acknowledge the support of The Ohio State University’s Mathematical Biosciences Institute (NSF DMS-1440386) 
and the Institute for Population Research (NIH NICHD P2C-HD058484-10).

REFERENCES

Banerjee S, Gelfand AE, Finley AO, and Sang H (2008). Gaussian predictive process models for 
large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 
70(4):825–848. [PubMed: 19750209] 

Banerjee S, Wall MM, and Carlin BP (2003). Frailty modeling for spatially correlated survival data, 
with application to infant mortality in minnesota. Biostatistics, 4(1):123–142. [PubMed: 12925334] 

Besag J, York J, and Mollié A (1991). Bayesian image restoration, with two applications in spatial 
statistics. Annals of the Institute of Statistical Mathematics, 43(1):1–20.

Bivand RS, Pebesma EJ, Gómez-Rubio V, and Pebesma EJ (2008). Applied Spatial Data Analysis with 
R, volume 747248717. Springer.

Boots B and Tiefelsdorf M (2000). Global and local spatial autocorrelation in bounded regular 
tessellations. Journal of Geographical Systems, 2(4):319–348.

Bradley JR, Holan SH, Wikle CK, et al. (2015). Multivariate spatio-temporal models for high-
dimensional areal data with application to longitudinal employer-household dynamics. The Annals 
of Applied Statistics, 9(4):1761–1791.

Burden S, Cressie N, and Steel D (2015). The SAR model for very large datasets: a reduced rank 
approach. Econometrics, 3(2):317–338.

Clayton DG, Bernardinelli L, and Montomoli C (1993). Spatial correlation in ecological analysis. 
International Journal of Epidemiology, 22(6):1193–1202. [PubMed: 8144305] 

Cressie N (1993). Statistics for Spatial Data. Wiley.

Cressie N and Wikle CK (2015). Statistics for Spatio-temporal Data. John Wiley & Sons.

Diggle PJ, Tawn J, and Moyeed R (1998). Model-based geostatistics. Journal of the Royal Statistical 
Society: Series C (Applied Statistics), 47(3):299–350.

Flegal JM, Haran M, and Jones GL (2008). Markov chain monte carlo: Can we trust the third 
significant figure? Statistical Science, pages 250–260.

Flegal JM, Hughes J, Vats D, and Dai N (2012). mcmcse: Monte carlo standard errors for MCMC. 
Riverside, CA and Minneapolis, MN. R package version, pages 1–0.

Fuentes M (2007). Approximate likelihood for large irregularly spaced spatial data. Journal of the 
American Statistical Association, 102(477):321–331. [PubMed: 19079638] 

Guan Y and Haran M (2018). A computationally efficient projection-based approach for spatial 
generalized linear mixed models. Journal of Computational and Graphical Statistics, 27(4):701–
714.

Hanks EM, Schliep EM, Hooten MB, and Hoeting JA (2015). Restricted spatial regression in practice: 
geostatistical models, confounding, and robustness under model misspecification. Environmetrics, 
26(4):243–254.

Hefley TJ, Hooten MB, Hanks EM, Russell RE, and Walsh DP (2017). The bayesian group lasso 
for confounded spatial data. Journal of Agricultural, Biological and Environmental Statistics, 
22(1):42–59.

Khan and Calder Page 23

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hodges JS (2016). Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models 
using Random Effects. Chapman and Hall/CRC.

Hodges JS and Reich BJ (2010). Adding spatially-correlated errors can mess up the fixed effect you 
love. The American Statistician, 64(4):325–334.

Hughes J and Haran M (2013). Dimension reduction and alleviation of confounding for spatial 
generalized linear mixed models. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology), 75(1):139–159.

Moran PA (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2):17–23. [PubMed: 
15420245] 

Murakami D and Griffith DA (2015). Random effects specifications in eigenvector spatial filtering: a 
simulation study. Journal of Geographical Systems, 17(4):311–331.

Paciorek C (2009). Technical vignette 5: Understanding intrinsic gaussian markov random field spatial 
models, including intrinsic conditional autoregressive models. Technical report.

Paciorek CJ (2010). The importance of scale for spatial-confounding bias and precision of spatial 
regression estimators. Statistical Science: A Review Journal of the Institute of Mathematical 
Statistics, 25(1):107. [PubMed: 21528104] 

Page GL, Liu Y, He Z, and Sun D (2017). Estimation and prediction in the presence of spatial 
confounding for spatial linear models. Scandinavian Journal of Statistics, 44(3):780–797.

