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Abstract

Recent genome-wide association studies of mood instability (MOOD) have found sig-

nificant positive genetic correlation with major depression (DEP) and weak correla-

tions with other psychiatric disorders. We investigated the polygenic overlap

between MOOD and psychiatric disorders beyond genetic correlation to better char-

acterize putative shared genetic determinants. GWAS summary statistics for schizo-

phrenia (SCZ, n = 105,318), bipolar disorder (BIP, n = 413,466), DEP (n = 450,619),

attention-deficit hyperactivity disorder (ADHD, n = 53,293), and MOOD

(n = 363,705) were analyzed using the bivariate causal mixture model and conjunc-

tional false discovery rate methods. MOOD correlated positively with all psychiatric

disorders, but with wide variation in strength (rg = 0.10–0.62). Of 10.4 K genomic

variants influencing MOOD, 4 K–9.4 K influenced psychiatric disorders. Furthermore,

MOOD was jointly associated with DEP at 163 loci, SCZ at 110, BIP at 60 and ADHD

at 25. Fifty-three jointly associated loci were overlapping across two or more disor-

ders, seven of which had discordant effect directions on psychiatric disorders. Genes

mapped to loci associated with MOOD and all four disorders were enriched in a
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single gene-set, “synapse organization.” The extensive polygenic overlap indicates

shared molecular underpinnings across MOOD and psychiatric disorders. However,

distinct patterns of genetic correlation and effect directions may relate to differences

in the core clinical features of each disorder.
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1 | INTRODUCTION

Mood instability (MOOD) is a psychological construct defined as a

tendency to experience frequent, rapid fluctuations of intense affect

and an inability to regulate these fluctuations or their behavioral

sequelae (Marwaha et al., 2014). The concept was first described in

people with borderline personality disorder and is a central compo-

nent of the disorder (Koenigsberg, 2010). While present in approxi-

mately 14% of the general population (Marwaha, Parsons, Flanagan, &

Broome, 2013), it is also overrepresented in several other psychiatric

disorders, including schizophrenia (SCZ), bipolar disorder (BIP), depres-

sion (DEP), and attention-deficit hyperactivity disorder (ADHD)

(Høegh et al., 2020; Patel et al., 2015; Skirrow, McLoughlin, Kuntsi, &

Asherson, 2009; Thompson, Berenbaum, & Bredemeier, 2011) Fur-

thermore, MOOD is a predictor and trait-marker for both DEP and

BIP (Angst, Gamma, & Endrass, 2003; Bonsall, Wallace-Hadrill, Ged-

des, Goodwin, & Holmes, 2012; Henry et al., 2008; Thompson

et al., 2011), and is associated with suicidality and poor treatment out-

comes in multiple disorders (Marwaha, Parsons, & Broome, 2013;

Patel et al., 2015).

There is mounting evidence supporting a prominent neurobiologi-

cal basis to MOOD. First, twin studies have estimated 25 and 40%

heritability for affect intensity and affective lability respectively, cen-

tral components of MOOD (Coccaro, Ong, Seroczynski, &

Bergeman, 2012). Second, symptoms mirroring MOOD can be caused

by seizure activity or localized brain lesions, typically involving the

prefrontal cortex, the temporal lobe, and the diencephalon (Price,

Goetz, & Lovell, 2011). Third, neuroimaging, behavioral, cognitive, and

electrophysiological studies have reported an array of neurobiological

correlates, of which alterations in amygdala activation and connectiv-

ity between the ventromedial prefrontal cortex, amygdala, and ante-

rior cingulate cortex are the most convincing (Broome, He, Iftikhar,

Eyden, & Marwaha, 2015). In combination with its clinical significance,

MOOD therefore represents a promising transdiagnostic therapeutic

target that could be leveraged to develop novel treatments and inform

personalized psychiatric treatment, consistent with the Research

Domain Criteria framework (Harrison, Geddes, & Tunbridge, 2018).

Despite this, questions remain over MOOD's neurobiological and phe-

nomenological consistency across and within diagnostic groups, par-

ticularly in disorders such as SCZ, which is classically associated with

reduced affective expression despite increased MOOD (Das, Cal-

houn, & Malhi, 2014; Koenigsberg, 2010).

An improved understanding of the shared genetic basis of MOOD

and different psychiatric disorders may provide insights into these

questions. Two large-scale GWASs of MOOD in the UK Biobank have

previously identified 46 genomic loci and strong positive genetic cor-

relations with depression, but weak positive correlations with SCZ,

BIP, and ADHD (Ward et al., 2017, 2019). This has implicated several

genes in MOOD which are also implicated in psychiatric disorders,

including PLCL1 in SCZ, PLCL2 in BIP, and NEGR1 in DEP (Pardiñas

et al., 2018; Stahl et al., 2019; Ward et al., 2019; Wray et al., 2018).

Nonetheless, much of the genetic basis for MOOD and psychiatric

disorders remains unexplained and individual loci linked to both have

yet to be examined systematically (Girard, Xiong, Dion, &

Rouleau, 2011; Ward et al., 2019). Furthermore, the identification of

overlapping loci might help to disentangle the effects of different risk

loci on the diverse phenomenology of psychiatric disorders and high-

light neurobiological pathways with therapeutic potential (Harrison

et al., 2018).

