Table 5.
ID | Thermal Stress Indicator | Formula/s | Assumption/s |
---|---|---|---|
1 | Accepted Level of Physical Activity (Blazejczyk; 2010) | = (90 - 22.4 - 0.25 * ((5 * Ta[°C]) + (2.66 * VP[hPa]))) / 0.18 | |
2 | Actual Sensation Vote (Nikolopoulou; 2003) | = 0.061 * Ta[°C] + 0.091 * TGA - 0.324 * WS[ms] + 0.003 * RH - 1.455 ⇒ TGA = Tg[°C] - Ta[°C] |
|
3 | Actual Sensation Vote (Nikolopoulou; 2004) | = 0.034 * Ta[°C] + 0.0001 * SR[w/m2] - 0.086 * WS[m/s] - 0.001 * RH - 0.412 | |
4 | Actual Sensation Vote (Europe) (Nikolopoulou; 2004) | = 0.049 * Ta[°C] + 0.001 * SR[w/m2] - 0.051 * WS[m/s] + 0.014 * RH - 2.079 | |
5 | Air Enthalpy (Boer; 1964) | = 0.24 * (Tw[°C] + (1555 / P[hPa]) * SVP[hPa]) | |
6 | Apparent Temperature (Almeida; 2010) | = -2.653 + (0.994 * Ta[°C]) + (0.0153 * Td[°C] ^ 2) | |
7 | Apparent Temperature (Arnoldy; 1962) | = Ta[°C] - (2 * WS[m/s]) | |
8 | Apparent Temperature (Fischer; 2010) | = c1 + (c2 * Ta[°C]) + (c3 * (Ta[°C] ^ 2)) + (RH * (c4 + (c5 * Ta[°C]) + (c6 * (Ta[°C] ^ 2)))) + ((RH ^ 2) * (c7 + (c8 * Ta[°C]) + (c9 * (Ta[°C] ^ 2)))) c1 = -8.7847; c2 = 1.6114; c3 = -0.012308; c4 = 2.3385; c5 = -0.14612; c6 = 2.2117 * (10 ^ -3); c7 = -0.016425; c8 = 7.2546 * (10 ^ -4); and c9 = -3.582 * (10 ^ -6) |
|
9 | Apparent Temperature (Kalkstein; 1986) | reported by Kalkstein;1986: = -2.653 + (0.994 * Ta[°C]) + (0.368 * Td[°C]) ^ 2 ⇒ Erroneous reported by Kwon;1990:174 = -2.653 + (0.994 * Ta[°C]) + (0.368 * Td[°C]) |
|
10 | Apparent Temperature (Smoyer-Tomic; 2001) | = -2.719 + 0.994 * Ta[°C] + 0.016 * Td[°C] ^ 2 ⇒ if Ta[°C] < 25 Then = Ta[°C] |
|
11 | Apparent Temperature (indoor) (Steadman; 1994) | = (0.89 * T a[°C]) + (3.82 * VP[kPa]) - 2.56 | |
12 | Apparent Temperature (indoor) (Steadman; 1984) | = -1.3 + 0.92 * Ta[°C] + 2.2 * VP[kPa] | |
13 | Apparent Temperature (shade) (Steadman; 1984) | = -2.7 + 1.04 * Ta[°C] + 2 * VP[kPa] - 0.65 * WS10m[m/s] | |
14 | Apparent Temperature (shade) (Steadman; 1994) | = Ta[°C] + (3.3 * VP[kPa]) - (0.7 * WS10m[m/s]) - 4 | |
15 | Apparent Temperature (sun) (Steadman; 1984) | = -1.8 + 1.07 * Ta[°C] + 2.4 * VP - 0.92 * WS + 0.044 * Qg ⇒ Qg = Hr * (Tmrt[°C] - Ta[°C]) |
|
16 | Apparent Temperature (sun) (Steadman; 1994) | = Ta[°C] + (3.48 * VP[kPa]) - (0.7 * WS10m[m/s]) + (0.7 * Qg / (WS10m[m/s] + 10)) - 4.25 ⇒ Qg = Hr * (Tmrt[°C] - Ta[°C]) |
|
17 | Approximated Subjective Temperature (Auliciems; 2007) | = Tg[°C] + 2.8 * (1 - Sqr(10 * WS[m/s])) / (0.44 + 0.56 * Sqr(10 * WS[m/s])) | |
18 | Belding-Hatch Index (Belding; 1955) | = E / Emax ⇒ E = 110 + 11.6 * (1 + 1.3 * (WS[m/s] ^ 0.5)) * (Tg[°C] - 35) ⇒ Emax = 25 * (WS[m/s] ^ 0.4) * (42 – VP[mmHg]) |
|
19 | Belgian Effective Temperature (Bidlot; 1947) | = 0.9 * Tw[°C] + 0.1 * Ta[°C] | |
20 | Bioclimatic Index of Severity (Belkin; 1992) | = (Ti * (P - 266) * (1 - (0.02 * WS))) / (Ri * S * 75) Temperature coefficient (Ti): ⇒ if Ta[°C] < -90 Or Ta[°C] > 60 Then Ti = 0 ⇒ if Ta[°C] = 22 Then Ti = 1 ⇒ if Ta[°C] > 22 And Ta[°C] <= 60 Then Ti = 1 - 0.0263 * (Ta[°C] - 22) ⇒ if Ta[°C] < 22 And Ta[°C] > -90 Then Ti = 1 - 0.0089 * (22 - Ta[°C]) Relative humidity coefficient (Ri): ⇒ if RH = 50 Then RH = 50.0001 ⇒ if RH > 50 Then Ri = 1 + (0.6 * ((RH - 50) / 100)) ⇒ if RH < 50 Then Ri = 1 + (0.6 * ((50 - RH) / 100)) Radiation Coefficient (S): ⇒ S = 1 (we assume low altitude / comfortable barometric pressure) ⇒ if altitude > 2000 m then S = 1 + (0.045 * ((altitude - 2000)/ 1000)) |
|
21 | Biologically Active Temperature (Tsitsenko; 1971) | = 0.8 * EET + 9 ⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C])) |
|
22 | Biometeorological Comfort Index (Rodriguez; 1985) | = (Taero + Tw[°C]) / 2 ⇒ Vr[km/day] = 150 km / day (air speed relative to a person while walking in calm air) ⇒ Tcr[°C] = 37.3 ⇒ n = 0.6 * Exp(-0.01 * Ta[°C]) ⇒ cited by Garcia:1994 [175] ⇒ if Vr[km/day] >= WS[km/day] Then Taero = Ta[°C] ⇒ if Vr[km/day] < WS[km/day] Then Taero = Tcr[°C] - (((0.9311 + 0.0295 * (WS ^ n)) * (Tcr[°C] - Ta[°C])) / (0.0411 + 0.0295 * (Vr[km/day] ^ n))) |