Prates MO, Assunção RM, and Rodrigues EC (2019). Alleviating spatial confounding for areal data 
problems by displacing the geographical centroids. Bayesian Anal., 14(2):623–647.

Reich BJ, Hodges JS, and Zadnik V (2006). Effects of residual smoothing on the posterior of the fixed 
effects in disease-mapping models. Biometrics, 62(4):1197–1206. [PubMed: 17156295] 

Rue H and Held L (2005). Gaussian Markov Random Fields: Theory and Applications. CRC press.

Stein ML (2014). Limitations on low rank approximations for covariance matrices of spatial data. 
Spatial Statistics, 8:1–19.

Thaden H and Kneib T (2018). Structural equation models for dealing with spatial confounding. The 
American Statistician, 72(3):239–252.

Von Luxburg U (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416.

Wall MM (2004). A close look at the spatial structure implied by the CAR and SAR models. Journal of 
Statistical Planning and Inference, 121(2):311–324.

Waller LA and Gotway CA (2004). Applied Spatial Statistics for Public Health Data, volume 368. 
John Wiley & Sons.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wikle CK (2010). Low-rank representations for spatial processes. In Handbook of spatial statistics, 
pages 114–125. CRC Press.

Zelditch S (2017). Eigenfunctions of the Laplacian on a Riemannian Manifold. CBMS Regional 
Conference Series in Mathematics. Conference Board of the Mathematical Sciences.

Khan and Calder Page 24

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
These graphs depict the posterior variance of each of the regression coefficients. Green 

indicates spatial basis vectors which are “attractive.” Red indicates spatial basis vectors 

which are “repulsive.” These figures were constructed using the ggplot2 R package 

(Wickham, 2016).
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Figure 2. 

Credible intervals for β1
X. This figure was made using the ggplot2 R package (Wickham, 

2016).
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Table 1.

Special Cases of (2)

Model Design Matrix W F

NS X* 0 0

ICAR X I Q 

RHZ X* L LT QL

HH X* M q Mq
TQMq

PAR X I Q ┴

J Am Stat Assoc. Author manuscript; available in PMC 2023 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Khan and Calder Page 28

Table 2.

Coverage of βX

Analysis Model Generating Model

NS RHZ ICAR

NS 94.4% 98.5% 84.6%

RHZ 93.1% 93.8% 72.5%

ICAR 97.0% 99.4% 95.3%
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Table 3.

Comparison of Coverage of the RHZ and NS models

Comparisons Generating Model

NS RHZ ICAR

Agree 98.7% 95.3% 87.9%

RHZ + 0.0% 0.0% 0.0%

NS + 1.3% 4.7% 12.1%
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Table 4.

Coverage of β1
X

Analysis Model Generating Model

RHZ ICAR

NS 97.9% 85.3%

RHZ 90.9% 72.9%

ICAR 99.0% 95.8%
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Table 5.

Comparison of β1
X coverage of the RHZ and NS models

Comparisons Generating Model

RHZ ICAR

Agree 93.0% 87.6%

RHZ + 0.0% 0.0%

NS + 7.0% 12.4%
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Table 6.

Type-S Error of β2
X

Analysis Model Generating Model

NS RHZ ICAR

NS 13.9% 8.5% 10.3%

RHZ 80.2% 18.0% 21.7%

ICAR 3.7% 4.8% 6.5%
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Table 7.

Comparison of Type-S of the RHZ and NS models

Comparisons Generating Model

NS RHZ ICAR

Agree 33.7% 90.5% 88.6%

RHZ + 0.0% 0.0% 0.0%

NS + 66.3% 9.5% 11.4%
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Table 8.

Coverage of β1
X

Analysis Model Generating Model

RHZ ICAR

NS 32% 14%

RHZ 33% 14%

ICAR 97% 98%
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Table 9.

Type-S Error of β2
X

Analysis Model Generating Model

NS RHZ ICAR

NS 68.0% 79.0% 67%

RHZ 67.0% 79.0% 67%

ICAR 7.0% 7.0% 3.0%
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Table 10.

Summaries of Posterior Distribution βX

Model Posterior Mean 95% Credible Interval

NS −.137 (−.175, −.098)

RHZ −.137 (−.175, −.098)

HH19 −.118 (−.161, −.074)

HHall pos. −.101 (−.151, −.049)

ICAR −.018 (−.096, .065)
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