To this end, we applied statistical genetics tools to summary sta-

tistics from GWAS of MOOD, SCZ, BIP, DEP, and ADHD (Demontis

et al., 2019; Pardiñas et al., 2018; Stahl et al., 2019; Ward et al., 2019;

Wray et al., 2018). We used the bivariate causal mixture model

(MiXeR) to estimate the total number of trait-influencing variants

shared between MOOD and psychiatric disorders (Frei et al., 2019).

Since MiXeR quantifies total genetic overlap and is unable to identify

shared genomic loci, we next employed the conjunctional false discov-

ery rate (conjFDR) method to discover loci jointly associated with

MOOD and each psychiatric disorder beyond genome-wide signifi-

cance (Smeland et al., 2019). Unlike genetic correlation, which pro-

vides an aggregate measure for the balance of variants with

concordant and discordant effects on two phenotypes, MiXeR and

conjFDR are able to identify genetic overlap irrespective of effect

direction (Smeland, Frei, Dale, & Andreassen, 2020). These methods

complement genetic correlation to provide a more comprehensive

overview of the genetic relationships between phenotypes. Given

MOOD's increased prevalence across multiple diagnostic categories,

we also aimed to identify loci that were common to MOOD and more

than one psychiatric disorder, representing “transdiagnostic” MOOD

loci. Finally, the conjFDR method also leverages cross-phenotype

enrichment to boost the power to identify novel genomic loci for each

phenotype, thus contributing to efforts to explain greater proportions

of psychiatric disorders' SNP-based heritability (Girard et al., 2011;

Smeland et al., 2019).
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2 | METHODS

2.1 | Samples

We acquired summary statistics from a GWAS of MOOD in the UK

Biobank (n = 363,705) (Ward et al., 2019). MOOD was assessed by a

yes/no questionnaire item “does your mood often go up and down?”
(Ward et al., 2019). Individuals with a self-reported history of DEP,

BIP, SCZ, “nervous breakdown,” self-harm, suicide attempt or psycho-

tropic medication-use were excluded from the original MOOD GWAS.

While this measure only captures “frequent fluctuations of affect”
and no other features of MOOD, for example, affect intensity

(Marwaha et al., 2014), a positive response has been found to be 2.5

and 14.3 times more prevalent in people with DEP and BIP compared

to controls, demonstrating its clinical relevance (Angst et al., 2003).

The SCZ summary statistics comprised a meta-analysis of CLOZUK

and the Psychiatric Genomics Consortium (PGC) consisting of 40,675

cases and 64,643 controls (Pardiñas et al., 2018). The DEP summary

statistics was a meta-analysis of PGC and 23andMe, Inc. samples

comprising a total of 121,198 cases and 329,421 controls (Wray

et al., 2018). BIP and ADHD summary statistics were acquired from

the latest PGC GWAS, comprising 41,917 cases and 371,549 controls

for BIP (Mullins et al., 2021) and 19,099 cases and 34,194 controls for

ADHD (Demontis et al., 2019). Since the conjFDR estimate may be

inflated due to sample overlap and UK Biobank participants were

included in the BIP sample (n cases = 1,454; n controls = 58,113), we

performed a sensitivity analysis excluding UK Biobank participants

(n cases = 40,463; n controls = 313,436). This was not required for

MiXeR analysis as MiXeR is tolerant to sample overlap. All summary

statistics for the main analysis comprised participants of European

descent. We also included height as a nonpsychiatric comparator

(n = 709,706) (Yengo et al., 2018). PGC East Asian SCZ sample

(cases = 22,778, controls = 35,362) (Lam et al., 2019) and FinnGenn

BIP (cases = 4,501, controls = 192,220) and DEP samples

(cases = 17,794, controls = 156,611) (FinnGen, 2020) were used for

replication (Data S1). The Norwegian Institutional Review Board:

Regional Committees for Medical and Health Research Ethics (REC)

South-East Norway evaluated the current protocol and found that no

additional ethical approval was required because no individual data

were used. The authors assert that all procedures contributing to this

work comply with the ethical standards of the relevant national and

institutional committees on human experimentation and with the Hel-

sinki Declaration of 1975, as revised in 2008.

2.2 | Data analysis

MiXeR v1.3 was applied to MOOD and each of SCZ, BIP, DEP, ADHD,

and height (Frei et al., 2019). MiXeR first uses a univariate gaussian

mixture model to quantify the polygenicity of each trait from GWAS

summary statistics, expressed as the number of “trait-influencing” vari-
ants (also referred to as “causal” variants). Next, a bivariate gaussian

mixture model is constructed to quantify the additive genetic effect of

four components: (a) variants not influencing either phenotype; vari-

ants uniquely influencing either the (b) first or (c) second phenotype

and (d) variants influencing both phenotypes. Results are visualized as

a Venn diagram. MiXeR also calculates the genetic correlation between

phenotypes and estimates the proportion of shared variants with con-

cordant effect direction on both phenotypes. Estimates and standard

errors are calculated by performing 20 iterations using 2 million ran-

domly selected SNPs for each iteration, followed by random pruning at

a linkage disequilibrium threshold of r2 = 0.8. Model fit is based on

likelihood maximization of signed test statistics (GWAS z-scores), eval-

uated by the Akaike Information Criterion (AIC) and visualised by mod-

eled versus observed conditional quantile-quantile (Q-Q) plots.