|
23 | Bodman’s Weather Severity Index (Bodman; 1908) | = (1 - 0.04 * Ta[°C]) * (1 + 0.272 * WS[m/s]) | |
24 | Clothing Thickness (Steadman; 1971) | 45 = 3.9 + 0.053 * (37 - Ta[°C]) + ((0.03 * (30 - Ta[°C])) / Rs) + ((0.12 * (30 - Ta[°C])) / (0.5 + Rs)) + ((0.85 * (30 - Ta[°C])) / (Rf + Rs)) Rs = 1 / (Hr + Hc) ⇒ surface resistance, in m2/sec/°C Rf = clothing thickness / thermal conductivity ⇒ clothing resistance in m2/sec/°C 1.3s |
|
25 | Comfort Vote (Bedford; 1936) | = 11.16 - 0.0556 * Ta[°F] - 0.0538 * Tmrt[°F] - 0.0372 * VP[mmHg] + 0.00144 * Sqr(WS[ft/min]) * (100 - Ta[°F]) | |
26 | Cooling Power (Becker; 1972) | = (0.26 + 0.34 * (WS[m/s] ^ 0.622)) * (36.5 - Ta[°C]) | |
27 | Cooling Power (Bedford; 1933) | = (0.123 + 0.465 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
28 | Cooling Power (Bider; 1931) | = (0.31 + 0.112 * WS[m/s])) * (36.5 - Ta[°C]) | |
29 | Cooling Power (Bradtke; 1926) | = (0.1 + 0.403 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) ^ 1.06 | |
30 | Cooling Power (Buttner; 1934) | = (0.23 + 0.47 * WS[m/s] ^ 0.52) * (36.5 - Ta[°C]) | |
31 | Cooling Power (Cena; 1966) | = (0.412 + 0.087 * WS[m/s]) * (36.5 - Ta[°C]) | |
32 | Cooling Power (Dorno; 1925) | = (0.22 + 0.25 ^ 1.5 * Sqr(WS[m/s])) * (33 - Ta[°C]) | |
33 | Cooling Power (Dorno; 1934) | = (0.22 + 0.25 ^ 1.5 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
34 | Cooling Power (eq. 1) (Goldschmidt; 1952) | = (0.25 + 0.2 ^ 1.1 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
35 | Cooling Power (eq. 2) (Goldschmidt; 1952) | = (0.3 + 0.16 * WS[m/s]) * (36.5 - Ta[°C]) | |
36 | Cooling Power (Henneberger; 1948) | = (0.276 + 0.117 * WS[m/s]) * (36.5 - Ta[°C]) | |
37 | Cooling Power (Hill; 1916) | ⇒ if WS[m/s] =< 1 then = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868 ⇒ if WS[m/s] > 1then = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868 |
|
38 | Cooling Power (eq. 1) (Hill; 1937) | = (0.105 + 0.485 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
39 | Cooling Power (eq. 2) (Hill; 1937) | = (0.205 + 0.385 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
40 | Cooling Power (Lahmayer; 1932) | = (0.22 + 0.2 ^ 1.3 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
41 | Cooling Power (eq. 1) (Matzke; 1954) | = (0.249 + 0.258 * WS[m/s] ^ 0.616) * (36.5 - Ta[°C]) | |
42 | Cooling Power (eq. 2) (Matzke; 1954) | = (0.441 + 0.096 * WS[m/s]) * (36.5 - Ta[°C]) | |
43 | Cooling Power (Meissner; 1932) | = (0.275 + 0.251 * WS[m/s] ^ 0.7) * (36.5 - Ta[°C]) | |
44 | Cooling Power (Vinje; 1962) | ⇒ if WS[m/s] > 1 And WS[m/s] <= 12 Then = 0.57 * (WS[m/s] ^ 0.42) * (36.5 - Ta[°C]) ⇒ if WS10m[m/s] > 12 Then = (0.46 + 0.08 * WS10m[m/s]) * (36.5 - Ta[°C]) |
|
45 | Cooling Power (Weiss; 1926) | = (0.14 + 0.49 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
46 | Cooling Power (Angus; 1930) | = Sqr(0.29 * (0.26 + WS[m/s])) * (36.5 - Ta[°C]) | |
47 | Cooling Power (Lehmann; 1936) | = (0.113 + 0.34 * WS[m/s] ^ 0.622) * (36.5 - Ta[°C]) | |
48 | Cooling Power (Joranger; 1955) | = (0.375 + 0.316 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) | |
49 | Cooling Power (Wet Air Temperature) (Hill; 1916) | = h + 41.868 * (0.085 + 0.102 * (WS[m/s] ^ 0.3)) * (61.1 – VP[hPa]) ^ 0.75 ⇒ if WS[m/s] =< 1 then h = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868 ⇒ if WS[m/s] > 1 then h = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868 |
|
50 | Corrected Effective Temperature (Basic) (Auliciems; 2007) | = (0.944 * Tg[°C] - 0.056 * Tw[°C]) / (1 + 0.022 * (Tg[°C] - Tw[°C])) | |
51 | Corrected Effective Temperature (Normal) (Auliciems; 2007) | = (1.21 * Tg[°C] - 0.21 * Tw[°C]) / (1 + 0.029 * (Tg[°C] - Tw[°C])) | |
