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Abstract

Anyone involved in designing or finding molecules in the life sciences over the past few years has 

witnessed a dramatic change in how we now work due to the COVID-19 pandemic. Computational 

technologies like artificial intelligence (AI) seemed to become ubiquitous in 2020 and have been 

increasingly applied as scientists worked from home and were separated from the laboratory 

and their colleagues. This shift may be more permanent as the future of molecule design across 

different industries will increasingly require machine learning models for design and optimization 

of molecules as they become “designed by AI”. AI and machine learning has essentially become a 

commodity within the pharmaceutical industry. This perspective will briefly describe our personal 

opinions of how machine learning has evolved and is being applied to model different molecule 

properties that crosses industries in their utility and ultimately suggests the potential for tight 

integration of AI into equipment and automated experimental pipelines. It will also describe how 

many groups have implemented generative models covering different architectures, for de novo 
design of molecules. We also highlight some of the companies at the forefront of using AI to 

demonstrate how machine learning has impacted and influenced our work. Finally, we will peer 

into the future and suggest some of the areas that represent the most interesting technologies that 

may shape the future of molecule design, highlighting how we can help increase the efficiency of 

the design-make-test cycle which is currently a major focus across industries.
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Introduction

Like most other scientists, those involved in designing or finding molecules for 

commercial applications in the life sciences (including in human healthcare, animal health, 

agrochemicals, consumer products and beyond) have witnessed a dramatic change in how 

we now work due to the COVID-19 pandemic in 2020. During the pandemic, non-essential 
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research was halted, and scientists were sent home in many countries. This led to a 

noticeable work divide, as those scientists that could use a computer for their research 

were able to work remotely, while other types of research ceased entirely. What does 

this tell us about how scientific research will change if this pandemic continues for years 

to come or if we are faced with other barriers to physical lab access? If scientists must 

work remotely, could they still do their lab experiments remotely? Perhaps we will see 

more purpose built “remote-controlled” laboratories that provide this as a service. In the 

chemical synthesis arena, some groups have already experimented with partial or completely 

autonomous synthesis [1–6], while in pharmaceutical screening this has been essentially 

fully automated for decades with minimal human input. Despite these different types of 

automation, the presence of a scientist for manual lab-work is still needed. However, if we 

put these elements together, we can automate the complete process and run it remotely such 

that the design-make-test cycle (Figure 1A, B) is fully autonomous across industries. Would 

this approach eventually become the norm for R&D labs? Perhaps, in the same way that 

we see many laboratories have automated liquid dispensers or robots today for repetitive 

tasks. If so, where does that leave basic research in other scientific domains which are less 

able to be automated or do not have the financial resources? These groups may be left 

behind. Automation of the design-make-test cycle in chemistry is a rapidly evolving area 

that could benefit from its own focused review. In addition, the resource limitations during 

the pandemic should also make us consider the importance of each experiment and how 

to do research more frugally if consumables such as pipette tips or other essential items 

are in short supply. We need to rethink what experiments are the most critical and how 

we can recycle and reuse data that already exists to ensure experiments are not repeated 

unnecessarily if the original resource data has yet to be utilized. There is a continually 

growing and already immense amount of biological data in the public domain. Some of it 

is readily accessible in databases such as PubChem, ChEMBL etc. [7, 8] or increasingly 

other repositories like FigShare, GitHub etc., while some of it resides in less accessible areas 

like publications which may be paywalled or on individual laboratory websites. There is 

also considerable data that remains inaccessible inside companies for commercial reasons. 

It is these domains of automation and data accessibility that we and others are interested 

in addressing so that we can learn from this existing data. What the pandemic also did 

was accelerate bringing these various aspects of research to a head at the same time to 

demonstrate the need for tighter integration between research areas and specialties. It has 

also highlighted how we look at artificial intelligence (AI) and, the area of machine learning 

as a fundamental technology for molecule design [9–11] which we will explore further 

herein.

