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ABSTRACT
A complex interplay of genetic and environmental risk factors influence global brain structural 
alterations associated with brain health and disease. Epigenome-wide association studies (EWAS) 
of global brain imaging phenotypes have the potential to reveal the mechanisms of brain health 
and disease and can lead to better predictive analytics through the development of risk scores.
We perform an EWAS of global brain volumes in Generation Scotland using peripherally mea
sured whole blood DNA methylation (DNAm) from two assessments, (i) at baseline recruitment, 
~6 years prior to MRI assessment (N = 672) and (ii) concurrent with MRI assessment (N=565). Four 
CpGs at baseline were associated with global cerebral white matter, total grey matter, and whole- 
brain volume (Bonferroni p≤7.41×10−8, βrange = −1.46x10−6 to 9.59 × 10−7). These CpGs were 
annotated to genes implicated in brain-related traits, including psychiatric disorders, develop
ment, and ageing. We did not find significant associations in the meta-analysis of the EWAS of the 
two sets concurrent with imaging at the corrected level.
These findings reveal global brain structural changes associated with DNAm measured ~6 years 
previously, indicating a potential role of early DNAm modifications in brain structure. Although 
concurrent DNAm was not associated with global brain structure, the nominally significant 
findings identified here present a rationale for future investigation of associations between DNA 
methylation and structural brain phenotypes in larger population-based samples.
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Introduction

Global brain structure is influenced by genetic and 
environmental factors, and has previously been asso
ciated with health and disorder traits across the life
time [1–3]. For instance, changes in global grey and 
white matter have been observed in a number of 
psychiatric and neurological disorders, including 
schizophrenia [4], major depressive disorder 
(MDD) [3], bipolar disorder [5], Rett syndrome 
[6], and Alzheimer’s disease [7]. Previous studies 
have also found age-related reductions in both grey 
and white matter [8,9].

Such global brain structural changes in both 
health and disease may reflect genetic and 

environmental factors and their impact. While pre
vious studies have focussed on revealing the genetic 
architecture of brain structure, there are now oppor
tunities to explore genetic and environmental risk 
factors through epigenetics, which correlate with 
changes in gene expression by modulating the gen
ome in different cell types, without altering the 
underlying genome sequence [10]. One such process, 
DNA methylation (DNAm), implicates the covalent 
addition of a methyl group to a cytosine nucleotide 
followed by guanine in DNA, resulting in Cytosine- 
phosphate-Guanine (CpG) sites [10].

DNAm is modulated by both genetic and envir
onmental factors, and may thus aid in identifying 
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genetic and environmental contributions to health 
and disease [11]. Several brain- related traits and 
diseases are associated with variation in DNAm. 
MDD, a moderately heritable disorder, has been 
associated with differential methylation at several 
CpG sites, with a methylation risk score explaining 
1.75% of the variance in the disorder [12]. Further, 
in an epigenome-wide association study (EWAS) 
using blood, CpG sites associated with depressive 
symptoms were annotated to genes involved in 
axonal guidance [13]. Schizophrenia has been 
associated with epigenetic variation at multiple 
loci that contribute to the polygenicity of the dis
order [14,15]. Finally, growing evidence has shown 
that DNAm can act as a proxy for the biological 
age of multiple tissues across life [16]. These stu
dies indicate that it may be possible, in future, to 
utilize DNAm modifications as biomarkers for 
brain-related healthy traits and diseases and to 
identify novel mechanisms contributing to these 
traits.

In recent years, increasing efforts have been 
made to identify epigenetic correlates of brain 
phenotypes, using both blood and brain tissue 
[17,18]. To maximize statistical power, previous 
studies have focused on candidate genes and 
candidate epigenetic markers in relation to spe
cific brain regions of interest, such as subcor
tical volumes in the hippocampus and 
amygdala, as well as cortical thickness and 
volume in Freesurfer-derived brain regions 
[18], although consistency between study find
ings is modest. Recent advances in high- 
throughput array technologies that can identify 
DNAm levels at over 450 K and 850 K locations 
along the genome have enabled researchers to 
identify DNAm-brain associations using 
a hypothesis-free approach using EWAS [19]. 
DNAm modifications in relation to brain phe
notypes have also been identified in patients as 
opposed to healthy individuals, including in the 
frontal cortex in schizophrenia [20,21], hippo
campal volume in MDD [22], in the cerebral 
cortex in Alzheimer’s disease [23], and in the 
frontal cortex in Parkinson’s disease [24]. 
Structural brain measures may therefore func
tion as endophenotypes that can be used to 
assess the association between epigenetic mod
ifications and brain health and disease.

The pathogenesis of psychiatric and neurodegen
erative disorders has been associated with 
a multitude of cortical and subcortical brain regions 
with inconsistent results across studies [3,25–27], 
potentially indicating a role for whole-brain 
abnormalities in these disorders. Peripheral 
DNAm alterations associated with clinically rele
vant global brain structure may therefore further 
our mechanistic understanding of brain anatomy in 
both health and disease, may help to identify mod
ifiable risk factors and may form a basis for the 
development of more accurate predictive risk scores 
capturing a wider array of potential influences.

