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ABSTRACT
Risk preference is a complex trait governed by psycho-social, environmental and genetic deter
minants. We aimed to examine how an individual’s risk preference associates with their epigenetic 
profile.
Risk preferences were ascertained by asking participants of the Northern Ireland COhort for the 

Longitudinal study of Ageing to make a series of choices between hypothetical income scenarios. 
From these, four risk preference categories were derived, ranging from risk-averse to risk-seeking. 
Illumina’s Infinium High-Density Methylation Assay was used to evaluate the status of 862,927 
CpGs.
Risk preference and DNA methylation data were obtained for 1,656 individuals. The distribution 

of single-site DNA methylation levels between risk-averse and risk-seeking individuals was 
assessed whilst adjusting for age, sex and peripheral white cell counts. In this discovery cohort, 
55 CpGs were identified with significantly different levels of methylation (p≤x10−5) between risk- 
averse and risk-seeking individuals when adjusting for the maximum number of covariates. No 
CpGs were significantly differentially methylated in any of the risk preference groups at an 
epigenome-wide association level (p<9x10−8) following covariate adjustment.
Protein-coding genes NWD1 and LRP1 were among the genes in which the top-ranked dmCpGs 

were located for all analyses conducted. Mutations in these genes have previously been linked to 
neurological conditions.
Epigenetic modifications have not previously been linked to risk-aversion using a population 

cohort, but may represent important biomarkers of accumulated, complex determinants of this 
trait. Several striking results from this study support further analysis of DNA methylation as an 
important link between measurable biomarkers and health behaviours.
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Introduction

There is mounting evidence to link social factors 
and genetic variance. Thus, the social environment 
can affect gene expression and an individual’s 
genotype can alter their sensitivity to the social 
environment [1]. Individual-level genetic and epi
genetic associations with a wide variety of social 
science phenotypes including, intelligence [2], sus
ceptibility to post-traumatic stress disorder 
(PTSD) [3], socioeconomic status (SES) [4], sub
jective well-being [5] and both economic and poli
tical preferences [6] have been evaluated.

Risk-preference, our willingness to take risks 
and decision-making under uncertainty, involves 
a trade-off between small high-probability rewards 
and large low-probability rewards and has been 
thoroughly investigated in behavioural economics, 
neuro-economics and psychology. Risk preference 
is thought to be affected by an individual’s biolo
gical, demographic, socioeconomic and psycholo
gical status [7]. Individual risk perceptions have 
been assessed in conjunction with several health 
behaviours and traits, where it has been shown 
that individuals who are more risk-tolerant have 
an increased likelihood of engaging in behaviours
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that present risks to their health such as heavy 
alcohol consumption [8] and smoking [9].

Gene–environment interactions are thought to 
mediate the emergence of complex behavioural 
phenotypes [1,10]. An understanding of both 
social and genetic risks across the life-course is 
crucial to identify pathways determining health 
behaviours and health outcomes [11]. Given the 
broad associations between risk preference and 
a variety of behaviours affecting public health, it 
is important to better understand both their 
genetic and social origins. Evidence suggests that 
both individual genotypes and environmental 
influences have been associated with, and are pre
dictive of economic risk preferences [6].

Epigenetics refers to heritable and dynamic 
alterations that complement a person’s inherited 
nucleotide sequence; these often lead to changes in 
gene expression [12]. Emerging evidence has indi
cated that various epigenetic alterations, both 
those to which the individual is predisposed and 
those which they acquire throughout life, are key 
factors in the development of several complex dis
eases [12]. Epigenetic modifications may serve as 
critical mechanisms through which social expo
sures occurring over the life-course can have sus
tained effects on behaviour and psychological 
traits [13–15]. Epigenetic alterations differ from 
genetic mutations in that the changes can be inde
pendent of the inherited nucleotide coding 
sequence, reversible and induced by both drugs 
and environmental stimuli [13]. DNA methylation 
is a common, stable epigenetic modification, with 
the ability to affect gene expression by altering the 
binding patterns of transcriptional proteins [16].

Increased incorporation of genetic and epige
netic data into longitudinal cohorts and social 
science surveys has provided novel opportunities 
to correlate complex genetic-epigenetic variants to 
observed social and economic traits of relevance to 
public health [17].

In this study, we examined the associations 
between the epigenetic profiles and risk preferences 
of a sample of community dwelling older adults. 
Financial decisions and health behaviours were exam
ined using newly available data from the Northern 
Ireland COhort for the Longitudinal study of Ageing 
(NICOLA, https://www.qub.ac.uk/sites/NICOLA/ 
AboutNICOLA/). The aim of this investigation was

to examine if an individual’s risk preference associates 
with their DNA methylation epigenetic profile.