The Next Commodity

Commodities are often considered as the basics in life which we happen to take for granted, 

not only food stuffs, but materials (ores), chemicals and computer memory. When they are 

in short supply, like the supply chain issues we are seeing during the current pandemic, 

they can have dramatic effects. While AI is not a new technology to the drug discovery 

space, in less than a decade, machine learning has been revolutionized with the addition of 

new architecture such as attention-base models, increased dataset availability, and improved 
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hardware, reducing or removing barriers to machine learning applications [12–14]. In 

response to this, in recent years we have seen AI and specifically machine learning methods 

[11, 15, 16] applied in many industries to the point where we would posit it could also now 

be considered a scientific commodity. Like many other groups, we are interested in applying 

computational algorithms to drug discovery and over the last decade have noticed how AI 

has become ubiquitous as it has been applied to many areas of pharmaceutical research. This 

is by no means new as AI and machine learning or computational approaches in general 

have been applied in the pharmaceutical industry for many decades. Machine learning has 

now become a frequent topic of discussion at conferences, with an exploding number of 

papers describing applications of AI, even crossing over into the popular press. This has 

implications for the pharmaceutical industry if AI is seen as an essential component of 

the research and development (R&D) process in the same way that we have synthesis, in 
vitro and in vivo, clinical testing etc. This may also change the perception of computational 

approaches as having at least equal importance in the R&D process. This has also made 

us consider what may be the near and distant future of applying machine learning in drug 

discovery if it becomes important enough to be now considered a commodity.

Perhaps driving this new-found interest of AI is that over the last few years we have seen 

companies focusing on AI obtain very significant amounts of funding and sign massive 

deals with major pharmaceutical companies (Table S1). Several of these companies have 

used machine learning in different contexts but all have applied their software to drug 

discovery projects (Table 1). Obviously, not all companies publish on their technologies 

to the same extent which can lead to a degree of opacity as to how they use AI. It may 

not be necessary to raise such sums of money in order to compete with this success on 

an admittedly smaller scale. There has been recognition of the increasing generation and 

use of open source machine learning and cheminformatics software which has impacted 

the status quo of commercial cheminformatics software [17] and can be used as a starting 

point for a new generation of smaller drug discovery companies. For example, it is possible 

to build on such open-source software to develop machine learning tools and models to 

assist in drug discovery and toxicology internal projects [18–21] as well as share such 

technologies with academic collaborators so they can benefit from it. At the same time there 

are many industries such as consumer product and smaller pharmaceutical companies that 

do not have such cheminformatics expertise and these efforts could be a useful template 

for them to license or emulate. To illustrate the potential of this approach of developing 

and applying machine learning for drug discovery with minimal funding we use our 

own experiences which have used public data for projects either alone or in conjunction 

with additional private data (Table S2). While these examples are predominantly for drug 

discovery they could be extended to other industries or applications. Such models can 

increasingly leverage public knowledge to enable selection of compounds to test against 

targets for both rare, neglected and common diseases [22, 23] (Table 1, Table S2). Hence 

with modest funding it is feasible to perform the computational element of this work and 

build up wet lab capabilities to facilitate the in vitro work to validate such models. At 

small drug discovery companies, the pandemic shutdown demonstrated the importance of 

having machine learning in house and how companies in collaboration with others needed 

to be more agile in applying such technologies [22, 24, 25]. Machine learning has always 
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provided a way for companies to produce and test new ideas more efficiently, which to 

some is still seen as evidence of hype. Yet it is widely accepted that prior paradigms 

such as random high-throughput screening has a success-rate (hit-rate) of 0.01–0.14% [26] 

and in some cases fails completely. While there are many caveats which must be taken 

into consideration, we can consider our own predicted vs. verified hit-rates using machine 

learning, were we often see increases in the success-rate by 10–100 fold, and in some cases 

even 1000 fold. Again, for illustration purposes, several cases from our own work suggests 

in vitro hit rates of: 100% (3/3, Ebola) [27], 11% (11/97 Chagas) [28], 25% (1/5, Yellow 

Fever) [29]. Some of these projects were also validated using in vivo testing (Chagas, 5/97 = 

5.2% in vivo hit rate [28]). Combined, these examples demonstrate how companies can use 

machine learning technologies to create many molecule assets, and that machine learning 

has proven to be successfully predict molecular hits (Table 1, and Table S2) that a much 

larger company (not using such approaches) would have only been able to generate with 

many more employees and a much larger financial investment. While this point is not new, 

when considered with the advent of generative models, discussed below, it suggests than 

an accelerated early-stage drug discovery pipeline is just around the corner: Using machine 

learning models to guide generative models for new molecular IP, we can reasonably expect 

machine learning to find/generate many more molecules than have been virtually screened 

in the past. It is likely that while this technology has yet to replace scientists that do this 

drug discovery research, we would argue it has already augmented those using it with the 

intelligence of many more experienced scientists. In this context, applying machine learning 

allows these scientists to identify and generate “inventions” as well as determine which may 

be worthy of patenting and/or publishing with commercial applications.

