Skip to main content
. 2022 Jul 31;9(3):227–262. doi: 10.1080/23328940.2022.2037376

Table 5.

Computation of the 187 meteo-based thermal stress indicators in BASIC programming language (^ = power notation and sqr = square root).

ID Thermal Stress Indicator Formula/s Assumption/s
1 Accepted Level of Physical Activity (Blazejczyk; 2010) = (90 - 22.4 - 0.25 * ((5 * Ta[°C]) + (2.66 * VP[hPa]))) / 0.18  
2 Actual Sensation Vote (Nikolopoulou; 2003) = 0.061 * Ta[°C] + 0.091 * TGA - 0.324 * WS[ms] + 0.003 * RH - 1.455
⇒ TGA = Tg[°C] - Ta[°C]
 
3 Actual Sensation Vote (Nikolopoulou; 2004) = 0.034 * Ta[°C] + 0.0001 * SR[w/m2] - 0.086 * WS[m/s] - 0.001 * RH - 0.412  
4 Actual Sensation Vote (Europe) (Nikolopoulou; 2004) = 0.049 * Ta[°C] + 0.001 * SR[w/m2] - 0.051 * WS[m/s] + 0.014 * RH - 2.079  
5 Air Enthalpy (Boer; 1964) = 0.24 * (Tw[°C] + (1555 / P[hPa]) * SVP[hPa]) graphic file with name KTMP_A_2037376_ILG0193.jpg
6 Apparent Temperature (Almeida; 2010) = -2.653 + (0.994 * Ta[°C]) + (0.0153 * Td[°C] ^ 2)  
7 Apparent Temperature (Arnoldy; 1962) = Ta[°C] - (2 * WS[m/s])  
8 Apparent Temperature (Fischer; 2010) = c1 + (c2 * Ta[°C]) + (c3 * (Ta[°C] ^ 2)) + (RH * (c4 + (c5 * Ta[°C]) + (c6 * (Ta[°C] ^ 2)))) + ((RH ^ 2) * (c7 + (c8 * Ta[°C]) + (c9 * (Ta[°C] ^ 2))))
c1 = -8.7847; c2 = 1.6114; c3 = -0.012308; c4 = 2.3385; c5 = -0.14612; c6 = 2.2117 * (10 ^ -3); c7 = -0.016425; c8 = 7.2546 * (10 ^ -4); and c9 = -3.582 * (10 ^ -6)
 
9 Apparent Temperature (Kalkstein; 1986) reported by Kalkstein;1986:
= -2.653 + (0.994 * Ta[°C]) + (0.368 * Td[°C]) ^ 2 ⇒ Erroneous
reported by Kwon;1990:174
= -2.653 + (0.994 * Ta[°C]) + (0.368 * Td[°C])
 
10 Apparent Temperature (Smoyer-Tomic; 2001) = -2.719 + 0.994 * Ta[°C] + 0.016 * Td[°C] ^ 2
⇒ if Ta[°C] < 25 Then = Ta[°C]
 
11 Apparent Temperature (indoor) (Steadman; 1994) = (0.89 * T a[°C]) + (3.82 * VP[kPa]) - 2.56  
12 Apparent Temperature (indoor) (Steadman; 1984) = -1.3 + 0.92 * Ta[°C] + 2.2 * VP[kPa]  
13 Apparent Temperature (shade) (Steadman; 1984) = -2.7 + 1.04 * Ta[°C] + 2 * VP[kPa] - 0.65 * WS10m[m/s] graphic file with name KTMP_A_2037376_ILG0194.jpg
14 Apparent Temperature (shade) (Steadman; 1994) = Ta[°C] + (3.3 * VP[kPa]) - (0.7 * WS10m[m/s]) - 4 graphic file with name KTMP_A_2037376_ILG0195.jpg
15 Apparent Temperature (sun) (Steadman; 1984) = -1.8 + 1.07 * Ta[°C] + 2.4 * VP - 0.92 * WS + 0.044 * Qg
⇒ Qg = Hr * (Tmrt[°C] - Ta[°C])
graphic file with name KTMP_A_2037376_ILG0196.jpg
16 Apparent Temperature (sun) (Steadman; 1994) = Ta[°C] + (3.48 * VP[kPa]) - (0.7 * WS10m[m/s]) + (0.7 * Qg / (WS10m[m/s] + 10)) - 4.25
⇒ Qg = Hr * (Tmrt[°C] - Ta[°C])
graphic file with name KTMP_A_2037376_ILG0197.jpg
17 Approximated Subjective Temperature (Auliciems; 2007) = Tg[°C] + 2.8 * (1 - Sqr(10 * WS[m/s])) / (0.44 + 0.56 * Sqr(10 * WS[m/s]))  
18 Belding-Hatch Index (Belding; 1955) = E / Emax
⇒ E = 110 + 11.6 * (1 + 1.3 * (WS[m/s] ^ 0.5)) * (Tg[°C] - 35)
⇒ Emax = 25 * (WS[m/s] ^ 0.4) * (42 – VP[mmHg])
 