We next employed conjFDR, which has been described previ-

ously in detail (Andreassen et al., 2015; Smeland et al., 2019), to iden-

tify SNPs jointly associated with MOOD and each psychiatric

disorder. Briefly, conditional Q-Q plots were constructed to visualize

cross-trait polygenic enrichment of SNP associations between MOOD

and each psychiatric disorder (Data S1). Cross-trait enrichment was

leveraged within a Bayesian statistical framework to boost the power

to discover shared genetic loci beyond genome-wide significance.

Computed as the maximum of two mutual conditional FDR values

(Data S1), the conjFDR value provides an estimate for the posterior

probability that a SNP is not associated with either trait or both traits.

SNPs with a conjFDR <0.05 were assigned statistical significance.

The consistency of genetic effects in independent samples was

evaluated using an en-masse sign concordance test (Data S1) (Lee

et al., 2018; Savage et al., 2018; Trubetskoy et al., 2022).

2.3 | Genomic loci definition

Independent genomic loci jointly associated with MOOD and each

psychiatric disorder were defined using the FUMA protocol

(Watanabe, Taskesen, van Bochoven, & Posthuma, 2017). Significant,

independent SNPs were defined as conjFDR <0.05 and r2 < 0.6. Lead

SNPs were chosen if they were in approximate linkage equilibrium

with each other (r2 < 0.1). Transdiagnostic loci were defined as physi-

cally overlapping loci which shared at least one candidate SNP with

conjFDR ≤0.05 across two or more MOOD/psychiatric disorder con-

junctional analyses. Effect directions within transdiagnostic loci were

evaluated by comparing effect sizes of the SNP with the lowest maxi-

mum conjFDR value within the overlapping region from each MOOD/

psychiatric disorder analysis, defined as the “transdiagnostic lead

SNP.” LD data was calculated using the European population of the

1,000 genomes project reference panel (Auton et al., 2015).

2.4 | Functional annotation

Candidate SNPs, defined as any SNP within each jointly associated

genomic locus with a conjFDR value <0.10 and an LD r2 ≥ 0.6 with an

independent significant SNP, were functionally annotated using

FUMA using default parameters (Watanabe et al., 2017). A lower
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conjFDR threshold for candidate SNPs was employed to maximize the

probability that putative causal SNPs are captured for functional

annotation, consistent with previous primary GWAS (Lee et al., 2018)

and conjFDR studies (Bahrami et al., 2021; Hindley et al., 2021). SNPs

were mapped to putative causal genes using three strategies:

(a) positional mapping, (b) expression quantitative trait locus (eQTL)

mapping, and (c) chromatin interaction mapping (Watanabe

et al., 2017). We defined a subset of “credible mapped genes” as

those that were mapped by all three strategies. We conducted Gene

Ontology gene-set analyses using FUMA (Watanabe et al., 2017) on

credible mapped genes for each MOOD/psychiatric disorder pair. See

Data S1 for further details.

2.5 | Data availability

All GWAS summary statistics are publicly available besides 23andMe

DEP data (Data S1). The code for all analyses can be accessed at

https://github.com/precimed.

3 | RESULTS

3.1 | Using MiXeR to estimate total polygenic
overlap

Univariate MiXeR demonstrated MOOD to be highly polygenic, with

10,400 (SD = 400) variants predicted to influence MOOD,

comparable to the complex polygenic architectures of psychiatric dis-

orders (Table S1, Figure S1).

Bivariate MiXeR analysis revealed substantial overlap between

MOOD and all four disorders (Figure 1a, Table S1), both in the presence

of moderate positive genetic correlation (DEP and ADHD) and minimal

genetic correlation (SCZ and BIP). This occurs due to a pattern of mixed

effect directions among shared variants, that is, a balance of variants

with concordant and discordant effects on each trait cancel each other

out resulting in minimal genetic correlation despite extensive polygenic

overlap. For example, the overlap between SCZ and MOOD was partic-

ularly striking, with 9,400 (SD = 400) shared variants, representing 97%

variants influencing SCZ and 90% variants influencing MOOD, despite

weak positive genetic correlation (rg = 0.11, SE = 0.0089). There was

also weak positive genetic correlation (rg = 0.10, SE = 0.0096) but

fewer shared variants between BIP and MOOD, with 7,800 (SD = 600)

shared variants which represented smaller proportions of trait-

influencing variants (91 and 75% for BIP and MOOD, respectively). The

proportions of shared variants predicted to have concordant effects on

MOOD and each of SCZ (54%, SD = 0.4%) and BIP (57%, SD = 0.5%)

were consistent with extensive overlap and weak genetic correlation.