It was clear to us that 2020 demonstrated that the pathway from “ideas to molecules to 

treatments” can be increasingly aided by machine learning algorithms, to the point where 

they become relatively transparent because they are accepted as part of the drug discovery 

or design process like other types of tools. While this software is freely available through 

open-source projects, replacing what was previously only commercially available and used 

by experts, how they are applied and integrated makes the difference to their likely success 

or failure. This can also be considered as one definition of what is termed end-to-end 

machine learning [11]. It is also likely that what will ultimately differentiate such companies 

in this space from competitors (Table S1) are the curation of the available underlying 

experimental data and ensuring the quality and validity of the machine learning models that 

form the basis for each companies differentiating technology. Continual curation of data in 

larger companies may allow them to capture the decades of drug discovery and toxicology 

domain knowledge of employees which they have considerably more of compared with 

newer companies. Knowing what are the ‘pros and cons’ of the different machine learning 

algorithms is also important, as no single algorithm or resulting model is likely to be the best 

for all prediction tasks [30] (Table S2, S3). Drug discovery is challenging and not an area to 

embark upon if you have no concept of what the application domain is. There is still a need 

for a scientist in the loop for most drug discovery machine learning models, however this 

does not mean we are far from their autonomous use.
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The Future of Molecules Designed by AI

The future of molecule design across multiple industries (pharmaceuticals, agrochemicals, 

consumer products etc.) will require machine learning models for the design and 

optimization of molecules and their properties through the complete design-make-test cycle 

(Figure 1). “Designed by AI” is not the end for machine learning. While machine learning 

can be used to model and predict most types of data that are generated in the research 

and development process [11], this is certainly not limited to predicting a bioactivity or 

toxicity endpoints. Machine learning models may also help at different stages of research to 

aid in molecule purification, identification or quantification where perhaps a molecule has 

never been synthesized and no reference data is available. For example, modeling outputs 

of analytical data such as spectra (MS, FT-IR, UV-Vis [31]) or more complex in vivo data 

all the way to more abstract predictions, such as potential success of commercialization [32, 

33] are possible with machine learning. While learning from known molecule related data is 

potentially valuable, going beyond what is currently known or state-of-the-art and proposing 

new molecules to synthesize based on the machine learning models, a physicochemical 

property, or other data is an area of major interest. There has been substantial activity 

in recent years with small molecules designed and generated by generative models using 

many different architectures such as Variational Autoencoder [34], Generative Adversarial 

Networks [35] and Recurrent Neural Networks [36] (RNN, Figure 1, Table 1)) [36–41] 

to produce molecules de novo [10, 36, 42–48]. For further detail the reader is pointed to 

the multiple reviews on this area [49–51]. Prospective testing of the proposed molecules 

using these methods is generally rare [52] and many prefer to skip the synthesis and find 

compounds that are structurally similar but commercially available from vendors. When 

such generative machine learning model derived molecules are eventually synthesized this 

is usually not done in an automated or tightly integrated fashion but handed over to a 

contract research organization, collaborator or perhaps left for other researchers to follow 

up. The application of generative approaches for de novo design of larger molecules is also 

relatively unexplored (although other approaches have been developed for macrolide library 

enumeration [53]) and yet there are certainly many large biotech companies focused on 

biologics whose patents will eventually expire too. One would assume that such companies 

are also exploring how such machine learning methods could help them design new 

biologics or optimize their current products [54]. As a test case example for this perspective, 

we have used a generative long short-term memory (LSTM) algorithm to generate novel 

peptides with predicted glucagon-like peptide-1 (GLP-1) agonist activity (Figure 2) using 

publicly available data for the machine learning model. This illustrated that the de novo 
proposed molecules from the algorithm are in very close structural and predicted bioactivity 

proximity to known commercial GLP-1 agonists, which would provide some confidence of 

their utility. Clearly, the ultimate proof of this will require synthesis and testing of these 

proposed molecules, but this is just one such additional area of use for generative models 

and there are many therapeutic modalities where they could help us explore chemical and 

property space. This is scalable such that computationally one could generate many such 

examples for different targets, diseases, structural scaffolds or molecular entities and then 

prioritize the targets or diseases to pursue.
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Generative approaches are certainly not the only way to produce or optimize molecules and 

there is a long history of technologies (fragment-based drug discovery [55], structure-based 

design, computer-aided design etc.). Other technologies such as DNA encoded libraries can 

rapidly generate billions of potential structures which may need to be scored by machine 

learning models [56]. A bottleneck for scoring such libraries (or massive numbers of virtual 

molecules in general) may be in the generation of fingerprints (such as ECFP6) and their 

storage before processing. One solution is to use the structure encoded as SMILES (or 

other structural representations such as SELFIES [57]) as the input for modeling using an 

end-to-end convolution-LSTM model [58]. These types of machine learning algorithms are 

likely comparable to several others when their statistics are compared, suggesting again that 

there may be several different machine learning algorithms that can be applied (Table S3). 