52 | Dew Point (Bruce; 1916) | = 237.3 * (Log(RHD) / 17.27 + Ta[°C] / (237.3 + Ta[°C])) / (1 - Log(RHD) / 17.27 - Ta[°C] / (237.3 + Ta[°C])) ⇒ RHD = RH / 100 |
|
53 | Discomfort Index (Giles; 1990) | = Ta[°C] - 0.55 * (1 - 0.01 * RH) * (Ta[°C] - 14.5) | |
54 | Discomfort Index (Kawamura; 1965) | = 0.99 * Ta[°C] + 0.36 * Td[°C] + 41.5 | |
55 | Discomfort Index (Tennenbaum; 1961) | = (Ta[°C] + Tw[°C]) / 2 | |
56 | Discomfort Index (eq. 1) (Thom; 1959) | = (0.4 * Tw[°C]) + (0.4 * Ta[°C]) + 8.3 | |
57 | Discomfort Index (eq. 2) (Thom; 1959) | = 0.4 * (Ta[°F] + Tw[°F]) + 15 | |
58 | Discomfort Index (Weather Services of South Africa; 2018) | = (2 * Ta[°C]) + (RH / 100 * Ta[°C]) + 24 | |
59 | Draught Risk Index (Fanger; 1987) | = (3.143 * (34 - Ta[°C]) * (WS[m/s] - 0.05) ^ 0.6233) + (0.3696 * WS[m/s] * Tu * (34 - Ta[°C]) * (WS[m/s] - 0.05) ^ 0.6233) ⇒ if result > 100 then result = 100 ⇒ if WS[m/s] < 0.05 Then WS[m/s] = 0.05 “The parameter Tu can simply be defined as the ratio between standard deviation of instantaneous air speeds (Vsd) and the mean air speed (V), both of which are derived from anemometry, having time-constants of 1/10 S or faster” [176] |
|
60 | Dry Kata Cooling (Maloney; 2011) | ⇒ if WS[m/s] = 0 Then = 0.27 * ((36.5 - Ta[°C]) ^ 1.06) * 41.84 ⇒ if WS[m/s] > 0 And WS[m/s] < 1 Then = 0.2 + 0.4 * (WS[m/s] ^ 0.5) * (36.5 - Ta[°C]) * 41.84 ⇒ if WS[m/s] >= 1 Then = 0.13 + 0.47 * (WS[m/s] ^ 0.5) * (36.5 - Ta[°C]) * 41.84 |
|
61 | Effective Radiant Field (Gagge; 1967) | = Hr * (Tmrt[°C] - Ta[°C]) | |
62 | Effective Radiant Field (Nishi; 1981) | = 0.76 * (6.1 + 13.6 * Sqr(WS[m/s])) * (Tg[°C] - Ta[°C]) | |
63 | Effective Temperature (Houghten; 1923) | = Ta[°C] - 0.4 * (Ta[°C] - 10) * (1 - (RH / 100)) | |
64 | Effective Temperature (Missenard; 1933) | = 37 - ((37 - Ta[°C]) / (0.68 - 0.0014 * RH + (1 / (1.76 + (1.4 * (WS[m/s] ^ 0.75)))))) - 0.29 * Ta[°C] * (1 - (0.01 * RH)) | |
65 | Environmental Stress Index (Moran; 2001) | = (0.63 * Ta[°C]) - (0.03 * RH) + (0.002 * SR[w/m2]) + (0.0054 * (Ta[°C] * RH)) - (0.073 * (0.1 + SR[w/m2]) ^ -1) | |
66 | Equatorial Comfort Index (Webb; 1960) | = Tw[°F] + 0.447 * (Ta[°F] - Tw[°F]) - 0.231 * (WS[ft/min] ^ 0.5) | |
67 | Equivalent Effective Temperature (Aizenshtat; 1974) | = Ta[°C] * (1 - 0.003 * (100 - RH)) - 0.385 * (WS[m/s] ^ 0.59) * ((36.6 - Ta[°C]) + 0.662 * (WS[m/s] - 1)) + ((0.0015 * WS[m/s] + 0.0008) * (36.6 - Ta[°C]) - 0.0167) * (100 - RH) | |
68 | Equivalent Effective Temperature (Aizenshtat; 1982) | = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C])) | |
69 | Equivalent Temperature (Bedford; 1936) | = (0.522 * Ta[°F]) + (0.478 * Tmrt[°F]) - 0.0147 * Sqr(WS[ft/min]) * (100 - Ta[°F]) | |
70 | Equivalent Temperature (Brundl; 1984) | = Ta[°C] * w * (r - 2.326 * Ta[°C]) / (cp + w * cw) ⇒ if Ta[°C] = 0 then = 0 |
|
71 | Equivalent Warmth (Bedford; 1936) | = 9.979 * x - 0.1495 * (x ^ 2) - 2.89 ⇒ x = ((0.0556 * Ta[°F]) + (0.0538 * Tmrt[°F]) + (0.0372 * VP[mmHg]) - (0.00144 * Sqr(WS[ft/min]) * (100 - Ta[°F]))) |
|
72 | Exposed Skin Temperature (Brauner; 1995) | = Tcr[°C] – (Qs * Rb) ⇒ Qs = (Tcr[°C] - Ta[°C]) / (Rb + (1 / Hc)) |
|
73 | Facial Skin Temperature (Cheek) (Adamenko; 1972) | = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 19 | |
74 | Facial Skin Temperature (Ear Lobe) (Adamenko; 1972) | = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 12 | |
75 | Facial Skin Temperature (Nose) (Adamenko; 1972) | = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 17 | |
76 | Fighter Index of Thermal Stress (Direct Sunlight) (Stribley; 1978) | = (0.8281 * Tpw[°C]) + (0.3549 * Ta[°C]) + 5.08 | |
77 | Fighter Index of Thermal Stress (Moderate Overcast) (Stribley; 1978) | = (0.8281 * Tpw[°C]) + (0.3549 * Ta[°C]) + 2.23 | |
78 | Globe Temperature (Liljegren; 2008) | = Solve by iteration method: f (Ta, RH, SR, WS) | |
79 | Heart Rate (Fuller; 1966) | = 0.029 * Met[Btu/hr] + 0.7 * (Ta[°F] + VP[mmHg]) | |