In comparison, DEP (rg = 0.62, SE = 0.011) and ADHD (rg = 0.38,

SE = 0.012) possessed stronger positive genetic correlations with

MOOD (replicating previous findings in DEP) (Ward et al., 2019). A total

of 7,700 (SD = 300) variants were estimated to be shared between DEP

and MOOD, representing 55% DEP-influencing variants and 74%

MOOD-influencing variants. The high number of DEP-specific variants

relative to the other disorders (6,300, SD = 500, 45%) was likely due to

DEP's extensive polygenicity (14,000, SD = 600) and may relate to the

F IGURE 1 (a) Total number of shared variants between mood instability (MOOD, blue) and schizophrenia (SCZ), bipolar disorder (BIP), major
depression (DEP), attention-deficit hyperactivity disorder (ADHD), and height, as estimated by MiXeR. Venn diagrams representing the proportion
of unique and shared variants associated with MOOD and each of SCZ, DEP, BIP, ADHD, and height. Polygenic overlap is represented in gray.
The numbers indicate the estimated quantity of variants in thousands per component that explains 90% of SNP heritability for each phenotype.
The size of the circle reflects the extent of polygenicity for each trait. Genetic correlation (rg) is represented in the horizontal bars beneath the
Venn diagrams. Right of the central bar (red) indicates positive rg and left of the central bar (blue) indicates negative rg. (b) MiXeR density plots
illustrating the number of variants (color scale, blue to yellow) with a given MiXeR-modelled effect size (β), for MOOD (y axis) and each of SCZ,
BIP, DEP, ADHD, and height (x axis). Extensive polygenic overlap of concordant and discordant variants is observed for MOOD and SCZ and BIP.
The plots of MOOD and ADHD and DEP also illustrate extensive polygenic overlap, but most variants have concordant effects. The plot of
MOOD and height indicates that most variants influencing each trait have little to no effect on the other trait.
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clinical heterogeneity of the disorder (Frei et al., 2019; Holland

et al., 2020). ADHD was found to share 4,000 (SD = 600) variants,

representing 71% ADHD influencing variants and 38% MOOD influenc-

ing variants. The high proportion of MOOD-specific variants (6,400, SD

= 600, 62%) is related to ADHD's lower polygenicity (5,600, SD = 400)

relative toMOOD. Consistent with the stronger positive genetic correla-

tions, there were higher proportions of shared variants predicted to have

concordant effects, with 94% (SD = 2.8%) concordant for DEP and

MOOD and 77% (SD = 6%) for ADHD andMOOD. Given the extensive

polygenic overlap across phenotypes, we applied the MiXeR model to

height and MOOD as a nonpsychiatric comparator. MiXeR estimated

800 shared variants (SD = 200) and minimal negative correlation

(rg = �0.08, SE = 0.0083). AIC and conditional QQ plots to assess

MiXeR model fit are described in Data S1 and Figure S2.

The relationship between the number of shared variants and

genetic correlation is illustrated in density plots in Figure 1b, in which

the effect of each variant on MOOD is plotted against its effect on

each psychiatric disorder and height. For SCZ and BIP, a large propor-

tion of variants effect both phenotypes (oval) but these are distributed

evenly between regions indicating concordant effects (top-right and

bottom-left quadrants) and discordant effects (top-left and bottom-

right quadrants). The effects of overlapping SNPs cancel each other

out leading to weak genetic correlation despite substantial overlap.

For DEP and ADHD, most variants have concordant directions, illus-

trated by the preponderance of variants in the top-right and bottom-

left quadrants. This results in polygenic overlap and stronger positive

genetic correlations. The MOOD and height subplot reveals that most

variants affecting one trait do not influence the other and vice versa.

Almost all associated variants are therefore plotted close to β = 0 for

one or the other phenotype (horizontal and vertical lines), indicating

minimal genetic overlap and weak genetic correlation.

3.2 | Identifying genomic loci shared between
MOOD and psychiatric disorders

We computed conjFDR values for each SNP present in both primary

GWASs. The conjFDR value is defined as a conservative estimate for

the probability that a given SNP is not associated with either pheno-

type. In line with previous publications, we set a threshold of conjFDR

<0.05 to identify SNPs with evidence of a joint association with both

phenotypes (Smeland et al., 2019). By leveraging cross-trait enrich-

ment and employing a Bayesian statistical framework (Figures S3–S4),

conjFDR identifies jointly associated loci beyond genome-wide

significance.

At conjFDR <0.05, MOOD was jointly associated with SCZ at

102 independent genomic loci, BIP at 60 loci, DEP at 163 loci, and

ADHD at 28 loci (Tables 1, S2). Among these, 246 were novel in

MOOD, 26 in SCZ, 22 in BIP, 92 in DEP, and 12 in ADHD, demon-

strating conjFDR's ability to boost the power to discover novel loci.

On comparing the effect direction of jointly associated lead SNPs,

58.9% (60/102) were concordant for SCZ and MOOD, 65.0%%

(39/60) for BIP and MOOD, 96.3% (157/163) for DEP and MOOD,

and 96% (27/28) for ADHD and MOOD. These figures closely resem-

ble the MiXeR estimates for MOOD and SCZ (54%), BIP (57%), and

DEP (94%) but are somewhat discrepant from the estimate for

MOOD and ADHD (77%). This is likely due to the small number of loci

identified in this analysis. Functional annotation analyses for individual

analyses are presented in Data S1 and Tables S3–S6. Our sensitivity

analysis excluding UK Biobank participants from the BIP sample iden-

tified 55 shared genetic loci, all of which were identified by our main

analysis, indicating minimal effect of sample overlap on our results

(Table S4).