The majority of the studies mentioned above 
used whole blood as a surrogate tissue for the 
brain due to inaccessibility of the brain ante- 
mortem. Although DNAm is reported to be tissue- 
and cell type-specific, similarities between blood 
and brain DNAm have also been identified [28]. 
In addition, whole blood has successfully been 
used in the past to identify meaningful epigenetic 
differences in brain-related traits, as shown 
above [18].

Here, we sought to assess DNAm associations 
with Magnetic Resonance Imaging (MRI) global 
brain structural phenotypes, including cerebral 
white matter, total grey matter, and whole-brain 
volume using the Illumina Infinium 
MethylationEPIC array, capturing DNAm at 
approximately 850 K CpG sites [29]. Using 
DNAm measured ~6 years prior to MRI data 
collection, we examined whether CpG sites were 
associated with global brain structure at a later 
timepoint in N = 672 individuals. We then inves
tigated whether concurrently measured DNAm 
was associated with global brain structure in 
N = 565 individuals.

Methods

Study population: Generation Scotland: Scottish 
Family Health Study (GS:SFHS)

GS:SFHS is a large, family-based epidemiological 
study aiming to investigate the genetics of health 
and disease in approximately 24,000 individuals 
aged 18–98 years across Scotland. Data collected 
between 2006 and 2011 consists of genetic, DNA 
methylation, and environmental variables [30,31]. 
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GS:SFHS received ethical approval from NHS 
Tayside Research Ethics Committee (REC refer
ence number 05/S1401/89) and has Research 
Tissue Bank Status (reference: 20/ES/0021). 
Written informed consent was obtained from all 
participants.

A total of N = 9,618 participants from GS 
responded when re-contacted at a later timepoint, 
and further data on mental health, specifically 
depression, was obtained. N = 1,188 were recruited 
for brain scanning, and approximately N = 700 
with both DNAm and neuroimaging data were 
available at the time of the current study. Details 
of recruitment and study information have been 
reported previously [32,33]. The study was sup
ported by the Wellcome Trust through a Strategic 
Award (reference 104036/Z/14/Z). Written con
sent at each stage of the study was obtained from 
all participants.

Two timepoints were used for the current study: 
blood samples were collected at baseline measure
ment (2006–2011), and concurrently with neuroi
maging data (2015–2019).

Phenotypes

Global brain volumes

T1 images were processed using standard 
ENIGMA protocols [34] with FreeSurfer 5.3 and 
all output was visually quality checked. Manual 
edits were applied as required to correct for inclu
sion of skull tissue, exclusion of brain tissue or for 
errors in parcellation. Global measures were 
extracted from the final output following all 
edits. Manual editing, although necessary, did 
introduce a degree of subjective bias, therefore 
‘editing’ was included as a binary covariate (values: 
yes/no). Further, as the complete set of T1s was 
processed, quality checked and edited in two parts, 
‘batch’ was also included as a covariate.

We used 3 global volume measures in the cur
rent study. Total cerebral white matter includes 
hyperintensities and excludes anything that is not 
white matter. Total grey matter is rendered by the 
sum of the cortex within the left and right hemi
spheres, as well as subcortical and cerebellar grey 
matter. Finally, whole-brain volume includes both 
grey and white matter, and corresponds to brain 

volume without the brain stem, ventricles, cere
brospinal fluid, and choroid plexus.

Baseline lifestyle factors and MDD status

Body mass index (BMI) was calculated using 
height (m) and weight (kg) as measured by clinical 
staff at baseline recruitment. Participants were 
asked to report the number of units of alcohol 
consumed during the past week and their smoking 
status (never, former, current); pack years was 
used to measure heaviness of smoking in current 
smokers by multiplying the number of cigarette 
packs (20 cigarettes/pack) smoked per day by the 
number of years a person has smoked [35]. MDD 
status was assessed at baseline using the Structured 
Clinical Interview of the Diagnostic and Statistical 
Manual, version IV (SCID) [36]. Participants with 
no MDD were defined as those individuals who 
did not fulfil criteria for a current or previous 
MDD diagnosis following the SCID interview.

Concurrent lifestyle factors and MDD status

At the follow-up assessment, participants were 
sent study packages that included questionnaires. 
Here, BMI was calculated using height (m) and 
weight (kg). Participants also recorded the number 
of units consumed during the past week, whether 
they were current, former, or non-smokers, and (if 
they smoked) the number of cigarettes smoked in 
an average week. Finally, MDD status was ascer
tained through the Composite International 
Diagnostic Interview-Short Form (CIDI-SF) [37], 
and participants with no MDD were those indivi
duals who did not fulfil criteria for current or 
previous MDD diagnoses based on responses.

DNA methylation

Baseline DNAm data was pre-processed and qual
ity-checked for all individuals by Amador et al. in 
2019 [38]. At the concurrent timepoint, samples 
were placed on the array at two different time 
points and were therefore processed separately. 
The main difference between processing and ana
lysis pipelines related to how key covariates were 
adjusted for. At baseline these were regressed out 
during pre-processing, whereas for the concurrent 
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batches they were included as covariates in down
stream analyses. However, across all batches, stan
dard quality check (QC) and pre-processing steps 
with regards to sample and probe exclusions were 
identical (see below). We note however that differ
ences in the processing resulted in different num
bers of final CpG sites included for analysis.