80 | Heart Rate Safe limit (LaFleur; 1971) | = (206.4 - 0.63 * (Ta[°F] + VP[mmHg])) - 10 | |
81 | Heat Index (Blazejczyk; 2012) | = -8.784695 + 1.61139411 * Ta[°C] + 2.338549 * RH - 0.14611605 * Ta[°C] * RH - (1.2308094 * (10 ^ -2)) * (Ta[°C] ^ 2) - (1.6424828 * (10 ^ -2)) * (RH ^ 2) + (2.211732 * (10 ^ -3)) * (Ta[°C] ^ 2) * RH + (7.2546 * (10 ^ -4)) * Ta[°C] * (RH ^ 2) - (3.582 * (10 ^ -6)) * (Ta[°C] ^ 2) * (RH ^ 2) | |
82 | Heat Index (Stull; 2000) | = 16.923 + ((1.85212 * 10 ^ -1) * Ta[°F]) + (5.37941 * RH) - ((1.00254 * 10 ^ -1) * Ta[°F] * RH) + ((9.41695 * 10 ^ -3) * Ta[°F] ^ 2) + ((7.28898 * 10 ^ -3) * RH ^ 2) + ((3.45372 * 10 ^ -4) * Ta[°F] ^ 2 * RH) - ((8.14971 * 10 ^ -4) * Ta[°F] * RH ^ 2) + ((1.02102 * 10 ^ -5) * Ta[°F] ^ 2 * RH ^ 2) - ((3.8646 * 10 ^ -5) * Ta[°F] ^ 3) + ((2.91583 * 10 ^ -5) * RH ^ 3) + ((1.42721 * 10 ^ -6) * Ta[°F] ^ 3 * RH) + ((1.97483 * 10 ^ -7) * Ta[°F] * RH ^ 3) - ((2.18429 * 10 ^ -8) * Ta[°F] ^ 3 * RH ^ 2) + ((8.43296 * 10 ^ -10) * Ta[°F] ^ 2 * RH ^ 3) - ((4.81975 * 10 ^ -11) * Ta[°F] ^ 3 * RH ^ 3) | |
83 | Heat Index (National Oceanic and Atmospheric Administration; 2014) | If Ta[°F] <= 40 Then = Ta[°F] ElseIf Ta[°F] < 80 Then = A ElseIf (RH <= 13) = True And (80 <= Ta[°F] And Ta[°F] <= 112) = True Then = B - ((13 - RH) / 4) * Sqr((17 - Abs(Ta[°F] - 95)) / 17) ElseIf (RH > 85) = True And (80 <= Ta[°F] And Ta[°F] <= 87) = True Then = B + ((RH - 85) / 10) * ((87 - Ta[°F]) / 5) Else = B End If ⇒ A = 0.5 * (Ta[°F] + 61 + ((Ta[°F] - 68) * 1.2) + (RH * 0.094)) ⇒ B = -42.379 + 2.04901523 * Ta[°F] + 10.14333127 * RH - 0.22475541 * Ta[°F] * RH - 0.00683783 * Ta[°F] * Ta[°F] - 0.05481717 * RH * RH + 0.00122874 * Ta[°F] * Ta[°F] * RH + 0.00085282 * Ta[°F] * RH * RH - 0.00000199 * Ta[°F] * Ta[°F] * RH * RH |
|
84 | Heat Index (Patricola; 2010) | = -42.4 + 2.05 * Ta[°F] + 10.1 * RH - 0.225 * (Ta[°F] * RH) - 6.84 * (10 ^ -3) * (Ta[°F] ^ 2) - 5.48 * (10 ^ -2) * (RH ^ 2) + 1.23 * (10 ^ -3) * (Ta[°F] ^ 2 * RH) + 8.53 * (10 ^ -4) * (Ta[°F] * RH ^ 2) - 1.99 * (10 ^ -6) * (Ta[°F] ^ 2 * RH ^ 2) ⇒ if Ta[°F] <= 80 Or RH <= 40 Then = Ta[°F] |
|
85 | Heat Index (Rothfusz; 1990) | = -42.379 + 2.04901523 * Ta[°F] + 10.14333127 * RH - 0.22475541 * Ta[°F] * RH - 0.00683783 * Ta[°F] * Ta[°F] - 0.05481717 * RH * RH + 0.00122874 * Ta[°F] * Ta[°F] * RH + 0.00085282 * Ta[°F] * RH * RH - 0.00000199 * Ta[°F] * Ta[°F] * RH * RH | |
86 | Humidex (Masterson; 1979) | = Ta[°C] + 0.5555 * (6.11 * Exp(5417.753 * ((1 / 273.15) - (1 / (Td[°C] + 273.15)))) - 10) | |
87 | Humisery (Weiss; 1982) | = Ta[°C] + Tda + WSa + Ea Dew point adjustment (Tda): ⇒ If Td[°C] <= 20 Then Tda = 0 ⇒ If Round(Td[°C], 0) = 21 Then Tda = 1 ⇒ If Round(Td[°C], 0) = 22 Then Tda = 3 ⇒ if Round(Td[°C], 0) = 23 Then Tda = 4 ⇒ if Round(Td[°C], 0) = 24 Then Tda = 6 ⇒ if Round(Td[°C], 0) = 25 Then Tda = 7 ⇒ if Round(Td[°C], 0) = 26 Then Tda = 9 ⇒ if Round(Td[°C], 0) = 27 Then Tda = 11 ⇒ if Round(Td[°C], 0) = 28 Then Tda = 13 ⇒ if Round(Td[°C], 0) = 29 Then Tda = 14 ⇒ if Round(Td[°C], 0) = 30 Then Tda = 16 ⇒ if Round(Td[°C], 0) = 31 Then Tda = 18 Wind Speed adjustment (WSa): ⇒ if WS[m/s] = 0 Then WSa = 0 ⇒ if Round(WS[m/s], 0) = 1 Then WSa = 0 ⇒ if Round(WS[m/s], 0) = 2 Then WSa = 0 ⇒ if Round(WS[m/s], 0) = 3 Then WSa = -2 ⇒ if Round(WS[m/s], 0) = 4 Then WSa = -3 ⇒ if Round(WS[m/s], 0) >= 5 Then WSa = -4 Elevation adjustment (Ea): ⇒ if Elevation = 0 then Ea = 0 (in the current study we assume no elevation) ⇒ if Elevation = 300 then Ea = -1 ⇒ if Elevation = 600 then Ea = -1 ⇒ if Elevation = 900 then Ea = -2 ⇒ if Elevation = 1200 then Ea = -2 ⇒ if Elevation = 1500 then Ea = -3 |
|
88 | Humiture (Lally; 1960) | = Ta[°F] + humits ⇒ humits = VP[mb] - 10 |
|
89 | Humiture (Weiss; 1982) | = Ta[°C] + Td[°C] - 18 | |
90 | Humiture (Hevener; 1959) | = (Ta[°C] + Tw[°C]) / 2 | |
91 | Humiture (Wintering; 1979) | = Ta[°F] + (VP[mb] – 21) | |