3.3 | Consistency of genetic effects in
independent samples

When comparing the effect directions of lead SNPs in discovery and

replication samples, there was significant en masse sign concordance

for SCZ (74/96 concordant; p = 4.72e�8), BIP (39/56 concordant;

p = 0.0023), and DEP (121/154 concordant; p = 2.63e�13). The dis-

crepancy in the number of lead SNPs was due to missing lead SNPs in

replication samples (SCZ = 6; BIP = 4; DEP = 9). We did not have

access to sufficiently large independent datasets for MOOD

or ADHD.

TABLE 1 Summary of conjunctional FDR (conjFDR) results for mood instability (MOOD) and each of schizophrenia (SCZ), bipolar disorder (BIP),
major depression (DEP), and attention-deficit hyperactivity disorder (ADHD). Number of joint loci at genome-wide significance (p < 5 x 10�8),
number of joint loci identified at conjFDR <0.05, number of novel loci in each phenotype, number of loci with concordant effect directions in
discovery and replication samples, and number of transdiagnostic loci (overlapping between two or more Psych) are presented for each analysis.
Psych = psychiatric disorders. There was no replication cohort available for ADHD. The sample sizes of the original Psych GWAS and the number of
overlapping loci at genome-wide significance in the original GWAS (5 � p < 10�8) are provided for comparison.

Psych

Psych
GWAS
(n)

Joint loci with
MOOD at
p < 5 � 10�8 (n)

Joint loci with
MOOD at conjFDR
<0.05 (n)

Novel loci
in
MOOD (n)

Novel loci
in
psych (n)

Joint loci with concordant
lead SNPs in replication
cohort (n)

Transdiagnostic
loci (n)

SCZ 105,318 40 102 71 26 74 41

BIP 413,463 5 60 42 22 39 35

DEP 450,619 29 163 140 92 121 38

ADHD 53,293 2 28 17 12 N/A 11
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3.4 | Identifying and characterizing
transdiagnostic loci

A total of 53 loci were associated with MOOD and two or more psy-

chiatric disorders (Table S7). Among these, 38 were associated with

MOOD and two disorders, 11 with MOOD and three disorders, and

4 with MOOD and all four disorders. Seven transdiagnostic loci had

divergent effect directions on psychiatric disorders, but BIP was

always concordant with SCZ (n = 27) and DEP was always concordant

with ADHD (n = 18). The distribution of these loci is summarized in

Figure 2. Loci overlapping across three or more psychiatric disorders

are presented in Table 2.

We next identified 1,179 genes that were mapped to candidate

SNPs from two or more psychiatric disorder/MOOD pairs, 64 of

which were mapped by all three strategies (Table S8). Figure 3 illus-

trates the chromosomal distribution of the shared loci for each pheno-

typic pairing alongside mapped genes for each transdiagnostic locus

overlapping across three or more disorders. Among these, VRK2,

KIAA1109, AC110781.3, PCLO, TMPRSS5, and EP300 were all mapped

to nonsynonymous exonic SNPs. Furthermore, VRK2, AC110781.3,

and EP300 were mapped by all three mapping strategies, including

eQTLs in the substantia nigra (VRK2), caudate, hypothalamus and

nucleus accumbens (AC110781.3), and the cerebellum and hypothala-

mus (EP300). VRK2 is a serine threonine kinase which has previously

been implicated in SCZ, BIP and DEP and plays a role in neuronal pro-

liferation and migration (Li & Yue, 2018). AC110781.3 is a gene of

unknown function expressed within 13 different brain tissues, with

greatest expression in the cortex, amygdala, and hippocampus

(Figure S5). It was also mapped to a locus associated with all four dis-

orders, but with opposite effect directions on SCZ and BIP vs. DEP

and ADHD. Finally, EP300 is a histone acetyltransferase implicated in

cell proliferation and differentiation. Other notable genes mapped to

transdiagnostic loci include the dopamine receptor D2 gene (DRD2),

the calcium channel voltage-gated channel subunit CACNA1C, and the

neuron-specific potassium/chloride transporter SLC12A5.

A single gene-set, “Synapse organization” was significantly

enriched with mapped genes from all four analyses. There were a fur-

ther six gene-sets enriched with mapped genes for MOOD and each

of SCZ, BIP, and DEP, although there was extensive overlap in genes

across the different gene-sets. All gene-sets besides “Neuron part”
were either directly or indirectly related to synaptic structure

(“Synapse,” “Synapse part,” “Postsynapse,” “Synaptic membrane,”
“cell projection part”) (Table S9). Interestingly, when linking mapped

genes from each gene-set back to their associated genomic locus,

there was a divergent pattern of effect directions with SCZ (51.4–

61.8%) and BIP (58.3–70.6%) showing a pattern of mixed effect direc-

tions with MOOD, while DEP (97.4–100%) and ADHD (100%) were

almost entirely concordant. This is consistent with the patterns of

effect directions estimated by MiXeR and observed in jointly associ-

ated loci identified by conjFDR (Table S10). This indicates that the

divergent pattern of effect directions persists at the level of specific

gene-sets.