19 Belgian Effective Temperature (Bidlot; 1947) = 0.9 * Tw[°C] + 0.1 * Ta[°C]  
20 Bioclimatic Index of Severity (Belkin; 1992) = (Ti * (P - 266) * (1 - (0.02 * WS))) / (Ri * S * 75)
Temperature coefficient (Ti):
⇒ if Ta[°C] < -90 Or Ta[°C] > 60 Then Ti = 0
⇒ if Ta[°C] = 22 Then Ti = 1
⇒ if Ta[°C] > 22 And Ta[°C] <= 60 Then Ti = 1 - 0.0263 * (Ta[°C] - 22)
⇒ if Ta[°C] < 22 And Ta[°C] > -90 Then Ti = 1 - 0.0089 * (22 - Ta[°C])
Relative humidity coefficient (Ri):
⇒ if RH = 50 Then RH = 50.0001
⇒ if RH > 50 Then Ri = 1 + (0.6 * ((RH - 50) / 100))
⇒ if RH < 50 Then Ri = 1 + (0.6 * ((50 - RH) / 100))
Radiation Coefficient (S):
⇒ S = 1 (we assume low altitude / comfortable barometric pressure)
⇒ if altitude > 2000 m then S = 1 + (0.045 * ((altitude - 2000)/ 1000))
graphic file with name KTMP_A_2037376_ILG0198.jpg
21 Biologically Active Temperature (Tsitsenko; 1971) = 0.8 * EET + 9
⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C]))
graphic file with name KTMP_A_2037376_ILG0199.jpg
22 Biometeorological Comfort Index (Rodriguez; 1985) = (Taero + Tw[°C]) / 2
⇒ Vr[km/day] = 150 km / day (air speed relative to a person while walking in calm air)
⇒ Tcr[°C] = 37.3
⇒ n = 0.6 * Exp(-0.01 * Ta[°C]) ⇒ cited by Garcia:1994 [175]
⇒ if Vr[km/day] >= WS[km/day] Then Taero = Ta[°C]
⇒ if Vr[km/day] < WS[km/day] Then Taero = Tcr[°C] - (((0.9311 + 0.0295 * (WS ^ n)) * (Tcr[°C] - Ta[°C])) / (0.0411 + 0.0295 * (Vr[km/day] ^ n)))
graphic file with name KTMP_A_2037376_ILG0200.jpg
23 Bodman’s Weather Severity Index (Bodman; 1908) = (1 - 0.04 * Ta[°C]) * (1 + 0.272 * WS[m/s]) graphic file with name KTMP_A_2037376_ILG0201.jpg
24 Clothing Thickness (Steadman; 1971) 45 = 3.9 + 0.053 * (37 - Ta[°C]) + ((0.03 * (30 - Ta[°C])) / Rs) + ((0.12 * (30 - Ta[°C])) / (0.5 + Rs)) + ((0.85 * (30 - Ta[°C])) / (Rf + Rs))
Rs = 1 / (Hr + Hc) ⇒ surface resistance, in m2/sec/°C
Rf = clothing thickness / thermal conductivity ⇒ clothing resistance in m2/sec/°C
1.3s
graphic file with name KTMP_A_2037376_ILG0202.jpg
25 Comfort Vote (Bedford; 1936) = 11.16 - 0.0556 * Ta[°F] - 0.0538 * Tmrt[°F] - 0.0372 * VP[mmHg] + 0.00144 * Sqr(WS[ft/min]) * (100 - Ta[°F])  
26 Cooling Power (Becker; 1972) = (0.26 + 0.34 * (WS[m/s] ^ 0.622)) * (36.5 - Ta[°C])  
27 Cooling Power (Bedford; 1933) = (0.123 + 0.465 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
28 Cooling Power (Bider; 1931) = (0.31 + 0.112 * WS[m/s])) * (36.5 - Ta[°C])  
29 Cooling Power (Bradtke; 1926) = (0.1 + 0.403 * Sqr(WS[m/s])) * (36.5 - Ta[°C]) ^ 1.06  
30 Cooling Power (Buttner; 1934) = (0.23 + 0.47 * WS[m/s] ^ 0.52) * (36.5 - Ta[°C])  
31 Cooling Power (Cena; 1966) = (0.412 + 0.087 * WS[m/s]) * (36.5 - Ta[°C])  
32 Cooling Power (Dorno; 1925) = (0.22 + 0.25 ^ 1.5 * Sqr(WS[m/s])) * (33 - Ta[°C])  
33 Cooling Power (Dorno; 1934) = (0.22 + 0.25 ^ 1.5 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
34 Cooling Power (eq. 1) (Goldschmidt; 1952) = (0.25 + 0.2 ^ 1.1 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
35 Cooling Power (eq. 2) (Goldschmidt; 1952) = (0.3 + 0.16 * WS[m/s]) * (36.5 - Ta[°C])  
36 Cooling Power (Henneberger; 1948) = (0.276 + 0.117 * WS[m/s]) * (36.5 - Ta[°C])  
37 Cooling Power (Hill; 1916) ⇒ if WS[m/s] =< 1 then = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868
⇒ if WS[m/s] > 1then = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868
 
38 Cooling Power (eq. 1) (Hill; 1937) = (0.105 + 0.485 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
39 Cooling Power (eq. 2) (Hill; 1937) = (0.205 + 0.385 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
40 Cooling Power (Lahmayer; 1932) = (0.22 + 0.2 ^ 1.3 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
41 Cooling Power (eq. 1) (Matzke; 1954) = (0.249 + 0.258 * WS[m/s] ^ 0.616) * (36.5 - Ta[°C])  
42 Cooling Power (eq. 2) (Matzke; 1954) = (0.441 + 0.096 * WS[m/s]) * (36.5 - Ta[°C])  
43 Cooling Power (Meissner; 1932) = (0.275 + 0.251 * WS[m/s] ^ 0.7) * (36.5 - Ta[°C])  
44 Cooling Power (Vinje; 1962) ⇒ if WS[m/s] > 1 And WS[m/s] <= 12 Then = 0.57 * (WS[m/s] ^ 0.42) * (36.5 - Ta[°C])
⇒ if WS10m[m/s] > 12 Then = (0.46 + 0.08 * WS10m[m/s]) * (36.5 - Ta[°C])
graphic file with name KTMP_A_2037376_ILG0203.jpg
45 Cooling Power (Weiss; 1926) = (0.14 + 0.49 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
46 Cooling Power (Angus; 1930) = Sqr(0.29 * (0.26 + WS[m/s])) * (36.5 - Ta[°C])  
47 Cooling Power (Lehmann; 1936) = (0.113 + 0.34 * WS[m/s] ^ 0.622) * (36.5 - Ta[°C])  
48 Cooling Power (Joranger; 1955) = (0.375 + 0.316 * Sqr(WS[m/s])) * (36.5 - Ta[°C])  
49 Cooling Power (Wet Air Temperature) (Hill; 1916) = h + 41.868 * (0.085 + 0.102 * (WS[m/s] ^ 0.3)) * (61.1 – VP[hPa]) ^ 0.75
⇒ if WS[m/s] =< 1 then h = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868
⇒ if WS[m/s] > 1 then h = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868
 
50 Corrected Effective Temperature (Basic) (Auliciems; 2007) = (0.944 * Tg[°C] - 0.056 * Tw[°C]) / (1 + 0.022 * (Tg[°C] - Tw[°C]))  
51 Corrected Effective Temperature (Normal) (Auliciems; 2007) = (1.21 * Tg[°C] - 0.21 * Tw[°C]) / (1 + 0.029 * (Tg[°C] - Tw[°C]))  
52 Dew Point (Bruce; 1916) = 237.3 * (Log(RHD) / 17.27 + Ta[°C] / (237.3 + Ta[°C])) / (1 - Log(RHD) / 17.27 - Ta[°C] / (237.3 + Ta[°C]))
⇒ RHD = RH / 100
 