92 | Insulation Predicted Index (Blazejczyk; 2011) | = Itot – Ia ⇒ Itot = 0.082 * (91.4 - (1.8 * Ta[°C] + 32)) / 2.3274 ⇒ Insulation of clothing and surrounding air layer ⇒ Ia = 1 / (0.61 + 1.9 * (WS[m/s] ^ 0.5)) ⇒ Insulation of air layer |
|
93 | Integrated Index (indoor) (Junge; 2016) | = (Ta[°C] * RH) / Sqr(WS[m/s]) | |
94 | Integrated Index (outdoor) (Junge; 2016) | = ((0.7 * Ta[°C] + 0.3 * Tg[°C]) * RH) / Sqr(WS[m/s]) | |
95 | Internal Comfort Temperature (Xavier; 2000) | = (S + 4.8689) / 0.2107 ⇒ S = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83 ⇒ OT = (Ta[°C] + Tmrt[°C]) / 2 |
|
96 | Kata Index (Zhongpeng; 2012) | If WS < 1 Then = (0.35 + 0.85 ^ 3 * (WS[m/s]/ (1/3)) * (36.5 - Tw[°C])) If WS >= 1 Then = (0.1 + 1.1 ^ 3 * (WS[m/s]/ (1/3)) * (36.5 - Tw[°C])) |
|
97 | Mean Radiant Temperature (approximated) (Ramsey; 2001) | = ((Tg[°C] + 273.15) ^ 4 + 1.335 * WS[m/s] ^ 0.71 * (Tg[°C] - Ta[°C]) / (0.95 * 0.15 ^ 0.4) * 100000000) ^ 0.25 - 273.15 | |
98 | Mean Skin Temperature (McPherson; 1993) | = 24.85 + 0.322 * Ta[°C] - 0.00165 * (Ta[°C] ^ 2) | |
99 | Meditteranean Outdoor Comfort Index (Salata; 2016) | = -4.068 - 0.272 * WS[m/s] + 0.005 * RH + 0.083 * Tmrt[°C] + 0.058 * Ta[°C] + 0.264 * Icl | |
100 | Missenard’s Index (Missenard; 1969) | = Ta[°C] - 0.4 * (Ta[°C] - 10) * (RH / 100) | |
101 | Modified Discomfort Index (Moran; 1998) | = (0.75 * Tw[°C]) + (0.3 * Ta[°C]) | |
102 | Modified Environmental Stress Index (Moran; 2003) | = 0.62 * Ta[°C] - 0.007 * RH + 0.002 * SR[w/m2] + 0.0043 * (Ta[°C] * RH) - 0.078 * (0.1 + SR[w/m2]) ^ -1 | |
103 | Natural Wet Bulb Temperature (Maloney; 2011) | = 0.85 * Ta[°C] + 0.17 * RH - 0.61 * (WS[m/s] ^ 0.5) + 0.0016 * SR[w/m2] - 11.62 | |
104 | Nett Radiation (Cena; 1984) | = Hr * (Tmrt[°C] - Tsk[°C]) | |
105 | New Wind Chill (NOAA; 2001) | = 35.74 + 0.6215 * Ta[°F] - 35.75 * (WS[mph] ^ 0.16) + 0.4275 * Ta[°F] * (WS[mph] ^ 0.16) | |
106 | Normal Equivalent Effective Temperature (Boksha; 1980) | = 0.8 * EET + 7 ⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C])) |
|
107 | Operative Temperature (ASHRAE; 2004) | = (Tmrt[°C] + Ta[°C]) / 2 | |
108 | Operative Temperature (ISO 7726:1998; 1998) | = (Ta[°C] * Sqr(10 * WS[m/s]) + Tmrt[°C]) / (1 + Sqr(10 * WS[m/s])) | |
109 | Operative Temperature (ISO 7730:1994; 1994) | = A * Ta[°C] + (1 - A) * Tmrt[°C] ⇒ A = 0.73 * (WS[m/s] ^ 0.2) Note: ISO 7730:1994 proposes a simplified approximation of coefficient A as function of air velocity. Hence, we used a simplified approximation found in literature.; [177] |
|
110 | Operative Temperature (Winslow; 1937) | = ((Hr * Tmrt[°C]) + (Hc * Ta[°C])) / (Hr + Hc) | |
111 | Outdoor Standard Effective Temperature (Skinner; 2001) | = (WBGT - 11.76) / 0.405 | |
112 | Oxford Index (Lind; 1957) | = 0.85 * Tw[°C] + 0.15 * Ta[°C] | |
113 | Perceived Equivalent Temperature (Monteiro; 2010) | = -3.777 + 0.4828 * Ta[°C] + 0.5172 * Tmrt[°C] + 0.0802 * RH - 2.322 * WS[m/s] | |
114 | Perceived Temperature (Linke; 1926) | = Ta[°C] - (4 * WS) + (12 * SR[cal/cm2/min]) | |
115 | Predicted Percentage Dissatisfied (Xavier; 2000) | = 18.94 * (S ^ 2) - 0.24 * S + 24.41 ⇒ S = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83 ⇒ OT = (Ta[°C] + Tmrt[°C]) / 2 ⇒ if S > 2 OR S < -2 then = 100 |
|
116 | Predicted Thermal Sensation Vote (Cheng; 2008) | = 0.1895 * Ta[°C] - 0.7754 * WS[m/s] + 0.0028 * SR[w/m2] + 0.1953 * h - 8.23 | |
117 | Psychrometric Wet Bulb Temperature (Malchaire; 1976) | = ((0.16 * (Tg[°C] - Ta[°C]) + 0.8) / 200) * (560 - 2 * RH - 5 * Ta[°C]) - 0.8 + Tw[°C] | |
118 | Psychrometric Wet Bulb Temperature (McPherson; 2008) | Solve by iteration method: [30] = f (Ta, RH, WS) | |