Cross-reactive (N = 42,558) and polymorphic 
(N = 10,971) CpGs, obtained from McCartney 
et al. (2016) were removed from both the baseline 
and concurrent DNAm datasets [39] .

Baseline DNA methylation

Genome-wide DNAm data profiled from whole 
blood samples was available for 9,873 individuals in 
GS:SFHS using the Illumina Human- 
MethylationEPIC BeadChip [29]. Samples were 
obtained and DNA was extracted between 2006– 
2011. DNAm profiling using the Illumina Human- 
MethylationEPIC BeadChip [29] was performed in 
two sets (in 2016, set AN = 5101; in 2019, set BN 
= 4,450) and pre-processing and QC was conducted 
once the second set was released, as detailed in 
Amador et al. [38,40,41]. Participants were removed 
due to a number of reasons, including sex mismatch 
(Nremoved =24), having more than 1% CpG sites with 
a detection p-value>0.05 (Nremoved=52), being an out
lier for bisulphite conversion control probes 
(Nremoved=1), having a median methylated signal 
intensity more than 3 standard deviations lower 
than expected (Nremoved=74), and other technical 
and dataset-specific issues (Nremoved=602, see 
Supplementary Materials). A total of 10,495 CpG 
sites were removed due to low beadcount, poor detec
tion p-value, and sub-optimal binding.

R package ‘minfi’ was used to read in the IDAT 
files, compute M and beta values, and remove 
probes with large detection p-values, and to com
pute principal components (PC) of control probes. 
Correction was then applied for [1] technical varia
tion, where M values were included as outcome 
variables in a mixed linear model adjusting for 
appointment date and Sentrix ID (random effects), 
jointly with Sentrix position, batch, clinic, year, 
weekday, and 10 PCs (fixed effects); and [2] biolo
gical variation by fitting residuals of [1] as outcome 
variables in a second mixed linear model adjusting 
for genetic and common family shared 

environmental contributions (random effects 
classed as G: common genetic; K: kinship; F: nuclear 
family; C: couple; and S: sibling) and sex, age, and 
estimated cell type proportions (CD8T, CD4T, NK, 
Bcell, Mono, Gran) (fixed effects) [42]. The final 
number of CpG sites that converged for these ana
lyses was 674,246 across the 22 autosomes.

Concurrent DNA methylation

Genome-wide DNAm data profiled from whole blood 
samples was available for a total of 710 individuals 
using the Illumina Human-MethylationEPIC 
BeadChip [29]. Pre-processing was carried out in 
two separate sets (Nset 1=404; Nset 2=306) intended as 
discovery and replication datasets, by Walker et al. 
[43,44]. Meffil [45] was use to remove samples if: 
there was a mismatch between self-reported and 
methylation-predicted sex and if >0.5% of probes 
failed the detection p- value threshold (>0.01); probes 
were removed if >1% samples failed the detection p- 
value >0.01 and if >5% of samples failed the beadcount 
threshold (N = 3). In addition, samples were removed 
if they showed evidence of dye bias and they were 
outliers for the bisulphite conversion control probes. 
ShinyMethyl [46] was then used to plot the log median 
intensity of methylated and unmethylated signals per 
array and inspect the output from the control probes; 
outlying samples detected by visual inspection were 
excluded. Meffil [45] was then used again to remove 
any additional samples who had a sex mismatch. PC 
plots were made using the first two methylation prin
cipal components and any additional outlying samples 
on the basis of these plots were removed. Finally, data 
were normalized using the dasen method in 
wateRmelon, and M-values were generated using the 
beta2m function in lumi [47]. The final number of 
CpG sites after pre-processing was N = 768,068 (set 1) 
and N = 765,695 (set 2) across the 22 autosomes.

Statistical methods

Epigenome-wide association

We used the ‘limma’ package [48] in R to run linear 
regression models for both baseline and concurrent 
DNAm data, where each CpG was included as an 
outcome variable. Brain cortical volumes, specifically 
cerebral white matter, total grey matter, and whole 

1146 M. C. BARBU ET AL.



brain volume were included as predictor variables in 
separate EWAS at each DNAm timepoint. The 
R code for these analyses is available in the 
Supplementary Materials.

Covariates for each model using baseline DNAm 
were MRI site (to account for different data collec
tion sites; see Supplementary Materials), age, age2, 
sex, intracranial volume, and set (to account for 
different DNAm data pre-processing sets). Due to 
the impact of lifestyle factors on DNAm [49–52], 
BMI, alcohol units, smoking status, and pack years 
were also included as covariates. Lastly, due to the 
increased prevalence of MDD in the dataset, MDD 
status was included as a covariate in all models. 
Technical (batch, appointment date) and biological 
(relatedness, cell type estimations, methylation prin
cipal components) variables were regressed out dur
ing pre-processing and were not included as 
covariates in downstream analyses. After QC, there 
were 674,246 CpGs and epigenome-wide signifi
cance was determined by a Bonferroni correction 
(0.05/674,246, p ≤ 7.41 × 10−8).