53 Discomfort Index (Giles; 1990) = Ta[°C] - 0.55 * (1 - 0.01 * RH) * (Ta[°C] - 14.5)  
54 Discomfort Index (Kawamura; 1965) = 0.99 * Ta[°C] + 0.36 * Td[°C] + 41.5  
55 Discomfort Index (Tennenbaum; 1961) = (Ta[°C] + Tw[°C]) / 2  
56 Discomfort Index (eq. 1) (Thom; 1959) = (0.4 * Tw[°C]) + (0.4 * Ta[°C]) + 8.3  
57 Discomfort Index (eq. 2) (Thom; 1959) = 0.4 * (Ta[°F] + Tw[°F]) + 15  
58 Discomfort Index (Weather Services of South Africa; 2018) = (2 * Ta[°C]) + (RH / 100 * Ta[°C]) + 24  
59 Draught Risk Index (Fanger; 1987) = (3.143 * (34 - Ta[°C]) * (WS[m/s] - 0.05) ^ 0.6233) + (0.3696 * WS[m/s] * Tu * (34 - Ta[°C]) * (WS[m/s] - 0.05) ^ 0.6233) ⇒ if result > 100 then result = 100
⇒ if WS[m/s] < 0.05 Then WS[m/s] = 0.05
“The parameter Tu can simply be defined as the ratio between standard deviation of instantaneous air speeds (Vsd) and the mean air speed (V), both of which are derived from anemometry, having time-constants of 1/10 S or faster” [176]
 
60 Dry Kata Cooling (Maloney; 2011) ⇒ if WS[m/s] = 0 Then = 0.27 * ((36.5 - Ta[°C]) ^ 1.06) * 41.84
⇒ if WS[m/s] > 0 And WS[m/s] < 1 Then = 0.2 + 0.4 * (WS[m/s] ^ 0.5) * (36.5 - Ta[°C]) * 41.84
⇒ if WS[m/s] >= 1 Then = 0.13 + 0.47 * (WS[m/s] ^ 0.5) * (36.5 - Ta[°C]) * 41.84
 
61 Effective Radiant Field (Gagge; 1967) = Hr * (Tmrt[°C] - Ta[°C]) graphic file with name KTMP_A_2037376_ILG0204.jpg
62 Effective Radiant Field (Nishi; 1981) = 0.76 * (6.1 + 13.6 * Sqr(WS[m/s])) * (Tg[°C] - Ta[°C])  
63 Effective Temperature (Houghten; 1923) = Ta[°C] - 0.4 * (Ta[°C] - 10) * (1 - (RH / 100))  
64 Effective Temperature (Missenard; 1933) = 37 - ((37 - Ta[°C]) / (0.68 - 0.0014 * RH + (1 / (1.76 + (1.4 * (WS[m/s] ^ 0.75)))))) - 0.29 * Ta[°C] * (1 - (0.01 * RH))  
65 Environmental Stress Index (Moran; 2001) = (0.63 * Ta[°C]) - (0.03 * RH) + (0.002 * SR[w/m2]) + (0.0054 * (Ta[°C] * RH)) - (0.073 * (0.1 + SR[w/m2]) ^ -1)  
66 Equatorial Comfort Index (Webb; 1960) = Tw[°F] + 0.447 * (Ta[°F] - Tw[°F]) - 0.231 * (WS[ft/min] ^ 0.5)  
67 Equivalent Effective Temperature (Aizenshtat; 1974) = Ta[°C] * (1 - 0.003 * (100 - RH)) - 0.385 * (WS[m/s] ^ 0.59) * ((36.6 - Ta[°C]) + 0.662 * (WS[m/s] - 1)) + ((0.0015 * WS[m/s] + 0.0008) * (36.6 - Ta[°C]) - 0.0167) * (100 - RH)  
68 Equivalent Effective Temperature (Aizenshtat; 1982) = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C])) graphic file with name KTMP_A_2037376_ILG0205.jpg
69 Equivalent Temperature (Bedford; 1936) = (0.522 * Ta[°F]) + (0.478 * Tmrt[°F]) - 0.0147 * Sqr(WS[ft/min]) * (100 - Ta[°F])  
70 Equivalent Temperature (Brundl; 1984) = Ta[°C] * w * (r - 2.326 * Ta[°C]) / (cp + w * cw)
⇒ if Ta[°C] = 0 then = 0
graphic file with name KTMP_A_2037376_ILG0206.jpg
71 Equivalent Warmth (Bedford; 1936) = 9.979 * x - 0.1495 * (x ^ 2) - 2.89
⇒ x = ((0.0556 * Ta[°F]) + (0.0538 * Tmrt[°F]) + (0.0372 * VP[mmHg]) - (0.00144 * Sqr(WS[ft/min]) * (100 - Ta[°F])))
 