119 | Radiative Effective Temperature (Blazejczyk; 2004) | = TE[°C] + (1 - 0.01 * albedo) * SR[w/m2] * ((0.0155 - 0.00025 * TE[°C]) - (0.0043 - 0.00011 * TE[°C])) ⇒ If WS <= 0.2 Then TE = Ta[°C] - 0.4 * (Ta[°C] - 10) * (1 - 0.01 * RH) ⇒ If WS > 0.2 Then TE = 37 - ((37 - Ta[°C]) / (0.68 - 0.0014 * RH + (1 / (1.76 + (1.4 * (WS ^ 0.75)))))) - 0.29 * Ta[°C] * (1 - (0.01 * RH)) ⇒ We assume skin albedo for pigmented individuals = 0.11, based on index #120 below |
|
120 | Radiation Equivalent Effective Temperature (Non-Pigmented) (Sheleihovskyi; 1948) | = 125 * Log(1 + 0.02 * Ta[°C] + 0.001 * (Ta[°C] - 8) * (RH - 60) - 0.045 * (33 - Ta[°C]) * Sqr(WS[m/s]) + 0.185 * X) ⇒ X = SR[cal/cm2/min] * (1 – albedo) ⇒ Skin albedo for pigmented individuals = 0.11 |
|
121 | Radiation Equivalent Effective Temperature (Pigmented) (Sheleihovskyi; 1948) | = 125 * Log(1 + 0.02 * Ta[°C] + 0.001 * (Ta[°C] - 8) * (RH - 60) - 0.045 * (33 - Ta[°C]) * Sqr(WS[m/s]) + 0.185 * X) ⇒ X = SR[cal/cm2/min] * (1 – albedo) ⇒ Skin albedo for non-pigmented individuals = 0.28 |
|
122 | Relative Humidity Dry Temperature (Wallace; 2005) | = (0.1 * RH) + (0.9 * Ta[°C]) | |
123 | Relative Strain Index (Kyle; 1992) | = (Ta[°C] - 21) / (58 – VP[hPa]) | |
124 | Relative Strain Index (Lee; 1966) | = (10.7 + 0.74 * (Ta[°C] - 35)) / (44 – VP[mmHg]) | |
125 | Revised Wind Chill Index (Court; 1948) | = (10.9 * Sqr(WS[m/s]) + 9 - WS[m/s]) * (33 - Ta[°C]) | |
126 | Robaa’s Index (Robaa; 2003) | = (1.53 * Ta[°C]) - (0.32 * Tw[°C]) - (1.38 * WS[m/s]) + 44.65 | |
127 | Saturation Deficit (Flugge; 1912) | = SVP[hPa] – VP[hPa] | |
128 | Severity Index (Osokin; 1968) | = (1 - 0.06 * Ta[°C]) * (1 + 0.2 * WS[m/s]) * (1 + 0.0006 * Elevation) * Kb * AC Elevation = 0 m (we assume sea level altitude) Relative humidity: ⇒ if RH <= 60 Then Kb = 0.9 ⇒ if RH > 60 And RH <= 70 Then Kb = 0.95 ⇒ if RH > 70 And RH <= 80 Then Kb = 1 ⇒ if RH > 80 And RH <= 90 Then Kb = 1.05 ⇒ if RH > 90 And RH <= 100 Then Kb = 1.1 Diurnal temperature (DTR): (e.g., the variation between a high temperature and a low temperature that occurs during the same day). ⇒ if DTR <= 4 °C then AC = 0.85 ⇒ if DTR > 4 °C And DTR <= 6 °C Then AC = 0.90 ⇒ if DTR > 4 °C And DTR <= 6 °C Then AC = 0.90 ⇒ if DTR > 6 °C And DTR <= 8 °C Then AC = 0.95 ⇒ if DTR > 8 °C And DTR <= 10 °C Then AC =1.00 ⇒ if DTR > 10 °C And DTR <= 12 °C Then AC = 1.05 ⇒ if DTR > 12 °C And DTR <= 14 °C Then AC = 1.10 ⇒ if DTR > 14 °C And DTR <= 16 °C Then AC = 1.15 ⇒ if DTR > 18 °C And DTR <= 20 °C Then AC = 1.20 ⇒ if DTR > 18 °C Then AC = 1.25 |
|
129 | Simple Index (Moran; 2001) | = 0.66 * Ta[°C] + 0.09 * RH + 0.0035 * SR[w/m2] | |
130 | Simplified Radiation Equivalent Effective Temperature (Boksha; 1980) | = 0.8 * EET + 12 ⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C])) |
|
131 | Simplified Tropical Summer Index (Auliciems; 2007) | = ((1 / 3) * Tw[°C]) + ((3 / 4) * Tg[°C]) - (2 * Sqr(WS[m/s])) | |
132 | Simplified Universal Thermal Climate Index (Blazejcyk; 2011) | = 3.21 + 0.872 * Ta[°C] + 0.2459 * Tmrt - 2.5078 * WS[m/s] - 0.0176 * RH | |
133 | Simplified Wet Bulb Globe Temperature (American College of Sports Medicine; 1984) | = 0.567 * Ta[°C] + 0.393 * VP[hPa] + 3.94 | |
134 | Simplified Wet Bulb Globe Temperature (Gagge; 1976) | = 0.567 * Ta[°C] + 0.216 * VP[hPa] + 3.38 | |
135 | Skin Temperature (Blazejczyk; 2005) | = (26.4 + 0.02138 * Tmrt[°C] + 0.2095 * Ta[°C] - 0.0185 * RH - 0.009 * WS) + 0.6 * (Icl - 1) + 0.00128 * Met ⇒ Met = 135 W/m2 ⇒ “metabolism in standard applications” [135]. |
|
136 | Skin Wettedness (Blazejczyk; 2005) | = 1.031 / (37.5 - Tsk[°C]) - 0.065 ⇒ if Tsk[°C] > 36.5 Then = 1 ⇒ if Tsk[°C] < 22 Then = 0.001 Tsk[°C] = (26.4 + 0.02138 * Tmrt[°C] + 0.2095 * Ta[°C] - 0.0185 * RH - 0.009 * WS) + 0.6 * (Icl - 1) + 0.00128 * Met Met = 135 W/m2 ⇒ “metabolism in standard applications” [135]. |
|
137 | Standard Operative Temperature (Gagge; 1940) | = Tsk[°C] - (Heat_Loss / 5.2) ⇒ Heat_Loss = Ko * (Tsk[°C] - OT) ⇒ Ko = 0.75 * (4 * 4.92 * 10 ^ -8) * ((Tmrt[°C] ^ 3 + (273 + 35) ^ 3) / 2) + 1 ⇒ OT = ((Hr * Tmrt[°C]) + (Hc * Ta[°C])) / (Hr + Hc) |