For both sets at the concurrent DNAm timepoint, 
covariates for each model were DNAm batch, 5 cell 
type proportion estimations (granulocytes, natural 
killer cells, B- lymphocytes, CD4 + T-lymphocytes 
and CD8 + T-lymphocytes), MRI site, age, age2, sex, 
intercranial volume, BMI, smoking status, number of 
cigarettes smoked/week, alcohol units, MDD status, 
and 20 methylation PCs. Bonferroni correction was 
applied based on the number of CpGs 
remaining in each set after QC (set 1: 0.05/768,068 
CpGs, p ≤ 6.51x10−8; set 2: 0.05/765,695 CpGs, 
p ≤ 6.52x10−8).

The Blood Brain DNA Methylation Comparison 
Tool [53] (http://epigenetics.essex.ac.Uk/blood 
brain/) investigates the correlation between 
DNAm from whole blood and four brain regions 
(prefrontal cortex, entorhinal cortex, superior tem
poral gyrus, and cerebellum) for all probes on the 
Illumina 450 K array [54]. We used this resource 
to investigate the strength of correlation between 
the two tissues for CpGs identified here.

Meta-analysis using METAL – concurrent 
timepoint

At the concurrent timepoint, in set 1, N = 331 indi
viduals were available with global volume and 

methylation data after QC and N = 234 were avail
able in set 2. Meta-analysis of these two datasets was 
performed in METAL [55] using p-value based ana
lysis (N = 565). The meta-analysis was based on 
N = 769,263 CpGs across both sets and 
a Bonferroni correction (0.05/769,263) was used to 
define epigenome-wide significance (p ≤ 6.49x10−8).

Pathway analysis

We annotated CpG sites to genes through the 
Infinium MethylationEPIC BeadChip database 
[29]. The database provides information about 
genes, chromosome location, start and end sites, 
and other features.

We used missMethyl [56], accessed via 
methylGSA [57], to assess pathway enrichment for 
differentially-methylated CpG sites. The package 
allows correction for biases in the representation of 
genes on the Infinium BeadChip. Gene Ontology 
(GO) terms were accessed using the msigdbr pack
age [58]. Pathways included in the analysis were all 
GO pathways of size 1–250 genes inclusive. CpG 
sites included in the analysis were those significant 
at a threshold of p < 1x10−5, as used in previous 
studies [59]. Information on GO pathways can be 
accessed via www.geneontology.org using Gene 
Ontology identifiers, comprised of ‘GO’ followed 
by a string of numbers (e.g., GO:0000000).

Power analysis – concurrent timepoint

Since the concurrent data was formed by two 
smaller samples of pre-processed data, we addi
tionally conducted power analysis to determine 
whether our concurrent samples had sufficient 
power to detect a significant effect. This was con
ducted using effect sizes from the baseline data to 
inform the power calculations. We used the ‘pwr. 
f2.test’ function in package ‘pwr’ in R and the set 
parameters were as follows:

1. Regression coefficients: DNAm batch, 5 cell 
type estimations (granulocytes, natural killer cells, 
B-lymphocytes, CD4 + T-lymphocytes and 
CD8 + T-lymphocytes), MRI site, age, age2, sex, 
intercranial volume, BMI, smoking status, number 
of cigarettes smoked/week, alcohol units, MDD 
status, 20 methylation principal components.
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2. Effect size: we input the largest effect size 
identified in EWAS at baseline (N = 672) for 
each global volume.

3. Significance level: to adjust for multiple testing 
correction (FDR), the p-value for a single potential 
test was set based on the number of CpG sites in 
each dataset (set 1: 0.05/768,068 = 6.51x10−8; set 2: 
0.05/765,695 = 6.53x10−8).

4. Power: to observe different power percen
tages, we input 60%, 80%, 90%, 95% and 99% 
power.

Results

Demographic characteristics

There were N = 672 individuals in the baseline 
EWAS, N = 331 in the set 1 concurrent EWAS, 
and N = 234 in the set 2 concurrent EWAS. 
Demographic characteristics for all individuals 
are presented in Table 1. Further descriptive char
acteristics regarding global volumes are presented 
in Supplementary Table 1.

Baseline EWAS

Baseline EWAS identified 1, 3, and 2 CpG sites that 
were associated with cerebral white matter, total 
grey matter, and whole-brain volume, respectively 
(p ≤ 7.41x10−8). Both CpGs associated with whole 
brain volume were also associated with total grey 
matter and were significantly hypermethylated. One 
CpG site associated with cerebral white matter and 
one associated with total grey matter were hypo
methylated. As shown in Figure 1a-c, CpG associa
tions with grey matter were stronger than with white 
matter. Information about each CpG site is shown 
in Table 2.