72 Exposed Skin Temperature (Brauner; 1995) = Tcr[°C] – (Qs * Rb)
⇒ Qs = (Tcr[°C] - Ta[°C]) / (Rb + (1 / Hc))
 
73 Facial Skin Temperature (Cheek) (Adamenko; 1972) = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 19  
74 Facial Skin Temperature (Ear Lobe) (Adamenko; 1972) = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 12  
75 Facial Skin Temperature (Nose) (Adamenko; 1972) = 0.4 * Ta[°C] - 3.3 * Sqr(WS[m/s]) + 17  
76 Fighter Index of Thermal Stress (Direct Sunlight) (Stribley; 1978) = (0.8281 * Tpw[°C]) + (0.3549 * Ta[°C]) + 5.08  
77 Fighter Index of Thermal Stress (Moderate Overcast) (Stribley; 1978) = (0.8281 * Tpw[°C]) + (0.3549 * Ta[°C]) + 2.23  
78 Globe Temperature (Liljegren; 2008) = Solve by iteration method: f (Ta, RH, SR, WS)  
79 Heart Rate (Fuller; 1966) = 0.029 * Met[Btu/hr] + 0.7 * (Ta[°F] + VP[mmHg]) graphic file with name KTMP_A_2037376_ILG0207.jpg
80 Heart Rate Safe limit (LaFleur; 1971) = (206.4 - 0.63 * (Ta[°F] + VP[mmHg])) - 10  
81 Heat Index (Blazejczyk; 2012) = -8.784695 + 1.61139411 * Ta[°C] + 2.338549 * RH - 0.14611605 * Ta[°C] * RH - (1.2308094 * (10 ^ -2)) * (Ta[°C] ^ 2) - (1.6424828 * (10 ^ -2)) * (RH ^ 2) + (2.211732 * (10 ^ -3)) * (Ta[°C] ^ 2) * RH + (7.2546 * (10 ^ -4)) * Ta[°C] * (RH ^ 2) - (3.582 * (10 ^ -6)) * (Ta[°C] ^ 2) * (RH ^ 2)  
82 Heat Index (Stull; 2000) = 16.923 + ((1.85212 * 10 ^ -1) * Ta[°F]) + (5.37941 * RH) - ((1.00254 * 10 ^ -1) * Ta[°F] * RH) + ((9.41695 * 10 ^ -3) * Ta[°F] ^ 2) + ((7.28898 * 10 ^ -3) * RH ^ 2) + ((3.45372 * 10 ^ -4) * Ta[°F] ^ 2 * RH) - ((8.14971 * 10 ^ -4) * Ta[°F] * RH ^ 2) + ((1.02102 * 10 ^ -5) * Ta[°F] ^ 2 * RH ^ 2) - ((3.8646 * 10 ^ -5) * Ta[°F] ^ 3) + ((2.91583 * 10 ^ -5) * RH ^ 3) + ((1.42721 * 10 ^ -6) * Ta[°F] ^ 3 * RH) + ((1.97483 * 10 ^ -7) * Ta[°F] * RH ^ 3) - ((2.18429 * 10 ^ -8) * Ta[°F] ^ 3 * RH ^ 2) + ((8.43296 * 10 ^ -10) * Ta[°F] ^ 2 * RH ^ 3) - ((4.81975 * 10 ^ -11) * Ta[°F] ^ 3 * RH ^ 3)  
83 Heat Index (National Oceanic and Atmospheric Administration; 2014) If Ta[°F] <= 40 Then
= Ta[°F]
ElseIf Ta[°F] < 80 Then
= A
ElseIf (RH <= 13) = True And (80 <= Ta[°F] And Ta[°F] <= 112) = True Then
= B - ((13 - RH) / 4) * Sqr((17 - Abs(Ta[°F] - 95)) / 17)
ElseIf (RH > 85) = True And (80 <= Ta[°F] And Ta[°F] <= 87) = True Then
= B + ((RH - 85) / 10) * ((87 - Ta[°F]) / 5)
Else
= B
End If
⇒ A = 0.5 * (Ta[°F] + 61 + ((Ta[°F] - 68) * 1.2) + (RH * 0.094))
⇒ B = -42.379 + 2.04901523 * Ta[°F] + 10.14333127 * RH - 0.22475541 * Ta[°F] * RH - 0.00683783 * Ta[°F] * Ta[°F] - 0.05481717 * RH * RH + 0.00122874 * Ta[°F] * Ta[°F] * RH + 0.00085282 * Ta[°F] * RH * RH - 0.00000199 * Ta[°F] * Ta[°F] * RH * RH
 
84 Heat Index (Patricola; 2010) = -42.4 + 2.05 * Ta[°F] + 10.1 * RH - 0.225 * (Ta[°F] * RH) - 6.84 * (10 ^ -3) * (Ta[°F] ^ 2) - 5.48 * (10 ^ -2) * (RH ^ 2) + 1.23 * (10 ^ -3) * (Ta[°F] ^ 2 * RH) + 8.53 * (10 ^ -4) * (Ta[°F] * RH ^ 2) - 1.99 * (10 ^ -6) * (Ta[°F] ^ 2 * RH ^ 2)
⇒ if Ta[°F] <= 80 Or RH <= 40 Then = Ta[°F]
 
85 Heat Index (Rothfusz; 1990) = -42.379 + 2.04901523 * Ta[°F] + 10.14333127 * RH - 0.22475541 * Ta[°F] * RH - 0.00683783 * Ta[°F] * Ta[°F] - 0.05481717 * RH * RH + 0.00122874 * Ta[°F] * Ta[°F] * RH + 0.00085282 * Ta[°F] * RH * RH - 0.00000199 * Ta[°F] * Ta[°F] * RH * RH  
86 Humidex (Masterson; 1979) = Ta[°C] + 0.5555 * (6.11 * Exp(5417.753 * ((1 / 273.15) - (1 / (Td[°C] + 273.15)))) - 10)  
87 Humisery (Weiss; 1982) = Ta[°C] + Tda + WSa + Ea
Dew point adjustment (Tda):
⇒ If Td[°C] <= 20 Then Tda = 0
⇒ If Round(Td[°C], 0) = 21 Then Tda = 1
⇒ If Round(Td[°C], 0) = 22 Then Tda = 3
⇒ if Round(Td[°C], 0) = 23 Then Tda = 4
⇒ if Round(Td[°C], 0) = 24 Then Tda = 6
⇒ if Round(Td[°C], 0) = 25 Then Tda = 7
⇒ if Round(Td[°C], 0) = 26 Then Tda = 9
⇒ if Round(Td[°C], 0) = 27 Then Tda = 11
⇒ if Round(Td[°C], 0) = 28 Then Tda = 13
⇒ if Round(Td[°C], 0) = 29 Then Tda = 14
⇒ if Round(Td[°C], 0) = 30 Then Tda = 16
⇒ if Round(Td[°C], 0) = 31 Then Tda = 18
Wind Speed adjustment (WSa):
⇒ if WS[m/s] = 0 Then WSa = 0
⇒ if Round(WS[m/s], 0) = 1 Then WSa = 0
⇒ if Round(WS[m/s], 0) = 2 Then WSa = 0
⇒ if Round(WS[m/s], 0) = 3 Then WSa = -2
⇒ if Round(WS[m/s], 0) = 4 Then WSa = -3
⇒ if Round(WS[m/s], 0) >= 5 Then WSa = -4
Elevation adjustment (Ea):
⇒ if Elevation = 0 then Ea = 0 (in the current study we assume no elevation)
⇒ if Elevation = 300 then Ea = -1
⇒ if Elevation = 600 then Ea = -1
⇒ if Elevation = 900 then Ea = -2
⇒ if Elevation = 1200 then Ea = -2
⇒ if Elevation = 1500 then Ea = -3
graphic file with name KTMP_A_2037376_ILG0208.jpg
88 Humiture (Lally; 1960) = Ta[°F] + humits
⇒ humits = VP[mb] - 10
 