|
138 | Subjective Temperature (McIntyre; 1973) | ⇒ if WS[m/s] <= 0.1 Then = 0.56 * Ta[°C] + 0.44 * Tmrt[°C] ⇒ if WS[m/s] > 0.1 Then = (0.44 * Tmrt[°C] + 0.56 * (5 - Sqr(10 * WS[m/s]) * (5 - Ta[°C]))) / (0.44 + 0.56 * Sqr(10 * WS[m/s])) |
|
139 | Sultriness Index (Scharlau; 1943) | ⇒ if VP[Torr] > 14.08 Then = Sultriness ⇒ if VP[Torr] <= 14.08 Then = Comfort |
|
140 | Sultriness Intensity (Akimovich; 1971) | ⇒ if VP < 18.8 Then = 0 ⇒ if VP = 18.8 Then = 1 ⇒ if VP > 18.8 Then =((VP - 18.8) / 2) + 1 |
|
141 | Summer Scharlau Index (Scharlau; 1950) | = Tc - Ta[°C] ⇒ Tc = (-17.089 * Log(RH)) + 94.979 ⇒ critical temperature |
|
142 | Summer Simmer Index (Pepi; 1987) | = 1.98 * (Ta[°F] - (0.55 - 0.55 * (RH / 100)) * (Ta[°F] - 58)) - 56.83 | |
143 | Swedish Wet Bulb Globe Temperature (Eriksson; 1974) | ⇒ if WS[m/s] >= 0.5 Then = 0.7 * Tpw[°C] + 0.3 * Tg[°C] ⇒ if WS[m/s] < 0.5 Then = 0.7 * Tpw[°C] + 0.3 * Tg[°C] + 2 |
|
144 | Temperature Humidity Index (Schoen; 2005) | = Ta[°C] - 1.0799 * Exp(0.03755 * Ta[°C]) * (1 - Exp(0.0801 * (VP[hPa] - 14))) | |
145 | Temperature Humidity Index (Costanzo; 2006) | = Ta[°C] - 0.55 * (1 - 0.001 * RH) * (Ta[°C] - 14.5) | |
146 | Temperature Humidity Index (INMH; 2000) | = (Ta[°C] * 1.8 + 32) - (0.55 - 0.0055 * RH) * ((Ta[°C] * 1.8 + 32) - 58) | |
147 | Temperature Humidity Index (Kyle; 1994) | = Ta[°C] - (0.55 - 0.0055 * RH) * (Ta[°C] - 14.5) | |
148 | Temperature Humidity Index (Nieuwolt; 1977) | = 0.8 * Ta[°C] + ((RH * Ta[°C]) / 500) | |
149 | Temperature Humidity Index (eq. 1) (Pepi; 1987) | = Ta[°F] - (0.55 - 0.55 * (RH / 100)) * (Ta[°F] - 58) | |
150 | Temperature Humidity Index (eq. 2) (Pepi; 1987) | = 0.55 * Ta[°F] + 0.2 * Td[°F] + 17.5 | |
151 | Temperature of the exhaled air (McPherson; 1993) | = 32.6 + 0 / 66 * Ta[°C] + 0.0002 * VP[hPa] | |
152 | Temperature Resultante Miniere (Vogt; 1978) | = (0.7 * Tw[°C]) + (0.3 * Ta[°C]) – WS[m/s] | |
153 | Temperature Wind Speed Humidity Index (Zaninovic; 1992) | = 1.004 * (Th1 + ((1555 / P) * ETH)) ⇒ Th1 =36.5 - (((0.902 + 0.063 * (WS[m/s] ^ 1.072)) * (36.5 - Tw[°C])) / 0.902) ⇒ Th2 = 36.5 - (((0.902 + 0.063 * (WS[m/s] ^ 1.072)) * (36.5 - Ta[°C])) / 0.902) ⇒ ETH[hPa] = saturated vapour pressure at temperature Th2. |
|
154 | Thermal comfort (Givoni; 2000) | = 1.2 + 0.1115 * Ta[°C] + 0.0019 * SR[w/m2] - 0.3185 * WS[m/s] | |
155 | Thermal Comfort (Humid-Tropical environments) (Sangkertadi; 2014) | = -7.91 - 0.52 * WS[m/s] + 0.05 * Ta[°C] + 0.17 * Tg[°C] - 0.0007 * RH + 1.43 * ADu | |
156 | Thermal Resistance of Clothing (Jokl; 1982) | = (0.0053 + 0.035 * Layers) ^ 0.61 * Exp(-0.147 * WS[m/s]) + 0.054 * Exp((-0.23 * Layers) - (1.07 + 0.06 * Layers) * WS[m/s]) ⇒ Layers = number of clothing layer someone wears |
|
157 | Thermal Sensation (Monteiro; 2010) | = -3.557 + 0.0632 * Ta[°C] + 0.0677 * Tmrt[°C] + 0.0105 * RH - 0.304 * WS[m/s] | |
158 | Thermal Sensation (eq. 1) (Rohles; 1971) | = (0.245 * Ta[°C]) + (0.033 * VTd[hPa]) - 6.471 VTd = saturated vapor pressure at dew point temperature |
|
159 | Thermal Sensation (eq. 2) (Rohles; 1971) | = (0.245 * Ta[°C]) + (0.248 * VP[kPa]) - 6.475 | |
160 | Thermal Sensation (Givoni; 2004) | = (1.83 - 0.05 * GTa[°C]) + (0.135 * Ta[°C]) + (0.00195 * SR[w/m2] - 0.6) - (0.4915 * Log(WS[m/s])) ⇒ GTa[°C] = average temperature of season |
|
161 | Thermal Sensation Index (Xavier; 2000) | = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83 ⇒ OT = (Ta[°C] + Tmrt[°C]) / 2 |
|
162 | Thermal Sensation Vote (Summer) (Yahia; 2013) | = 0.134 * SET - 3.208 ⇒ SET = (WBGT - 11.76) / 0.405 ⇒ Outdoor Standard Effective temperature based on a formula (e.g., TSI #111) found in literature [123]. |
|
163 | Thermal Sensation Vote (Winter) (Yahia; 2013) | = 0.082 * SET - 2.928 ⇒ SET = (WBGT - 11.76) / 0.405 ⇒ Outdoor Standard Effective temperature based on a formula (e.g., TSI #111) found in literature [123]. |