4 | DISCUSSION

In this combined GWAS analysis, we used MiXeR to reveal extensive

polygenic overlap between MOOD and each of SCZ, BIP, DEP, and

ADHD despite divergent patterns of genetic correlations. A large pro-

portion of the genetic variants linked to psychiatric disorders also

influence MOOD, but the number of shared and trait specific variants

and the balance of protective and risk-enhancing variants differ across

diagnostic groups. Using conjFDR, MOOD was jointly associated with

SCZ at 102 loci, BIP at 60 loci, DEP at 163 loci, and ADHD at 28 loci,

representing 259 unique genomic loci jointly associated with MOOD

and psychiatric disorders. Of these, 220 were novel in MOOD and

152 were novel in psychiatric disorders. Replication analysis provided

evidence of consistent genetic effects in independent SCZ, BIP, and

DEP samples. We identified 53 transdiagnostic loci that were overlap-

ping across MOOD and two or more psychiatric disorders, implicating

1,179 putative transdiagnostic genes with an apparent convergence

on synaptic gene-sets, although a divergent pattern of effect direc-

tions persisted within shared gene-sets. These findings have implica-

tions for how the genetic risk of mental-health-related traits is

conceptualized and suggests differences in the neurobiological basis

of MOOD across different psychiatric disorders, including the possi-

bility of genetically influenced subgroups of patients with more or less

prominent MOOD. We also highlight genes that are likely to influence

MOOD across several diagnoses, indicating high relevance for future

in vitro and in vivo investigation.

First, 55–97% of disorder associated variants were predicted to

influence MOOD, raising questions about the specificity of the

genetic architecture of these complex polygenic psychiatric disorders

and related traits. Our findings compliment evidence that a large pro-

portion of genetic variants are not unique for a given mental trait or

disorder (Smeland et al., 2020; Smeland, Frei, Dale, &

Andreassen, 2020), but influence multiple mental phenotypes to dif-

ferent degrees. As such, the distinct SNP-based risk profiles for differ-

ent mental health-related traits are not merely defined by unique

F IGURE 2 The distribution of transdiagnostic mood instability
loci. Venn diagram showing the numbers of diagnosis-specific and
transdiagnostic loci across each MOOD and psychiatric disorder
conjFDR analysis. ADHD, attention-deficit hyperactivity disorder; BIP,
bipolar disorder; DEP, major depression; SCZ, schizophrenia
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TABLE 2 Transdiagnostic loci jointly associated with mood instability (MOOD) and psychiatric disorders (Psych) across three or more
disorders

Chr Psych Min-max BPs

Trans-

diagnostic
lead SNP conjFDR

Concordant
effects

Novel

in
psych

Novel

in
MOOD Mapped genes

2 SCZ 22,430,795–22,545,027 rs13387284 0.029 TRUE x TRUE AC068490.2a

BIP 22,430,795–22,606,275 0.035 TRUE x

DEP 22,430,795–22,606,275 0.010 TRUE x

0.029 TRUE xADHD 22,430,795–22,493,637

2 SCZ 57,942,987–58,505,679 rs2717039 0.029 TRUE x x VRK2, FANCL, BCL11A

0.032 TRUE x

BIP 57,956,088–58,444,610 0.010 TRUE x

DEP 57,942,987–58,484,172

4 SCZ 122,913,532–123,558,330 rs10014468 0.019 x x x TRPC3, KIAA1109, IL21

BIP 123,026,869–123,558,330 0.0048 x x

DEP 123,052,343–123,558,330 0.0015 TRUE x

5 SCZ 103,791,044–104,055,261 rs2447832 0.044 TRUE x x RP11-6N13a, CTD-2374C24.1a

BIP 103,671,867–104,082,179 0.036 TRUE x

0.013 TRUE xDEP 103,671,867–104,082,179

0.033 TRUE xADHD 103,671,867–104,082,179

7 SCZ 1,873,756–2,110,850 rs55790766 0.026 x x x AC110781.3, INTS1, MAFK,

TMEM184A, PSMG3, ELFN1,

MAD1L1, FTSJ2, NUDT1
BIP 1,882,795–2,110,850 0.011 x x

DEP 1,860,733–2,247,403 0.005 TRUE x

ADHD 1,873,756–2,110,850 0.037 TRUE x

7 SCZ 82,386,297–82,641,937 rs2158220 0.006 TRUE x TRUE HGF, PCLO

BIP 82,376,952–82,555,669 0.01 TRUE x

DEP 82,386,297–82,557,937 0.012 TRUE x

8 SCZ 8,088,230–11,417,790 rs2952245 0.028 x x x MRSAc

BIP 7,632,319–11,830,150 0.044 x x

DEP 10,121,605–10,435,915 0.036 TRUE x

10 SCZ 106,453,832–106,640,653 rs2496014 0.016 TRUE x x SORCS3

BIP 106,455,520–106,640,653

DEP 106,405,854–106,830,537 0.022 TRUE x

0.006 TRUE xADHD 106,392,549–106,640,653

0.016 TRUE x

11 SCZ 113,185,591–113,692,660 rs2514218 7.37e�7 TRUE x x TTC12, DRD2, AP002884.3,

BCO2, PLET1, AP002884.2,

TMPRSS5, ZBTB16
BIP 113,241,877–113,451,229 0.001 TRUE x

DEP 113,166,310–113,692,660 0.0015 TRUE x

12 SCZ 2,474,661–2,523,772 rs2239063 0.038 TRUE x TRUE CACNA1C

BIP 2,474,661–2,523,772 0.043 TRUE x

DEP 2,465,364–2,523,772 0.016 TRUE x

18b SCZ 50,517,509–51,055,069 rs1367635 0.0032 TRUE x x DCC

BIP 50,711,776–50,907,127 0.034 TRUE x

DEP 50,358,109–51,055,069 0.0035 TRUE x

18b SCZ 50,517,509–51,055,069 rs7506904 0.049 TRUE x x DCC

DEP 50,197,439–51,055,069 0.048 TRUE x

ADHD 50,358,109–51,055,069 0.046 TRUE x

18 SCZ 52,720,948–53,474,904 rs4505420 0.0032 TRUE x x RAB27B, TXNL1, WDR7

BIP 52,720,948–52,827,668 0.0083 TRUE TRUE

DEP 52,520,149–53,424,880 0.0098 TRUE x

(Continues)
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nonoverlapping sets of genetic variants, but largely accounted for by a