89 Humiture (Weiss; 1982) = Ta[°C] + Td[°C] - 18  
90 Humiture (Hevener; 1959) = (Ta[°C] + Tw[°C]) / 2  
91 Humiture (Wintering; 1979) = Ta[°F] + (VP[mb] – 21)  
92 Insulation Predicted Index (Blazejczyk; 2011) = Itot – Ia
⇒ Itot = 0.082 * (91.4 - (1.8 * Ta[°C] + 32)) / 2.3274 ⇒ Insulation of clothing and surrounding air layer
⇒ Ia = 1 / (0.61 + 1.9 * (WS[m/s] ^ 0.5)) ⇒ Insulation of air layer
 
93 Integrated Index (indoor) (Junge; 2016) = (Ta[°C] * RH) / Sqr(WS[m/s])  
94 Integrated Index (outdoor) (Junge; 2016) = ((0.7 * Ta[°C] + 0.3 * Tg[°C]) * RH) / Sqr(WS[m/s])  
95 Internal Comfort Temperature (Xavier; 2000) = (S + 4.8689) / 0.2107
⇒ S = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83
⇒ OT = (Ta[°C] + Tmrt[°C]) / 2
 
96 Kata Index (Zhongpeng; 2012) If WS < 1 Then = (0.35 + 0.85 ^ 3 * (WS[m/s]/ (1/3)) * (36.5 - Tw[°C]))
If WS >= 1 Then = (0.1 + 1.1 ^ 3 * (WS[m/s]/ (1/3)) * (36.5 - Tw[°C]))
 
97 Mean Radiant Temperature (approximated) (Ramsey; 2001) = ((Tg[°C] + 273.15) ^ 4 + 1.335 * WS[m/s] ^ 0.71 * (Tg[°C] - Ta[°C]) / (0.95 * 0.15 ^ 0.4) * 100000000) ^ 0.25 - 273.15  
98 Mean Skin Temperature (McPherson; 1993) = 24.85 + 0.322 * Ta[°C] - 0.00165 * (Ta[°C] ^ 2)  
99 Meditteranean Outdoor Comfort Index (Salata; 2016) = -4.068 - 0.272 * WS[m/s] + 0.005 * RH + 0.083 * Tmrt[°C] + 0.058 * Ta[°C] + 0.264 * Icl graphic file with name KTMP_A_2037376_ILG0209.jpg
100 Missenard’s Index (Missenard; 1969) = Ta[°C] - 0.4 * (Ta[°C] - 10) * (RH / 100)  
101 Modified Discomfort Index (Moran; 1998) = (0.75 * Tw[°C]) + (0.3 * Ta[°C])  
102 Modified Environmental Stress Index (Moran; 2003) = 0.62 * Ta[°C] - 0.007 * RH + 0.002 * SR[w/m2] + 0.0043 * (Ta[°C] * RH) - 0.078 * (0.1 + SR[w/m2]) ^ -1  
103 Natural Wet Bulb Temperature (Maloney; 2011) = 0.85 * Ta[°C] + 0.17 * RH - 0.61 * (WS[m/s] ^ 0.5) + 0.0016 * SR[w/m2] - 11.62  
104 Nett Radiation (Cena; 1984) = Hr * (Tmrt[°C] - Tsk[°C]) graphic file with name KTMP_A_2037376_ILG0210.jpg
105 New Wind Chill (NOAA; 2001) = 35.74 + 0.6215 * Ta[°F] - 35.75 * (WS[mph] ^ 0.16) + 0.4275 * Ta[°F] * (WS[mph] ^ 0.16)  
106 Normal Equivalent Effective Temperature (Boksha; 1980) = 0.8 * EET + 7
⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C]))
graphic file with name KTMP_A_2037376_ILG0211.jpg
107 Operative Temperature (ASHRAE; 2004) = (Tmrt[°C] + Ta[°C]) / 2  
108 Operative Temperature (ISO 7726:1998; 1998) = (Ta[°C] * Sqr(10 * WS[m/s]) + Tmrt[°C]) / (1 + Sqr(10 * WS[m/s]))  
109 Operative Temperature (ISO 7730:1994; 1994) = A * Ta[°C] + (1 - A) * Tmrt[°C]
⇒ A = 0.73 * (WS[m/s] ^ 0.2)
Note: ISO 7730:1994 proposes a simplified approximation of coefficient A as function of air velocity. Hence, we used a simplified approximation found in literature.; [177]
 
110 Operative Temperature (Winslow; 1937) = ((Hr * Tmrt[°C]) + (Hc * Ta[°C])) / (Hr + Hc) graphic file with name KTMP_A_2037376_ILG0212.jpg
111 Outdoor Standard Effective Temperature (Skinner; 2001) = (WBGT - 11.76) / 0.405  
112 Oxford Index (Lind; 1957) = 0.85 * Tw[°C] + 0.15 * Ta[°C]  
113 Perceived Equivalent Temperature (Monteiro; 2010) = -3.777 + 0.4828 * Ta[°C] + 0.5172 * Tmrt[°C] + 0.0802 * RH - 2.322 * WS[m/s]  
114 Perceived Temperature (Linke; 1926) = Ta[°C] - (4 * WS) + (12 * SR[cal/cm2/min])  
115 Predicted Percentage Dissatisfied (Xavier; 2000) = 18.94 * (S ^ 2) - 0.24 * S + 24.41
⇒ S = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83
⇒ OT = (Ta[°C] + Tmrt[°C]) / 2
⇒ if S > 2 OR S < -2 then = 100
 
116 Predicted Thermal Sensation Vote (Cheng; 2008) = 0.1895 * Ta[°C] - 0.7754 * WS[m/s] + 0.0028 * SR[w/m2] + 0.1953 * h - 8.23  
117 Psychrometric Wet Bulb Temperature (Malchaire; 1976) = ((0.16 * (Tg[°C] - Ta[°C]) + 0.8) / 200) * (560 - 2 * RH - 5 * Ta[°C]) - 0.8 + Tw[°C]  
118 Psychrometric Wet Bulb Temperature (McPherson; 2008) Solve by iteration method: [30] = f (Ta, RH, WS)  
119 Radiative Effective Temperature (Blazejczyk; 2004) = TE[°C] + (1 - 0.01 * albedo) * SR[w/m2] * ((0.0155 - 0.00025 * TE[°C]) - (0.0043 - 0.00011 * TE[°C]))
⇒ If WS <= 0.2 Then TE = Ta[°C] - 0.4 * (Ta[°C] - 10) * (1 - 0.01 * RH)
⇒ If WS > 0.2 Then TE = 37 - ((37 - Ta[°C]) / (0.68 - 0.0014 * RH + (1 / (1.76 + (1.4 * (WS ^ 0.75)))))) - 0.29 * Ta[°C] * (1 - (0.01 * RH))
⇒ We assume skin albedo for pigmented individuals = 0.11, based on index #120 below
 
