Skip to main content
. 2022 May 31;46(7):415–429. doi: 10.1002/gepi.22462

Table 1.

Results from the main simulation study

Parameter Method Pruning Mean SD Mean SE Power
θ1
MV‐IVW Oracle 0.353 0.133 0.120 81.4
0.4 0.304 0.164 0.147 57.4
0.6 0.207 0.115 0.094 60.9
0.8 −0.083 0.417 0.051 76.5
MV‐LIML Oracle 0.379 0.143 0.133 81.4
0.4 0.340 0.188 0.163 58.9
0.6 0.316 0.212 0.103 77.0
0.8 0.083 2.372 0.179 78.8
MV‐IVW‐PCA 0.296 0.130 0.119 69.3
MV‐LIML‐PCA 0.347 0.152 0.130 74.5
θ2
MV‐IVW Oracle −0.005 0.133 0.120 7.4
0.4 −0.012 0.166 0.147 7.5
0.6 −0.003 0.112 0.094 9.1
0.8 0.037 0.408 0.051 75.4
MV‐LIML Oracle −0.001 0.144 0.133 6.2
0.4 −0.007 0.192 0.163 7.3
0.6 0.006 0.186 0.103 20.2
0.8 0.010 2.522 0.179 76.6
MV‐IVW‐PCA −0.013 0.129 0.119 7.1
MV‐LIML‐PCA −0.006 0.154 0.130 8.7
θ3
MV‐IVW Oracle −0.545 0.132 0.120 98.6
0.4 −0.487 0.166 0.148 87.6
0.6 −0.315 0.139 0.094 86.9
0.8 0.220 0.418 0.051 77.8
MV‐LIML Oracle −0.576 0.142 0.134 98.8
0.4 −0.531 0.190 0.164 88.6
0.6 −0.451 0.212 0.103 92.6
0.8 0.005 2.250 0.179 79.3
MV‐IVW‐PCA −0.476 0.130 0.119 96.1
MV‐LIML‐PCA −0.538 0.152 0.131 97.0

Note: Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates, and empirical power of the 95% confidence interval to estimate θ1=0.4, θ2=0, and θ3=0.6. We consider four methods, and various pruning thresholds for the MV‐IVW and MV‐LIML methods, plus an oracle setting in which only the 15 variants that truly affect the traits are included in the analysis.