Correlation between whole blood DNAm and 
four brain regions

We used the Blood Brain DNA Methylation 
Comparison Tool [53] to investigate the correla
tion between blood and brain methylation mea
surements for two of the CpGs identified here, 
located on the 450 K array, and four brain regions. 
cg04190002 was strongly correlated with prefron
tal cortex (r = 0.579, p = 6.55x10−8), entorhinal 

cortex (r = 0.564, p = 2.94x10−7), superior tem
poral gyrus (r = 0.598, p = 1.5x10−8), and cerebel
lum (r = 0.663, p = 3.02x10−10), while cg02325951 
was strongly correlated with prefrontal cortex 
(r = 0.858, p = 1.73x10−22), entorhinal cortex 
(r = 0.868, p = 1.19x10−22), and superior temporal 
gyrus (r = 0.871, p = 3.32x10−24).

Baseline pathway analysis

Enrichment of differentially methylated regions in 
biological pathways was analysed using 
missMethyl [56], where an over-representation 
analysis of GO pathways was performed for sets 
of genes annotated to CpG sites differentially 
expressed at p<1x10−5 (N cerebral white matter: 19, N 
total grey matter: 22, N whole-brainvolume: 21).

There were no over-represented pathways after 
multiple correction. A number of brain-related bio
logical processes, molecular functions, and cellular 
components were included in the top 10 significant 
pathways (Supplementary Table 2). For instance, 
guanylate kinase-associated protein clustering, 
which facilitates assembly of post-synaptic density 
of neurons (GO:0097117), was found to be over- 
represented for all three imaging phenotypes (cere
bral white matter nominal p-value = 0.0007; total 
grey matter nominal p-value = 0.001; whole-brain 
volume nominal p-value = 0.0009). Positive regula
tion of synapse structural plasticity (GO:0051835) 
was over-represented in both cerebral white matter 
(nominal p-value = 0.002) and total grey matter 
(nominal p-value = 0.002). Finally, forebrain genera
tion of neurons (GO:0021872; nominal 
p-value = 0.001) was over-represented for cerebral 
white matter.

Concurrent EWAS

Meta-analysis of EWAS across the two concurrent sets 
did not reveal any Bonferroni-corrected CpG sites 
associated with any of the global volumes (Figure 2a- 
c). A list of the top 10 CpGs associated with cerebral 
white matter (EWASset 1 βrange=4.71x10−6- 6.53x10−6; 
EWASset 2βrange=1.02x10−5−8.75x10−6) total grey mat
ter (EWASset 1 βrange=6.71x10−6−8.03x10−6; EWASset 

2βrange=1.03x10−5−8.84x10−6), and whole-brain 
volume (EWASset 1βrange=2.69x10−6−4.05x10−6; 
EWASset 2 βrange= 6.23x10−6 −6.69x10−6), is presented 
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in Supplementary Tables 3–5. Genes annotated to 
these top 10 CpGs have previously been 
implicated in brain-related phenotypes, including psy
chiatric disorders (MDD [65–68], schizophrenia [69]), 
neurodegenerative disorders (neurofibrillary tangles 
and PHF-tau measurement in Alzheimer’s Disease 
[70]), and cognitive traits (mathematical ability, self- 
reported educational attainment [71]). Results 
reported here are nominal and should be supported 
by further large-scale cohorts.

Concurrent pathway analysis

As above, enrichment of differentially methylated 
regions in specific pathways was assessed using 
missMethyl [50] for sets of genes annotated to CpG 
sites differentially expressed at p<1x10−5 (Ncerebral 

white matter: 10, Ntotal grey matter: 10, Nwhole-brainvolume: 9). 
There were no over-represented pathways following 
FDR adjustment for multiple comparisons. The top 10 
most significant pathways for each phenotype indi
cated a pattern of phenotype-specific biological pro
cesses, molecular functions, and cellular components 
(Supplementary Table 6). For instance, over- 
represented pathways in cerebral white matter 
included myelination (GO:0042552; nominal 
p-value = 0.002), ensheathment of neurons 
(GO:0007272; nominal p-value = 0.002), axon 
ensheathment (GO:0008366; nominal p-value = 0.001), 

glial cell development (GO:0021782; nominal 
p-value = 0.001) and glial cell differentiation 
(GO:0010001; nominal p-value = 0.004). Total grey 
matter over-represented pathways included glutamate 
catabolic process to aspartate (GO:0019550; nominal 
p-value = 0.0009) and to 2-oxoglutarate (GO:0019551; 
nominal p-value = 0.0009). Finally, over-represented 
pathways in whole-brain volume included several 
MHC-related biological processes, including regula
tion (GO:0002586; nominal p-value = 0.001) and 
negative regulation (GO:0002587; nominal 
p-value = 0.0009) of antigen processing and presenta
tion of peptide antigen via MHC class II, negative 
regulation of antigen processing and presentation of 
peptide or polysaccharide antigen via MHC class II 
(GO:0002581; nominal p-value = 0.001), as well as N- 
acetyllactosaminide beta- 
1,3-N-acetylglucosaminyltransferase (GO:0008532, 
molecular function, nominal p-value = 0.001), an 
enzyme encoded by the gene B3GNT2, which is highly 
expressed in whole-brain, hippocampus, amygdala, 
cerebellum, and caudate nucleus (https://www.uni 
prot.org/uniprot/Q9Z222).