120 Radiation Equivalent Effective Temperature (Non-Pigmented) (Sheleihovskyi; 1948) = 125 * Log(1 + 0.02 * Ta[°C] + 0.001 * (Ta[°C] - 8) * (RH - 60) - 0.045 * (33 - Ta[°C]) * Sqr(WS[m/s]) + 0.185 * X)
⇒ X = SR[cal/cm2/min] * (1 – albedo)
⇒ Skin albedo for pigmented individuals = 0.11
 
121 Radiation Equivalent Effective Temperature (Pigmented) (Sheleihovskyi; 1948) = 125 * Log(1 + 0.02 * Ta[°C] + 0.001 * (Ta[°C] - 8) * (RH - 60) - 0.045 * (33 - Ta[°C]) * Sqr(WS[m/s]) + 0.185 * X)
⇒ X = SR[cal/cm2/min] * (1 – albedo)
⇒ Skin albedo for non-pigmented individuals = 0.28
 
122 Relative Humidity Dry Temperature (Wallace; 2005) = (0.1 * RH) + (0.9 * Ta[°C])  
123 Relative Strain Index (Kyle; 1992) = (Ta[°C] - 21) / (58 – VP[hPa])  
124 Relative Strain Index (Lee; 1966) = (10.7 + 0.74 * (Ta[°C] - 35)) / (44 – VP[mmHg])  
125 Revised Wind Chill Index (Court; 1948) = (10.9 * Sqr(WS[m/s]) + 9 - WS[m/s]) * (33 - Ta[°C])  
126 Robaa’s Index (Robaa; 2003) = (1.53 * Ta[°C]) - (0.32 * Tw[°C]) - (1.38 * WS[m/s]) + 44.65  
127 Saturation Deficit (Flugge; 1912) = SVP[hPa] – VP[hPa]  
128 Severity Index (Osokin; 1968) = (1 - 0.06 * Ta[°C]) * (1 + 0.2 * WS[m/s]) * (1 + 0.0006 * Elevation) * Kb * AC
Elevation = 0 m (we assume sea level altitude)
Relative humidity:
⇒ if RH <= 60 Then Kb = 0.9
⇒ if RH > 60 And RH <= 70 Then Kb = 0.95
⇒ if RH > 70 And RH <= 80 Then Kb = 1
⇒ if RH > 80 And RH <= 90 Then Kb = 1.05
⇒ if RH > 90 And RH <= 100 Then Kb = 1.1
Diurnal temperature (DTR): (e.g., the variation between a high temperature and a low temperature that occurs during the same day).
⇒ if DTR <= 4 °C then AC = 0.85
⇒ if DTR > 4 °C And DTR <= 6 °C Then AC = 0.90
⇒ if DTR > 4 °C And DTR <= 6 °C Then AC = 0.90
⇒ if DTR > 6 °C And DTR <= 8 °C Then AC = 0.95
⇒ if DTR > 8 °C And DTR <= 10 °C Then AC =1.00
⇒ if DTR > 10 °C And DTR <= 12 °C Then AC = 1.05
⇒ if DTR > 12 °C And DTR <= 14 °C Then AC = 1.10
⇒ if DTR > 14 °C And DTR <= 16 °C Then AC = 1.15
⇒ if DTR > 18 °C And DTR <= 20 °C Then AC = 1.20
⇒ if DTR > 18 °C Then AC = 1.25
graphic file with name KTMP_A_2037376_ILG0213.jpg
129 Simple Index (Moran; 2001) = 0.66 * Ta[°C] + 0.09 * RH + 0.0035 * SR[w/m2]  
130 Simplified Radiation Equivalent Effective Temperature (Boksha; 1980) = 0.8 * EET + 12
⇒ EET = Ta[°C] * (1 - 0.003 * (100 - RH)) - (0.385 * WS2m[m/s]) ^ 0.59 * ((36.6 - Ta[°C]) + 0.622 * (WS2m[m/s] - 1)) + ((0.0015 * WS2m[m/s] + 0.0008) * (36.6 - Ta[°C]))
graphic file with name KTMP_A_2037376_ILG0214.jpg
131 Simplified Tropical Summer Index (Auliciems; 2007) = ((1 / 3) * Tw[°C]) + ((3 / 4) * Tg[°C]) - (2 * Sqr(WS[m/s]))  
132 Simplified Universal Thermal Climate Index (Blazejcyk; 2011) = 3.21 + 0.872 * Ta[°C] + 0.2459 * Tmrt - 2.5078 * WS[m/s] - 0.0176 * RH  
133 Simplified Wet Bulb Globe Temperature (American College of Sports Medicine; 1984) = 0.567 * Ta[°C] + 0.393 * VP[hPa] + 3.94  
134 Simplified Wet Bulb Globe Temperature (Gagge; 1976) = 0.567 * Ta[°C] + 0.216 * VP[hPa] + 3.38  
135 Skin Temperature (Blazejczyk; 2005) = (26.4 + 0.02138 * Tmrt[°C] + 0.2095 * Ta[°C] - 0.0185 * RH - 0.009 * WS) + 0.6 * (Icl - 1) + 0.00128 * Met
⇒ Met = 135 W/m2 ⇒ “metabolism in standard applications” [135].
graphic file with name KTMP_A_2037376_ILG0215.jpg
136 Skin Wettedness (Blazejczyk; 2005) = 1.031 / (37.5 - Tsk[°C]) - 0.065
⇒ if Tsk[°C] > 36.5 Then = 1
⇒ if Tsk[°C] < 22 Then = 0.001
Tsk[°C] = (26.4 + 0.02138 * Tmrt[°C] + 0.2095 * Ta[°C] - 0.0185 * RH - 0.009 * WS) + 0.6 * (Icl - 1) + 0.00128 * Met
Met = 135 W/m2 ⇒ “metabolism in standard applications” [135].
graphic file with name KTMP_A_2037376_ILG0216.jpg
137 Standard Operative Temperature (Gagge; 1940) = Tsk[°C] - (Heat_Loss / 5.2)
⇒ Heat_Loss = Ko * (Tsk[°C] - OT)
⇒ Ko = 0.75 * (4 * 4.92 * 10 ^ -8) * ((Tmrt[°C] ^ 3 + (273 + 35) ^ 3) / 2) + 1
⇒ OT = ((Hr * Tmrt[°C]) + (Hc * Ta[°C])) / (Hr + Hc)
graphic file with name KTMP_A_2037376_ILG0217.jpg
138 Subjective Temperature (McIntyre; 1973) ⇒ if WS[m/s] <= 0.1 Then = 0.56 * Ta[°C] + 0.44 * Tmrt[°C]
⇒ if WS[m/s] > 0.1 Then = (0.44 * Tmrt[°C] + 0.56 * (5 - Sqr(10 * WS[m/s]) * (5 - Ta[°C]))) / (0.44 + 0.56 * Sqr(10 * WS[m/s]))
 