Using convolution-LSTM models for predictions for a billion molecules in a DNA-encoded 

library, such that calculations take place on the GPU allowing parallel model prediction and 

pre-processing, produces an approximate 50-fold speed up on prediction generation over 

models built with ECFP6 fingerprints alone on our in house 10 GPU servers. While this is 

rather limited example, these types of end-to end machine learning models using SMILES 

have also been demonstrated in recent comparisons with ECFP6 for prediction of UV-Vis 

spectra [31] and may be utilized for other types of datasets as well.

As has happened previously, we can see a time when the machine learning algorithms we 

take for granted now (such as: deep learning, graph-based methods, LSTM, transformers 

etc.) will be more widely known and used. We envisage we will also see such models 

integrated into future generations of laboratory equipment. This will enable such hardware 

and software combinations to aid in molecule design whilst also proposing and making 

the molecules based on the computational predictions [1–6]. This would also facilitate 

tightly integrated “design-make-test” cycles to be repeated until a desired end point was 

reached (such as a measurable bioactivity, a molecular property, or multiple activities or 

properties are met). Certainly, the need to integrate these technologies will require working 

with cheminformatics software and hardware standards to help this come to fruition. These 

developments when combined may suggest that we are not too far away from the complete 

design, synthesis and testing in real time guided by AI (if we are not there already by the 

time this is published!). In the past the larger pharmaceutical companies applied machine 

learning within relatively small groups and hence it had little impact. In contrast, smaller, 

newer, pharmaceutical companies are applying machine learning across their companies and 

are focused on the testing of new molecules as we have highlighted with public or private 

data (Supplemental references) which is already showing an impact based on the valuation 

of such companies and deals (Table S1). Machine learning has been broadly applied to 

tackle hit discovery, lead optimization or beyond (Table 1 and S2). Perhaps the biggest 

impact of such a technology will be on overall productivity to those industries like animal 

health or agrochemicals which are facing patent cliffs and have lost their historic connection 

to pharmaceutical companies as their engine of molecule design and are now requiring 

new molecules. It has also been widely noted that only a small fraction (a few hundred) 

of the ~7000 rare diseases have treatments or are even undergoing research [11]. While 

there are very few applications of AI technologies to rare diseases this could change this 

dynamic, enabling companies to work on the research and discovery of treatments where 

Urbina and Ekins Page 6

Artif Intell Life Sci. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



there is limited funding, the population may be seen as too small, or there is little return on 

investment. Similarly, tropical neglected diseases could also benefit, especially as there is 

growing quantity of in vitro data for these diseases after decades of research, thus providing 

a valuable starting point for machine learning to aid future drug discovery efforts [59, 60] 

(Table 1 and Table S2).

Thinking about the bigger picture, machine learning may also be a means to an end, and 

that end is the molecule that has a desired activity which is ultimately patented to create 

intellectual property that a company then monetizes. Machine learning models applied to the 

continuum of drug discovery could be readily used to develop a pipeline of small or large 

molecules for future licensing or to serve as a starting point for venture capital investors to 

found new companies. If multiple companies take a similar approach, then it could create 

a market around AI-designed molecule assets for their industry segment. At the same time, 

such AI-based molecule design companies could offer this expertise and capabilities to 

others to create a new service industry (contract AI organization). This sharing of expertise 

and cross fertilization of data and technologies across molecule-related industries may 

be inevitable, blurring the boundaries between chemical industries. Such companies can 

ultimately improve the design and selection of molecules that avoid likely predictable 

failures associated with undesirable toxicity which is also an area that crosses industries (e.g 

human, animal health, agrochemical and consumer products) and which is already possible 

using the knowledge captured by AI. As a perhaps over-used example, the commercial 

interest and investment in kinase inhibitors is at an all-time high (US$66.7Bn by the year 

2025) but the companies in this area are yet to capitalize on the many afore-mentioned 

AI technologies like generative de novo approaches to developing compounds that target 

specific kinases or multiple kinases and avoid others. To date, only a few kinases have been 

used as examples for generative approaches [52] (Table 1) but they could be used for the 

hundreds of kinases to identify the most chemically tractable, that would never be possible 

experimentally. We have yet, to see kinase focused companies using such AI approaches, 

instead they rely on tried and tested structure-based design and medicinal chemistry. Perhaps 

we will see them shift to AI approaches as their benefits continue to be described.