Material and methods

NICOLA

The NICOLA project is the first large-scale long
itudinal study of ageing in Northern Ireland, created 
to gain a better understanding of the factors affect
ing social and health outcomes in the older 
Northern Irish population and has been designed 
to maximize comparability with other established 
international longitudinal studies including the 
Health and Retirement Study in the United States. 
In wave 1, NICOLA recruited a random sample of 
8,504 individuals (a 63% response rate), 8,309 of 
whom were aged 50 years or older. Spouses or 
partners of participants who shared their addresses 
were also invited to participate, regardless of age. 
Recruited individuals were asked to complete 
a computer-assisted personal interview (CAPI) and 
self-completion questionnaire (SCQ) to capture 
additional information, completed by 8,478 and 
5,032 individuals, respectively, [18].

Determination of risk preferences

In order to ascertain their risk preference, 
a randomly selected group of 4,564 individuals 
included in the NICOLA study were asked to 
make a series of choices between two hypothetical 
income scenarios as part of their SCQ [19]. The 
series of questions were as follows:

Imagine the following hypothetical situations. 
For each of these three choices below, which income 
do you choose?

Choice 1
1A Income A, which will with certainty give you 
a £1,500 per month for the rest of your life.
1B Income B, which will give you a 50–50 chance of 
£3,000 and a 50–50 chance of £1,000 per month for 
the rest of your life.

Choice 2
2A Income A, which will with certainty give you 
a £1,500 per month for the rest of your life.
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2B Income B, which will give you a 50–50 chance 
of £3,000 and a 50–50 chance of £1,200 per month 
for the rest of your life.

Choice 3
3A Income A, which will with certainty give you 
a £1,500 per month for the rest of your life.
3B Income B, which will give you a 50–50 chance of 
£3,000 and a 50–50 chance of £1,300 per month for 
the rest of your life.

Offer A offers a sure amount, in contrast to 
option B which offers a chance to receive either 
higher or lower amounts. Risk-averting partici
pants would choose option A and a higher number 
of option A chosen implies a higher risk-averse 
nature. Based on participants’ choices to the three 
income scenarios described above, participants 
were categorized into one of four mutually exclu
sive groups to create a ‘risk preference’ derived 
variable, as follows: risk-averse (chose 1A, 2A, 
and 3A); mildly risk-averse (chose 1A, 2A, and 
3B); mildly risk-seeking (chose A1, 2B, and 3B); 
and risk-seeking (chose 1B, 2B, and 3B). 
Participants selecting alternative combinations of 
options to those described were excluded from the 
analysis [20]. Depending on their responses, the 
individuals were allocated to one of four groups, 
ranging from individuals who were shown to be 
more risk-averse to those more likely to take risks. 
These groups were labelled risk-averse, mildly 
risk-averse, mildly risk-seeking, and risk-seeking.

Laboratory methodology

Blood samples were collected from 1,980 NICOLA 
participants in EDTA tubes. Samples were pro
cessed by Eurofins Scientific, who extracted the 
DNA from buffy coats and performed quantitation 
using PicoGreen.

The EZ Zymo Methylation Kit (Zymo Research, 
USA) was used to bisulphite treat the DNA follow
ing the alternative overnight incubation conditions 
provided in the published protocol for use with the 
Illumina® Infinium MethylationEPIC Kit. All sam
ples were prepared and analysed using the 
Infinium MethylationEPIC Kit and BeadChips 
(Illumina, USA) with no protocol deviations. 
Participant samples were randomly distributed 
across 249 arrays. Duplicates of eight samples

were located on a separate array to their paired 
sample. The array on which the duplicate samples 
were run was randomly allocated a position mid- 
way through all arrays processed for this study. 
Due to the positioning of the samples in the 
arrays, we were unable to determine within-array 
concordance for duplicate samples. DNA obtained 
from each individual was treated in a consistent 
manner, with standard quality control (QC) 
applied which included evaluation of the bisul
phite treatment conversion efficiency, dye specifi
city, hybridization and staining. This was assessed 
using GenomeStudio v2011 and BeadArray 
Controls Reporter software platforms using a pre- 
set standard set of controls (both Illumina). All 
participants included in this analysis were White 
Caucasian.