139 Sultriness Index (Scharlau; 1943) ⇒ if VP[Torr] > 14.08 Then = Sultriness
⇒ if VP[Torr] <= 14.08 Then = Comfort
 
140 Sultriness Intensity (Akimovich; 1971) ⇒ if VP < 18.8 Then = 0
⇒ if VP = 18.8 Then = 1
⇒ if VP > 18.8 Then =((VP - 18.8) / 2) + 1
 
141 Summer Scharlau Index (Scharlau; 1950) = Tc - Ta[°C]
⇒ Tc = (-17.089 * Log(RH)) + 94.979 ⇒ critical temperature
 
142 Summer Simmer Index (Pepi; 1987) = 1.98 * (Ta[°F] - (0.55 - 0.55 * (RH / 100)) * (Ta[°F] - 58)) - 56.83  
143 Swedish Wet Bulb Globe Temperature (Eriksson; 1974) ⇒ if WS[m/s] >= 0.5 Then = 0.7 * Tpw[°C] + 0.3 * Tg[°C]
⇒ if WS[m/s] < 0.5 Then = 0.7 * Tpw[°C] + 0.3 * Tg[°C] + 2
 
144 Temperature Humidity Index (Schoen; 2005) = Ta[°C] - 1.0799 * Exp(0.03755 * Ta[°C]) * (1 - Exp(0.0801 * (VP[hPa] - 14)))  
145 Temperature Humidity Index (Costanzo; 2006) = Ta[°C] - 0.55 * (1 - 0.001 * RH) * (Ta[°C] - 14.5)  
146 Temperature Humidity Index (INMH; 2000) = (Ta[°C] * 1.8 + 32) - (0.55 - 0.0055 * RH) * ((Ta[°C] * 1.8 + 32) - 58)  
147 Temperature Humidity Index (Kyle; 1994) = Ta[°C] - (0.55 - 0.0055 * RH) * (Ta[°C] - 14.5)  
148 Temperature Humidity Index (Nieuwolt; 1977) = 0.8 * Ta[°C] + ((RH * Ta[°C]) / 500)  
149 Temperature Humidity Index (eq. 1) (Pepi; 1987) = Ta[°F] - (0.55 - 0.55 * (RH / 100)) * (Ta[°F] - 58)  
150 Temperature Humidity Index (eq. 2) (Pepi; 1987) = 0.55 * Ta[°F] + 0.2 * Td[°F] + 17.5  
151 Temperature of the exhaled air (McPherson; 1993) = 32.6 + 0 / 66 * Ta[°C] + 0.0002 * VP[hPa]  
152 Temperature Resultante Miniere (Vogt; 1978) = (0.7 * Tw[°C]) + (0.3 * Ta[°C]) – WS[m/s]  
153 Temperature Wind Speed Humidity Index (Zaninovic; 1992) = 1.004 * (Th1 + ((1555 / P) * ETH))
⇒ Th1 =36.5 - (((0.902 + 0.063 * (WS[m/s] ^ 1.072)) * (36.5 - Tw[°C])) / 0.902)
⇒ Th2 = 36.5 - (((0.902 + 0.063 * (WS[m/s] ^ 1.072)) * (36.5 - Ta[°C])) / 0.902)
⇒ ETH[hPa] = saturated vapour pressure at temperature Th2.
 
154 Thermal comfort (Givoni; 2000) = 1.2 + 0.1115 * Ta[°C] + 0.0019 * SR[w/m2] - 0.3185 * WS[m/s]  
155 Thermal Comfort (Humid-Tropical environments) (Sangkertadi; 2014) = -7.91 - 0.52 * WS[m/s] + 0.05 * Ta[°C] + 0.17 * Tg[°C] - 0.0007 * RH + 1.43 * ADu graphic file with name KTMP_A_2037376_ILG0218.jpg
156 Thermal Resistance of Clothing (Jokl; 1982) = (0.0053 + 0.035 * Layers) ^ 0.61 * Exp(-0.147 * WS[m/s]) + 0.054 * Exp((-0.23 * Layers) - (1.07 + 0.06 * Layers) * WS[m/s])
⇒ Layers = number of clothing layer someone wears
 
157 Thermal Sensation (Monteiro; 2010) = -3.557 + 0.0632 * Ta[°C] + 0.0677 * Tmrt[°C] + 0.0105 * RH - 0.304 * WS[m/s]  
158 Thermal Sensation (eq. 1) (Rohles; 1971) = (0.245 * Ta[°C]) + (0.033 * VTd[hPa]) - 6.471
VTd = saturated vapor pressure at dew point temperature
 
159 Thermal Sensation (eq. 2) (Rohles; 1971) = (0.245 * Ta[°C]) + (0.248 * VP[kPa]) - 6.475  
160 Thermal Sensation (Givoni; 2004) = (1.83 - 0.05 * GTa[°C]) + (0.135 * Ta[°C]) + (0.00195 * SR[w/m2] - 0.6) - (0.4915 * Log(WS[m/s]))
⇒ GTa[°C] = average temperature of season
 
161 Thermal Sensation Index (Xavier; 2000) = 0.219 * OT + 0.012 * RH - 0.547 * WS[m/s] - 5.83
⇒ OT = (Ta[°C] + Tmrt[°C]) / 2
 
162 Thermal Sensation Vote (Summer) (Yahia; 2013) = 0.134 * SET - 3.208
⇒ SET = (WBGT - 11.76) / 0.405 ⇒ Outdoor Standard Effective temperature based on a formula (e.g., TSI #111) found in literature [123].
 
