Table 1.
Parameter | Method | Pruning | Mean | SD | Mean SE | Power | |
---|---|---|---|---|---|---|---|
|
MV‐IVW | Oracle | 0.353 | 0.133 | 0.120 | 81.4 | |
0.4 | 0.304 | 0.164 | 0.147 | 57.4 | |||
0.6 | 0.207 | 0.115 | 0.094 | 60.9 | |||
0.8 | −0.083 | 0.417 | 0.051 | 76.5 | |||
MV‐LIML | Oracle | 0.379 | 0.143 | 0.133 | 81.4 | ||
0.4 | 0.340 | 0.188 | 0.163 | 58.9 | |||
0.6 | 0.316 | 0.212 | 0.103 | 77.0 | |||
0.8 | 0.083 | 2.372 | 0.179 | 78.8 | |||
MV‐IVW‐PCA | – | 0.296 | 0.130 | 0.119 | 69.3 | ||
MV‐LIML‐PCA | – | 0.347 | 0.152 | 0.130 | 74.5 | ||
|
MV‐IVW | Oracle | −0.005 | 0.133 | 0.120 | 7.4 | |
0.4 | −0.012 | 0.166 | 0.147 | 7.5 | |||
0.6 | −0.003 | 0.112 | 0.094 | 9.1 | |||
0.8 | 0.037 | 0.408 | 0.051 | 75.4 | |||
MV‐LIML | Oracle | −0.001 | 0.144 | 0.133 | 6.2 | ||
0.4 | −0.007 | 0.192 | 0.163 | 7.3 | |||
0.6 | 0.006 | 0.186 | 0.103 | 20.2 | |||
0.8 | 0.010 | 2.522 | 0.179 | 76.6 | |||
MV‐IVW‐PCA | – | −0.013 | 0.129 | 0.119 | 7.1 | ||
MV‐LIML‐PCA | – | −0.006 | 0.154 | 0.130 | 8.7 | ||
|
MV‐IVW | Oracle | −0.545 | 0.132 | 0.120 | 98.6 | |
0.4 | −0.487 | 0.166 | 0.148 | 87.6 | |||
0.6 | −0.315 | 0.139 | 0.094 | 86.9 | |||
0.8 | 0.220 | 0.418 | 0.051 | 77.8 | |||
MV‐LIML | Oracle | −0.576 | 0.142 | 0.134 | 98.8 | ||
0.4 | −0.531 | 0.190 | 0.164 | 88.6 | |||
0.6 | −0.451 | 0.212 | 0.103 | 92.6 | |||
0.8 | 0.005 | 2.250 | 0.179 | 79.3 | |||
MV‐IVW‐PCA | – | −0.476 | 0.130 | 0.119 | 96.1 | ||
MV‐LIML‐PCA | – | −0.538 | 0.152 | 0.131 | 97.0 |
Note: Mean estimates, standard deviation (SD) of estimates, mean standard error (mean SE) of estimates, and empirical power of the 95% confidence interval to estimate , , and . We consider four methods, and various pruning thresholds for the MV‐IVW and MV‐LIML methods, plus an oracle setting in which only the 15 variants that truly affect the traits are included in the analysis.