Power curves for concurrent data

Power curves for the three imaging phenotypes are 
presented in Figure 3. Further details, including 
effect size for each phenotype, are included in 

Table 1. Demographic characteristics for individuals with global volume data, including lifestyle variables and MDD. “-“ indicates that 
there was no data of the sort for the respective dataset. Former smokers at the baseline measurement were split into those who quit 
less than a year ago and those who quit more than a year ago; at the concurrent timepoint, this division is not made.

Demographic characteristics Baseline (N = 672) Concurrent set 1 (N = 331) Concurrent set 2 (N = 234)

Age – Mean (SD), range 52.29 (9.93), 18–75 60.45 (8.42), 28–78 59.61 (10.21), 28–81
Sex

Female 406 193 132
Male 266 138 102

Set
1 621 - -
2 51 - -

BMI – Mean (SD), range 27.13 (4.96), 15.96–56.60 27.48 (5.18), 16.42–51.75 28.23 (5.31), 19–20-52.81
Alcohol units – Mean (SD), range 10.53 (16.44), 0–326 7.12 (8.91), 0–60 7.39 (9.67), 0–60
Smoking status

Current smoker 83 16 12
Former smokers (quit < 1 year ago) 10 124 92
Former smokers (quit > 1 year ago) 208
Never smoked tobacco 371 191 130

Pack years – Mean (SD), range 7.59 (14.56), 0–111 - -
Cigarettes smoked/week

1–10 cigarettes - 10 6
11–20 cigarettes - 10 9

MDD status
Cases 121 83 83
Controls 551 248 151
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Supplementary Tables 7 and 8. These indicate that 
approximately 1,000–6,000 individuals (depending 
on phenotype) would be needed to detect an effect 
after multiple correction.

Discussion

We report a number of significant associations 
between DNAm measured ~6 years prior to MRI 

data collection and cerebral white matter 
(Nsignificant CpGs=1), total grey matter (Nsignificant 

CpGs=3), and whole-brain volume (Nsignificant 

CpGs=2) (N=672), annotated to genes involved in 
brain-related traits. There were no significant asso
ciations between DNAm collected concurrently 
with MRI data (N = 565). In addition, pathway 
analysis did not uncover any significant findings 
for either the baseline or concurrent analyses. 

Figure 1. Manhattan plots showing the results from EWASs of cerebral white matter (1A), total grey matter (1B), and whole-brain 
volume (1 C), using baseline DNAm data (N = 672). The black line defines the threshold for epigenome-wide significance 
(p ≤ 7.41x10−8) and the dotted line defines CpG sites at p ≤ 1x10−5. Epigenome-wide significant hits for each phenotype are 
labelled on the graph.
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Power analysis of the concurrent data using base
line data for effect size confirmed that approxi
mately 1,000–6,000 individuals (depending on 
phenotype) would be needed to detect 
a statistically significant effect.

For the analysis of associations between DNAm 
measured at baseline and cortical volumes 
~6 years later, one CpG associated with cerebral 
white matter, cg10297662, was annotated to PNKP. 
This CpG site has not previously been associated 
with any other traits, to the best of our knowledge. 
PNKP is involved in DNA repair following ioniz
ing radiation or oxidative damage [72] and is 
expressed in a number of tissues, including the 
brain. Mutations in this gene have been associated 
with a number of neural conditions, including 
microcephaly, developmental delay, seizures, and 
cerebellar ataxia [73,74]. These mutations have 
been shown to lead to white matter defects, 
which is the phenotype investigated here [75]. 

Previous evidence also indicates that loss of 
PNKP strongly impacts oligodendrocytes, leading 
to white matter abnormalities [76]. Efforts should 
be made to identify whether the relationship 
between PNKP mutations and defects in white 
matter is mediated by differential DNAm at spe
cific sites.

Two CpGs, cg07585845 and cg02325951, were 
associated with both total grey matter and whole- 
brain volume. cg07585845 has not been previously 
associated with any traits nor annotated to any 
genes. cg02325951 was previously associated with 
sex in a study investigating methylation trajec
tories across human foetal brain development 
(p = 2x10−54 [77];). The gene to which 
cg02325951 is annotated, FOXN3, is involved in 
several physiological processes, such as develop
ment, ageing, obesity, and cancer and is expressed 
in multiple tissues, including the forebrain and 
midbrain. Further, animal studies show that 

Table 2. CpG sites significantly associated with cerebral white matter, total grey matter, and whole-brain volume (N = 672), along 
with gene annotations (Gene), chromosome (c), standardized effect size (β), nominal (P-value) and multiple comparison-corrected 
p-values (P-corr). Traits previously associated with each CpG site were extracted from EWAS catalogues (http://www.ewascatalog. 
org/, association between traits and CpGs on Illumina 450 K array at p ≤ 1.0x10−4; and http://www.bioapp.org/ewasdb/ [60],), 
association between traits and CpGs on Illumina 450 K and EPIC arrays at p ≤ 1.0x10−3). Gene information was extracted from the 
GWAS catalogue (https://www.ebi.ac.uk/gwas/; associations between traits and SNPs at p < 1.0x10− 5). All associations included in 
the table from these two catalogues are genome-wide significant.