|
164 | TPV index (Baghdad) (Nicol; 1975) | = 0.214 * Tg[°C] + 0.031 * VP[mmHg] - 0.545 * (WS[m/s] ^ 0.5) - 2.85 | |
165 | TPV index (Roorkee) (Nicol; 1975) | = 0.186 * Tg[°C] + 0.032 * VP[mmHg] - 0.366 * (WS[m/s] ^ 0.5) - 0.82 | |
166 | Tropical Summer Index (Sharma; 1986) | = (0.308 * Tw[°C]) + (0.745 * Tg[°C]) - (2.06 * Sqr(WS[m/s])) + 0.841 | |
167 | Universal Thermal Climate Index (Jendritzky; 2012) | = f (Ta[°C], Tmrt[°C], WS10m[m/s], VP[hPa]) | |
168 | Wet Bulb Globe Temperature (eq. 1) (Ono; 2014) | = 0.718 * Ta[°C] + 0.0316 * RH + 0.00321 * Ta[°C] * RH + 4.363 * SR[kW/m2] - 0.0502 * WS[m/s] - 3.623 | |
169 | Wet Bulb Globe Temperature (eq. 2) (Ono; 2014) | = 0.735 * Ta[°C] + 0.0374 * RH + 0.00292 * Ta[°C] * RH + 7.619 * SR[kW/m2] - 4.557 * (SR[kW/m2] ^ 2) - 0.0572 * WS[m/s] - 4.064 | |
170 | Wet Bulb Globe Temperature (indoors) (Yaglou; 1956) | = 0.67 * Tpw[°C] + 0.33 * Ta[°C] - 0.048 * Log(WS) / Log(10) * (Ta[°C] – Tpw[°C]) Calculation based on meteorological data according to the literature. [30] |
|
171 | Wet Bulb Globe Temperature (outdoors) (Yaglou; 1956) | = 0.7 * Tw[°C] + 0.2 * Tg[°C] + 0.1 * Ta[°C] Calculation based on meteorological data according to the literature. [30] |
|
172 | Wet Bulb Temperature (Liljegren; 2008) | = f (Ta, SR, WS, RH) | |
173 | Wet Bulb Temperature (Malchaire; 1976) | = ((0.16 * (Tg[°C] - Ta[°C]) + 0.8) / 200) * (560 - 2 * RH - 5 * Ta[°C]) - 0.8 + Tw[°C] | |
174 | Wet Bulb Temperature (Stull; 2011) | = Ta[°C] * Atn(0.151977 * ((RH + 8.313659) ^ 0.5)) + Atn(Ta[°C] + RH) - Atn(RH - 1.676331) + 0.00391838 * (RH ^ (3 / 2)) * Atn(0.023101 * RH) - 4.686035 | |
175 | Wet Cooling Power (Landsberg; 1972) | = (0.37 + 0.51 * (WS[m/s] ^ 0.63)) * (36.5 - Tw[°C]) | |
176 | Wet Globe Temperature (Botsball) (Botsford; 1971) | = (WBGT + 2.64) / 1.044 | |
177 | Wet Kata Cooling (Maloney; 2011) | = (0.648 * (36.4 - Tn) + 0.833 * (36.4 - Tn) * (WS[m/s] ^ 0.5)) * 41.84 ⇒ Tn = 0.85 * Ta[°C] + 0.17 * RH - 0.61 * (WS[m/s] ^ 0.5) + 0.0016 * SR[w/m2] - 11.62 ⇒ Tn = natural wet bulb temperature as described in the paper [89]. |
|
178 | Wet Kata Cooling Power (Chamber of Mines of South Africa; 1972) | = (0.7 + (RH ^ 0.5)) * (36.5 - Tw[°C]) | |
179 | Wet Kata Cooling Power (Krisha; 1996) | ⇒ If WS[m/s] < 1 Then = (14.65 + (35.59 * (WS[m/s] ^ (1 / 3)))) * (309.65 – Tw[K]) ⇒ If WS[m/s] >= 1 Then = (4.19 + (46.05 * (WS[m/s] ^ (1 / 3)))) * (309.65 - Tw[K]) |
|
180 | Wet Kata Cooling Power (Hill; 1919) | ⇒ If WS[m/s] <= 1 Then = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868 ⇒ If WS[m/s] > 1 Then = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868 |
|
181 | Wet-Bulb Dry Temperature (Wallace; 2005) | = (0.4 * Tw[°C]) + (0.6 * Ta[°C]) | |
182 | Wind Chill (OFCM/NOAA; 2003) | = 13.12 + 0.6215 * Ta[°C] - 11.37 * (WS10m[km/h] ^ 0.16) + 0.3965 * Ta[°C] * (WS10m [km/h] ^ 0.16) | |
183 | Wind Chill (Siple; 1945) | = ((Sqr(WS[m/s] * 100)) + 10.45 – WS[m/s]) * (33 - Ta[°C]) | |
184 | Wind Chill (Steadman; 1971) | = (30 - Ta[°C]) / RS ⇒ RS = 1 / (Hr + Hc) ⇒ Surface resistance |
|
185 | Wind Chill Equivalent (Quayle; 1998) | = 1.41 - 1.162 * WS[m/s] + 0.98 * Ta[°C] + 0.0124 * (WS[m/s] ^ 2) + 0.0185 * (WS[m/s] * Ta[°C]) | |
186 | Wind Chill Equivalent Temperature (wind of 1.34 m/s) (Falconer; 1968) | = Solve by iteration method: = f (Ta, WS) ⇒ WC = ((Sqr(WS[m/s] * 100)) + 10.45 – WS[m/s]) * (33 - Ta[°C]) ⇒ Wind Chill According to the authors the Wind Chill Equivalent Temperature is “the equivalent temperature that would be felt on exposed flesh in a 3 mph wind – the amount of ventilation one might experience in walking in an otherwise calm wind condition” [165]. |
|
187 | Winter Scharlau Index (Sharlau; 1950) | = Ta[°C] - Tc ⇒ Tc = (-0.0003 * (RH ^ 2)) + (0.1497 * RH) - 7.7133 ⇒ critical temperature |