set of nonspecific pleiotropic genetic variants showing different

strengths of association and effect across these phenotypes (Smeland,

Frei, Dale, & Andreassen, 2020). Although this hypothesis warrants

further interrogation, it suggests that novel approaches are needed to

account for the substantial pleiotropy we predict in order to robustly

distinguish the genetic risk for different mental traits and disorders

(Smeland et al., 2020). Furthermore, this places emphasis on identify-

ing disease specific variants that may disproportionately affect the

development of a specific phenotype, individually and/or collectively,

to inform precision medicine approaches in psychiatry.

Secondly, MOOD has gained interest due to its prevalence across

diagnoses and its prominent neurobiological basis (Broome

et al., 2015), implying that it may represent a novel treatment target

(Broome et al., 2015; Koenigsberg, 2010). To some extent, this is sup-

ported by the large degree of shared genomic loci and corresponding

mapped genes identified. However, there were differences in genetic

correlations and effect directions of shared loci, with stronger positive

correlations and higher proportions of loci with concordant effects in

DEP and ADHD compared to weak correlations and lower propor-

tions of loci with concordant effects in SCZ and BIP. This pattern per-

sisted within specific gene-sets identified across multiple analyses.

This implies that there may be mechanistic differences in MOOD

across the four psychiatric disorders. It is important to note that this

measure only reflects one aspect of MOOD, which may explain the

lack of correlation with SCZ and BIP, particularly given MOOD's

strong clinical association with BIP. Nonetheless, it is tempting to

speculate that MOOD experienced in DEP and ADHD has a similar

neurobiological relationship whereas MOOD in BIP and SCZ may

reflect a different underlying etiological mechanism. This is relevant as

such differences may limit the potential for transdiagnostic pharmaco-

logical interventions. Alternatively, the current findings are also con-

sistent with subgroups characterized by higher or lower MOOD

within diagnostic categories, in line with clinical observations

(Ducasse et al., 2017). Above all, these findings emphasize the

importance of exploring the neurobiological and phenomenological

differences in MOOD across diagnostic groups.

To characterize MOOD's neurobiological underpinnings, we used

three gene-mapping strategies to identify credible mapped genes for

all jointly associated loci. Among these, AC110781.3 was mapped to a

nonsynonymous exonic SNP jointly associated with MOOD and all

four psychiatric disorders. AC110781.3 is a protein-coding gene of

unknown function that is expressed in the cortex, amygdala, and hip-

pocampus. In addition to previously being implicated in schizophrenia

(Huckins et al., 2019) and risk-taking behavior (Karlsson Linnér

et al., 2019), we also recently linked AC110781.3 to multiple sleep

phenotypes and BIP, DEP, and SCZ (O'Connell et al., 2021). This sug-

gests AC110781.3 influences multiple diverse phenotypes and may

represent a promising candidate for further in vitro and in vivo investi-

gation. We also identified several well-established psychiatric risk

genes, including VRK2 (Li & Yue, 2018), CACNA1C (Moon, Haan, Wil-

kinson, Thomas, & Hall, 2018), and DRD2 (Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014), although an

association with mood instability has not previously been described in

the literature. The convergence of transdiagnostic-mapped genes on

synaptic structure builds on Ward et al.'s finding in the primary

MOOD GWAS that mapped genes were associated with synaptic

transmission.

Finally, while mood instability has a prominent genetic compo-

nent, it remains influenced by environmental factors (Coccaro

et al., 2012; Ward et al., 2019). Future work focusing on gene-

environmental interplay, particularly in relation to childhood trauma

which has been found to correlate with the development of mood

instability (Marwaha et al., 2016), would be of high interest.

There were limitations to the current study. First, due to avail-

able sample sizes and multiancestral differences in allele frequency

and LD structure, we were unable to include multiancestral samples.

In particularly, the use of multiancestry samples for conjFDR analy-

sis may result in false positive associations, and there are currently

no non-European MOOD samples of sufficient size to perform a

TABLE 2 (Continued)

Chr Psych Min-max BPs

Trans-

diagnostic
lead SNP conjFDR

Concordant
effects

Novel

in
psych

Novel

in
MOOD Mapped genes

20 SCZ 44,680,853–44,749,251 rs6032660 0.044 TRUE TRUE x SLC12A5, CD40, UBE2C,
ZSWIM1, SPATA25,

NEURL2, CTSA, PCIF1,

AL162458.1, NCOA5,

ELMO2

BIP 44,680,412–44,747,947 0.047 TRUE x

ADHD 44,680,853–44,749,251 0.042 TRUE x

22 SCZ 41,080,566–42,248,289 rs80533 0.01 TRUE x x MCHR1, SLC25A17, XPNPEP3,
RBX1, EP300, L3MBTL2,
RANGAP1, ZC3H7B, SGSM3,