Phenotype CpG site Gene C β P-value P-corr

CpG – 
previously 

associated traits Gene – previously associated traits

Total grey matter cg07585845 
(EPIC)

- 3 9.59x10−7 1.02x10−9 0.0007 - -

Whole- brain volume cg07585845 
(EPIC)

- 3 4.47x10−7 1.38x10−8 0.009

Total grey matter cg02325951 
(450 K)

FOXN3 14 6.53x10−7 1.31x10−9 0.0009 Sex (p = 2x10−54; 
1.8x10−42; [54])

Acute myeloid leukaemia (p = 8x10−21 

p = 3x10−14; [61]) 
Heel bone mineral density 
(p = 2x10−12; [62]) 
Intelligence (p = 1x10−11; [79]) Self- 
reported educational attainment 
(p = 8x10−11; [80]) Cognitive function 
measurement (p = 2x10−9; [80]) 
Mathematical ability (p = 3x10− 9; [80]) 
Smoking status measurement 
(p = 7x10−9; [63]) 
Risk-taking behaviour  
(p = 8x10− 9; [64])

Whole- brain volume cg02325951 
(450 K)

FOXN3 14 3.26x10−7 1.45x10−9 0.001

Cerebral white matter cg10297662 
(EPIC)

PNKP 19 −1.46x10−6 4.92x10−8 0.03 - Involved in DNA repair; mutations at 
locus associated with microcephaly, 
seizures, 
and developmental delay [73]

Total grey matter cg04190002 
(450 K)

SHANK3 22 −3.75x10−7 7.31x10−9 0.04 Sex (p = 5.4x10− 

19; [79])
Self-reported educational attainment 
(p = 2x10−20; [80]) Mathematical 
ability (p = 1x10− 17; [80]) 
Cognitive function 
measurement (p = 3x10−12; [80]) 
Schizophrenia (p = 3x10−12; [82])
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mutations within the gene have been associated 
with craniofacial defects [78]. In addition, 
FOXN3 has previously been associated with several 
brain-related phenotypes in previous GWAS, 
including intelligence (p = 1x10−11 [79];), self- 
reported educational attainment (p = 8x10−11), 
cognitive function measurement (p = 2x10−9), 
and mathematical ability (p = 3x10−9) [80]. These 

cognition-related phenotypes have previously been 
associated with whole brain volume, where higher 
cognition was associated with a larger brain size 
[72]. Future studies should investigate whether 
DNAm localized to FOXN3 plays a role in cogni
tion development through modifications in whole- 
brain volume.

Figure 2. Manhattan plots showing meta-analysis of EWAS of cerebral white matter (2A), total grey matter (2B), and whole-brain 
volume (2 C), across the 2 concurrent sets (Nset 1=331; Nset 2=234; Ntotal=565). The black line defines the threshold for epigenome-wide 
significance (p ≤ 6.5x10−8) and the dotted line defines p ≤ 1x10−5. CpGs that met a significance of p ≤ 1x10−5 are labelled on the 
graph.
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Finally, in addition to the two CpGs above, total 
grey matter was also associated with cg04190002, 
a CpG previously associated with sex in newborns 
(p = 5.4x10−19 [81];). The CpG is annotated to 
SHANK3, which encodes multidomain scaffold 
proteins of the postsynaptic density connecting 
neurotransmitter receptors, among other mem
brane proteins and is expressed in the cerebral 
cortex and the cerebellum. The gene has pre
viously been associated with a host of brain dis
orders and traits, including self- reported 
educational attainment (p = 2x10−20), mathemati
cal ability (p = 1x10−17), cognitive function mea
surement (p = 3x10−12) [80] and schizophrenia 
(p = 3x10−9 [82];), and mutations have previously 
been associated with autism spectrum disorder 
[83]. These disorders in turn have been associated 
with changes in grey matter [84], and future stu
dies should investigate whether these psychiatric 
disorders are also associated with differential 
DNAm at cg04190002, and other probes localized 
to SHANK3, as well as explore whether associa
tions are mediated by global brain phenotypes.

Blood and brain methylation measures for both 
cg02325951 and cg04190002 (both CpGs on the 
450 K array) were strongly correlated, indicating 
that whole blood is a suitable proxy tissue for 
investigating associations with brain phenotypes, 
at least for these probes. Future studies exploring 
DNAm in relation to global brain phenotypes and 
associated traits may therefore benefit from whole 
blood DNAm measurements.