Conclusion

In summary, we have highlighted several examples that illustrate how AI applied to 

molecule design may impact several related industries involved in molecule design including 

the pharmaceutical industry and others. The increased visibility and awareness of the 

potential of AI as applied to drug discovery for COVID-19 [61] has been one of the few 

good things to have come out of the pandemic, even if it has delivered few notable successes 

to date (Table 1). What will be interesting to see is whether AI technology does indeed 

increase the long-term productivity and success of the new pharmaceutical companies that 

are attracting so much recent interest. We are cautiously optimistic that the time for AI in 

the pharmaceutical industry is here and that it will have a lasting impact. While we do not 

have all the answers to the questions raised in this perspective, our goal was to illustrate 

a recent observation that we are currently treating these AI technologies like a commodity. 

There are clearly still significant challenges and opportunities to applying them, leaving 

plenty of scope for future research and reviews. There are also ethical issues that have not 
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been addressed, as these generative machine learning technologies are so readily accessible 

that they could be easily misused without the need for too much underlying knowledge. We 

look forward to discussing these and other topics with the community of scientists that are 

involved in this field.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. The design-make-test cycle. B. A hypothetical example of how a Recurrent Neural 

Network can be combined with the machine learning models and feedback from scientists to 

optimize the kinase inhibitor lapatinib.
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Figure 2. 
A case study of generative peptide design for GLP-1. A. An RNN-LSTM was trained on 

a dataset of 1554 antimicrobial peptides and generated peptides were scored with a GLP-1 

agonist model generated from data in ChEMBL. B. dimensionality reduction using a t-SNE 

plot and nearest neighbor distance of generated proposed GLP-1 agonists. C. visualizing 

de novo generated GLP-1 agonists alongside commercial GLP-1 drugs to illustrate they are 

close in chemical property space.
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Table 1.

Examples of drug discovery applications of various machine learning to targets and diseases from AI 

companies.

Area of 
research / 
Disease

Target/property Outcome Company References

Canavan 
disease

aspartate N-
acetyltransferase

AtomNet deep neural network for structure-based drug 
discovery uses a model trained on bioactivity data and 
protein structures. They scored 10M molecules and 60 were 
tested in vitro with 5 compounds having low or sub μM 
activity.

Atomwise [62]

Infectious 
disease

COVID-19 Workflow used knowledge graph information from recent 
literature using machine learning (ML) based extraction 
to identify baricitinib. This molecule progressed from a 
clinical trial to emergency FDA approval.

BenevolentAI [63]

Various Various drug 
rediscovery examples

de novo generative design benchmarking study used 
rediscovery of various drugs with different algorithms.

BenevolentAI [64]

Rare disease Fragile X Disease-Gene Expression Matching approach to 
repurposing identified sulindac which rescued the 
phenotype in the Fmr1 KO mouse.

Healx [65]

Fibrosis DDR1 kinase Generative machine learning to discover novel compounds 
validated in vivo

In silico Medicine [52]

Infectious 
disease

Antibacterials against 
E. coli

Machine learning, virtual screeing and in vitro testing In silico Medicine [66]

Various Various Different generative approaches were used and evaluated 
including entangled conditional adversarial autoencoder, 
reinforced adversarial neural computer, and Adversarial 
threshold neural computer. They either purchased 
compounds similar to those proposed and then tested 
them in vitro against various kinases or alternatively they 
synthesized proposed compounds and tested them

In silico Medicine [67]
[68]
[69]

Various sEH, ERa and c-KIT Applied machine learning algorithms (random forest or 
graph convolutional neural network (GCNN)) to DNA 
encoded libraries then validated the predictions in vitro. 
GCNN models had higher hit rates and potencies.

X-Chem [56]

Various IMPDH, JNK3 etc. Graph based deep generative model to create linkers 
for combining two fragments for scaffold hopping 
and PROTACS using a gated graph neural network 
incorporating 3D information. Molecules were assessed 
with a range of 2D and 3D metrics and outperformed a 
baseline.

ExScientia Ltd [70]

Various Various Multiple machine learning approaches applied to searching 
commercial and proprietary libraries, lead optimization and 
repurposing.

Collaborations 
Pharmaceuticals, 
Inc.

See Table S2
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