TOB2, PHF5A, ACO2,

POLR3H, MEI1, WBP2NL

BIP 41,080,566–41,404,511 0.021 TRUE x

DEP 41,080,566–42,216,326 0.0067 TRUE x

Note: Minimum and maximum base pairs (BPs), “transdiagnostic lead SNPs”, and conjunctional false discovery statistics (conjFDR) are presented for each

locus. The concordance of effect direction and novelty of a locus for MOOD and each Psych is indicated by “TRUE.” Protein-coding genes mapped to

candidate SNPs from each MOOD/Psych analysis are presented. Genes mapped by all three mapping strategies (credible genes) are in bold.
aIf there were no protein-coding genes mapped to a locus, nonprotein-coding-mapped genes are presented.
bLoci are physically overlapping but there was no candidate SNP with conjFDR <0.05 across all four analyses.
cLocus spans 8p23 inversion region with complex linkage disequilibrium. This biases gene-mapping strategies so only a single mapped gene is presented.
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F IGURE 3 Manhattan plot showing -log10 transformed conjunctional FDR (conjFDR) values (y axis) for mood instability (MOOD) and
(a) schizophrenia (SCZ, blue), (b) bipolar disorder (BIP, orange), (c) major depression (DEP, green), and (d) attention-deficit hyperactivity disorder
(ADHD, red) against chromosomal position (x axis) for each SNP. The dotted line represents conjFDR <0.05 significance threshold. Black circles
represent lead SNPs. Lead SNPs from transdiagnostic loci across three or more disorders are annotated with mapped genes. N.B. Not all mapped
genes for each locus are presented due to space limitations. Credible genes (bold) were prioritized followed by protein-coding genes and then
nonprotein-coding genes. *Locus spans 8p23 inversion region with complex linkage disequilibrium. This biases gene-mapping strategies so only a
single mapped gene is presented.

HINDLEY ET AL. 215



non-European conjFDR analysis with MOOD. Furthermore, people

from higher socioeconomic classes and with better general health

are over-represented within the UKB, and so these findings may not

be generalizable to the wider population. Nonetheless, we used an

East-Asian SCZ sample for replication to show consistent genetic

effects of our discovered loci in a non-European sample. More rep-

resentative population samples, such as the All-of-Us study, will

enable more representative genetic research in the coming years

(Mapes et al., 2020). Second, due to the small sample size of the

most recent borderline personality disorder GWAS (n = 2,579), we

were unable to include it in the current analysis despite its primacy

in MOOD (Koenigsberg, 2010). This analysis should be repeated as

sample sizes increase to include other relevant disorders, identify

more transdiagnostic loci, and validate MiXeR's predictions. Third,

the measure of MOOD was based on a single, binary questionnaire

item that did not measure affect intensity, regulation of affect or

behavioral sequelae, and did not specify the timeframe (Marwaha

et al., 2014). This may have contributed to the lack of genetic corre-

lations with SCZ and BIP. Nonetheless, a simple measure was neces-

sary to achieve a large enough sample size for gen. A previous

GWAS using more complete measures had a substantially smaller

sample size and failed to identify genome-wide significant loci

(Gisbert et al., 2019). Moreover, the same binary questionnaire item

is associated with BIP and DEP, demonstrating its clinical relevance

(Angst et al., 2003). Future work with more refined measures is

required to understand how these findings relate to other dimen-

sions of MOOD. Fourth, differences in sample size affect conjFDR's

power to discover shared loci. This precludes cross-analysis compar-

isons of the number of loci discovered by conjFDR. The disparity

between the number of shared loci discovered and the number of

shared variants predicted by MiXeR also indicates that we cannot

confidently identify loci “unique” to each mental disorder, since it is

possible that the lack of association is due to type II error. This will

only be addressed once larger proportions of disorder-influencing

variants have been discovered. Finally, we used a hypergeometric

test-based gene set enrichment analysis. This approach is limited by

the fact that it does not control for gene-size and may be vulnerable

to gene clusters. We were unable to use alternative gene-set ana-

lyses which control for these biases, such as MAGMA (de Leeuw,

Mooij, Heskes, & Posthuma, 2015), since these methods assume a

uniform distribution of association p-values among null SNPs which

is not the case for conjFDR statistics. We attempted to alleviate the

effects of these biases by using credible genes as the input list of

genes which are less likely to contain multiple mapped genes from

the same gene cluster. Our definition of credible genes also

demanded physical proximity between SNP and gene. This excludes

credible relationships between SNPs and distal genes, reducing the

sensitivity of the gene-mapping strategy. Nonetheless, eQTL and

chromatin interaction mapping are sensitive to the effects of linkage

disequilibrium and so are liable to generate false positives. Since we

identified a large number of loci, we prioritized specificity over sen-

sitivity to ensure robust gene-set analyses.

In conclusion, we have discovered extensive polygenic overlap

between MOOD and psychiatric disorders with divergent patterns of

genetic correlation and effect directions. These results support the

notion that there are common molecular pathways implicated in

MOOD across diagnostic categories, but disorder specific effect size

distributions indicate potential differences in MOOD's neurobiological

underpinnings across diagnoses.
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