DNAm profiled at a different timepoint to phe
notype measurement has previously yielded inter
esting results. Barbu et al. (2020) found that 
a methylation risk score calculated from DNAm 
profiled 4–11 years prior to MDD diagnosis was 
significantly associated with incident cases who 
were well at DNAm measurement but went on to 
develop MDD [12]. Clark et al. (2020) similarly 
associated DNAm profiled in MDD patients at 
baseline with MDD status 6 years later [85]. 
These previous findings indicate that DNAm mea
sured prior to phenotype measurement may pro
vide meaningful insight into phenotype 
development and change across time. The findings 

Figure 3. Power curves for cerebral white matter, total grey matter, and whole-brain volume calculated separately for set 1 and set 
2. The x-axis indicates how many participants would be needed to detect an effect with 60%, 80%, 90%, 95% or 99% power at 
p < 6.51x10−8 (set 1 (W1)) and p < 6.53x10−8 (set 2 (W2)) with 36 regression coefficients included in the linear model. Effect sizes 
were calculated based on the largest effect size obtained in EWAS for each phenotype at baseline.
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above relating DNAm measured previously to 
MRI scans may therefore aid in the investigation 
of epigenetic differences in brain-related disease 
and health at a later timepoint, although further 
longitudinal replication is needed to verify these 
associations.

Associations between DNAm measured concur
rently to MRI scans did not yield any significant 
findings. Power calculations using the baseline 
data to derive effect size showed that approxi
mately 1,000–6,000 participants (depending on 
phenotype) would be needed to uncover 
a significant effect at epigenome-wide level. This 
number is supported by previous studies, such as 
Jia et al. (2019), who analysed 3,337 individuals 
across 11 cohorts as part of ENIGMA to find 2 
CpGs significantly associated with hippocampal 
volume [19]. This may indicate that null findings 
were due to lack of power at the concurrent time
point. Null findings here should serve as 
a stimulus for larger collaborations and meta- 
analyses in future.

Further, effect sizes for both timepoints were 
much smaller than those identified in previous 
studies that analysed larger sample sizes in specific 
brain regions [19] (largest baseline effect size: 
1.46x10−6; largest concurrent effect size: 
1.06 × 10−6), which suggests that findings here 
should be interpreted with caution. The results 
here indicate that global associations with DNAm 
may be weaker than those at a regional level. 
Future studies may therefore benefit from focuss
ing on lobe- and region-specific correlates of 
DNAm.

At the concurrent timepoint, DNAm data was 
pre-processed and quality-checked in 2 sets, result
ing in a different number of final CpGs (NCpG set 

1=768,068; NCpG set 2=765,695). Pearson’s correla
tions between the EWAS betas from set 1 and set 2 
across all CpGs were r = 0.02 (95% C.I. = 0–0.102), 
r = 0.04 (95% C.I. = 0–122), and r = 0.03 (95% C. 
I. = 0–0.112) for cerebral white matter, total grey 
matter, and whole brain volume, respectively. 
When restricting CpGs to those with a nominal 
p-value (≤0.05), the beta correlations were slightly 
higher, although not strong: r = 0.17 (95% C. 
I. = 0.089–0.249), r = 0.18 (95% C.I. = 0.099– 
0.259), and r = 0.22 (95% C.I. = 0.14–0.297) for 
cerebral white matter, total grey matter, and 

whole-brain volume, respectively. The low effect 
size correlations may be a further reflection of the 
small sample investigated here.

There are limitations to the current study. 
Firstly, we report DNAm changes in whole 
blood, which may not be representative of brain 
phenotypes. However, two of the CpGs identified 
here, located on the 450 K array, were strongly 
correlated with DNAm in four brain regions [53]. 
Although previous studies have shown that there is 
considerable agreement between blood and brain 
[28], future studies should explore DNAm changes 
in the brain in post-mortem samples where possi
ble to uncover biological mechanisms underpin
ning brain structure within the same tissue. 
Further, findings at baseline may indicate that 
some DNAm changes lie upstream of brain struc
tural changes, although effect sizes for each CpG 
were small compared to previous concurrent 
EWAS of brain regions [18,19]. In addition, we 
cannot test the direction of association between 
brain structural changes and DNAm. In future, 
studies may apply Mendelian Randomization to 
investigate whether DNAm may be on the causal 
path to brain structure alterations in brain health 
and disease. Finally, in the current study we 
focussed on global brain phenotypes to explore 
whether global brain-related changes, previously 
associated with psychiatric and neurological disor
ders, are associated with DNAm alterations. 
Previous evidence includes DNAm associations at 
both global and regional level [18], and it may be 
that DNAm may provide more insight into region- 
specific alterations in relation to brain health and 
disease.

In conclusion, we report an EWAS of global 
cortical brain volumes using DNAm data collected 
~6 years prior to MRI data collection in 672 indi
viduals and an EWAS meta-analysis of cortical 
brain volumes using DNAm measured concur
rently to MRI data in 565 individuals, both part 
of a large, population-based cohort. Using baseline 
DNAm data, we find four CpGs significantly asso
ciated with cortical brain volumes ~6 years later, 
all of which are annotated to genes implicated in 
brain-related phenotypes. We did not find signifi
cant associations at the concurrent timepoint. 
Findings here should be interpreted with caution, 
and future studies should aim to determine further 
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links between DNAm changes and brain structure 
and function, to highlight our understanding of 
this relationship in health and disease
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