163 Thermal Sensation Vote (Winter) (Yahia; 2013) = 0.082 * SET - 2.928
⇒ SET = (WBGT - 11.76) / 0.405 ⇒ Outdoor Standard Effective temperature based on a formula (e.g., TSI #111) found in literature [123].
 
164 TPV index (Baghdad) (Nicol; 1975) = 0.214 * Tg[°C] + 0.031 * VP[mmHg] - 0.545 * (WS[m/s] ^ 0.5) - 2.85  
165 TPV index (Roorkee) (Nicol; 1975) = 0.186 * Tg[°C] + 0.032 * VP[mmHg] - 0.366 * (WS[m/s] ^ 0.5) - 0.82  
166 Tropical Summer Index (Sharma; 1986) = (0.308 * Tw[°C]) + (0.745 * Tg[°C]) - (2.06 * Sqr(WS[m/s])) + 0.841  
167 Universal Thermal Climate Index (Jendritzky; 2012) = f (Ta[°C], Tmrt[°C], WS10m[m/s], VP[hPa]) graphic file with name KTMP_A_2037376_ILG0219.jpg
168 Wet Bulb Globe Temperature (eq. 1) (Ono; 2014) = 0.718 * Ta[°C] + 0.0316 * RH + 0.00321 * Ta[°C] * RH + 4.363 * SR[kW/m2] - 0.0502 * WS[m/s] - 3.623  
169 Wet Bulb Globe Temperature (eq. 2) (Ono; 2014) = 0.735 * Ta[°C] + 0.0374 * RH + 0.00292 * Ta[°C] * RH + 7.619 * SR[kW/m2] - 4.557 * (SR[kW/m2] ^ 2) - 0.0572 * WS[m/s] - 4.064  
170 Wet Bulb Globe Temperature (indoors) (Yaglou; 1956) = 0.67 * Tpw[°C] + 0.33 * Ta[°C] - 0.048 * Log(WS) / Log(10) * (Ta[°C] – Tpw[°C])
Calculation based on meteorological data according to the literature. [30]
 
171 Wet Bulb Globe Temperature (outdoors) (Yaglou; 1956) = 0.7 * Tw[°C] + 0.2 * Tg[°C] + 0.1 * Ta[°C]
Calculation based on meteorological data according to the literature. [30]
 
172 Wet Bulb Temperature (Liljegren; 2008) = f (Ta, SR, WS, RH)  
173 Wet Bulb Temperature (Malchaire; 1976) = ((0.16 * (Tg[°C] - Ta[°C]) + 0.8) / 200) * (560 - 2 * RH - 5 * Ta[°C]) - 0.8 + Tw[°C]  
174 Wet Bulb Temperature (Stull; 2011) = Ta[°C] * Atn(0.151977 * ((RH + 8.313659) ^ 0.5)) + Atn(Ta[°C] + RH) - Atn(RH - 1.676331) + 0.00391838 * (RH ^ (3 / 2)) * Atn(0.023101 * RH) - 4.686035  
175 Wet Cooling Power (Landsberg; 1972) = (0.37 + 0.51 * (WS[m/s] ^ 0.63)) * (36.5 - Tw[°C])  
176 Wet Globe Temperature (Botsball) (Botsford; 1971) = (WBGT + 2.64) / 1.044  
177 Wet Kata Cooling (Maloney; 2011) = (0.648 * (36.4 - Tn) + 0.833 * (36.4 - Tn) * (WS[m/s] ^ 0.5)) * 41.84
⇒ Tn = 0.85 * Ta[°C] + 0.17 * RH - 0.61 * (WS[m/s] ^ 0.5) + 0.0016 * SR[w/m2] - 11.62 ⇒ Tn = natural wet bulb temperature as described in the paper [89].
 
178 Wet Kata Cooling Power (Chamber of Mines of South Africa; 1972) = (0.7 + (RH ^ 0.5)) * (36.5 - Tw[°C])  
179 Wet Kata Cooling Power (Krisha; 1996) ⇒ If WS[m/s] < 1 Then = (14.65 + (35.59 * (WS[m/s] ^ (1 / 3)))) * (309.65 – Tw[K])
⇒ If WS[m/s] >= 1 Then = (4.19 + (46.05 * (WS[m/s] ^ (1 / 3)))) * (309.65 - Tw[K])
 
180 Wet Kata Cooling Power (Hill; 1919) ⇒ If WS[m/s] <= 1 Then = (36.5 - Ta[°C]) * (0.2 + 0.4 * Sqr(WS[m/s])) * 41.868
⇒ If WS[m/s] > 1 Then = (36.5 - Ta[°C]) * (0.13 + 0.47 * Sqr(WS[m/s])) * 41.868
 
181 Wet-Bulb Dry Temperature (Wallace; 2005) = (0.4 * Tw[°C]) + (0.6 * Ta[°C])  
182 Wind Chill (OFCM/NOAA; 2003) = 13.12 + 0.6215 * Ta[°C] - 11.37 * (WS10m[km/h] ^ 0.16) + 0.3965 * Ta[°C] * (WS10m [km/h] ^ 0.16) graphic file with name KTMP_A_2037376_ILG0220.jpg
183 Wind Chill (Siple; 1945) = ((Sqr(WS[m/s] * 100)) + 10.45 – WS[m/s]) * (33 - Ta[°C])  
184 Wind Chill (Steadman; 1971) = (30 - Ta[°C]) / RS
⇒ RS = 1 / (Hr + Hc) ⇒ Surface resistance
graphic file with name KTMP_A_2037376_ILG0221.jpg
185 Wind Chill Equivalent (Quayle; 1998) = 1.41 - 1.162 * WS[m/s] + 0.98 * Ta[°C] + 0.0124 * (WS[m/s] ^ 2) + 0.0185 * (WS[m/s] * Ta[°C])  
186 Wind Chill Equivalent Temperature (wind of 1.34 m/s) (Falconer; 1968) = Solve by iteration method: = f (Ta, WS)
⇒ WC = ((Sqr(WS[m/s] * 100)) + 10.45 – WS[m/s]) * (33 - Ta[°C]) ⇒ Wind Chill
According to the authors the Wind Chill Equivalent Temperature is “the equivalent temperature that would be felt on exposed flesh in a 3 mph wind – the amount of ventilation one might experience in walking in an otherwise calm wind condition” [165].
 
187 Winter Scharlau Index (Sharlau; 1950) = Ta[°C] - Tc
⇒ Tc = (-0.0003 * (RH ^ 2)) + (0.1497 * RH) - 7.7133 ⇒ critical temperature