QC and data analysis

Proportional white cell counts (WCCs) were esti
mated using the Houseman method [21], the minfi 
Bioconductor (v3.10) package and the raw .idat 
files which were output from the iScan machine. 
Estimation of six WCCs was performed using the 
estimateCellCounts function. QC, pre-processing 
and differential methylation analyses were under
taken in the R statistical environment (3.6.3) uti
lising RnBeads and Bioconductor packages. Cross- 
reactive probes and those located within three base 
pairs of common SNPs were excluded due to their 
abilities to map to multiple areas of the genome 
and affect probe hybridization respectively. 
Unreliable probes and samples were removed by 
RnBeads initially by the Greedycut algorithm 
(p<0.05). Those located on sex chromosomes 
were also removed. Raw intensities were normal
ized using the bmiq method.

All software was used following the developer’s 
instructions. Beta values were generated and 
M values were derived for all sites. P-values were 
computed using the limma method for each site. 
Hierarchical linear models from the limma pack
age were employed and fitted using a Bayesian 
approach on the derived M values. P-values were 
generated for each of the four differential analyses 
conducted.

Four main analyses were performed using 
RnBeads. In each analysis, the dmCpGs were
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identified and marked differences (p≤x10−5) were 
reported with CpG locations mapped to Human 
Genome build 37. Only individuals who had been 
randomly allocated to the hypothetical income 
scenario question group and had provided 
answers, and had both donated blood samples 
and consented to methylation analyses, were 
included.

● Analysis 1: Assessment of single-site methyla
tion levels in risk-averse vs. risk-seeking indi
viduals. Top-ranked dmCpGs were identified 
following the comparison of risk-averse and 
risk-seeking population groups (Figure 1(a)).

● Analysis 2: Assessment of single-site methyla
tion levels in all risk-averse vs. all risk-seeking 
individuals. All risk-averse (risk-averse and 
mildly risk-averse) individuals were compared 
all risk-seeking (risk-seeking and mildly risk- 
seeking) individuals, Figure 1(b).

● Analysis 3: Assessment of DNA methylation in 
the risk-averse group, compared to the remain
ing population (Figure 1(c)).

● Analysis 4: Assessment of DNA methylation in 
the risk seeking group, compared to the 
remaining population (Figure 1(d)).

The mildly risk-averse and mildly risk-seeking 
population groups were not included in Analysis 
1 to increase the discrimination between the risk- 
averse and risk-seeking population groups. These 
population groups have been included in Analyses 
2, 3, and 4.

Two adjustment models were run for each ana
lysis. Age, sex and the six WCCs were adjusted for 
in the minimal model. The maximal model 
included age, sex, six WCCs, whether the indivi
dual was taking any mental health medication, 
deprivation level, marital status, education level, 
smoking status, alcohol intake and BMI.

A methylation p-value threshold of p<9x10−8 is 
considered to adequately control the false-positive 
rate for DNA methylation data obtained using the 
Infinium MethylationEPIC array [22]. A suggested 
significance level of p≤x10−5 [23] was utilized in 
this discovery cohort to identify those dmCpGs, 
which may be linked to risk preferences and are 
ideally suited for further analysis. Supporting data

for dmCpGs were sought from published literature 
and in silico functional analyses.

Using pwrEWAS [24], we have >77% power to 
detect a true association defined as detected 
dmCpGs using this cohort of individuals with 
a 10% difference in CpG methylation levels 
(PFDRadj≤0.05), and >88% power to detect a 20% 
difference in CpG methylation levels (PFDRad 
j≤0.05) when comparing the risk-averse cohort of 
individuals to the remaining population and the 
risk-seeking cohort of individuals to the remaining 
population.

Functional network analyses

Top-ranked dmCpG containing genes arising from 
both analysis models were processed using gene 
ontology and pathway enrichment analysis (p
≤x10−5) using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) 
web tool [25].

Results

NICOLA participant data

From the 8,452 NICOLA participants included in 
Wave 1 of the social survey data collection, risk 
preference data was collected for 4,582 individuals. 
Of these participants, blood samples for methyla
tion analysis were collected for 1,656 individuals. 
Table 1 shows the breakdown of NICOLA partici
pants with risk preference data, with and without 
methylation data. A chi-square test was performed 
to ensure that the distribution of risk preferences 
in the population of individuals with both methy
lation data and risk preference data was not dif
ferent to the population who did not consent to 
methylation analysis. A p-value of 0.014 was ascer
tained, demonstrating that the distribution of risk 
preferences of the two populations was not signif
icantly different at the recommended 1% level 
[26]. Following the coding of the answers provided 
as part of the SCQ, the participants were allocated 
to four risk preference groups, ranging from risk- 
averse to risk-seeking. This breakdown is shown in 
Table 2, alongside the data pertaining to the addi
tional covariates.
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Proportional WCCs for CD8+ T, CD4+ T and 
CD19+ B lymphocytes, CD56+ natural killer (NK) 
cells, CD14+ monocytes and CD15+ granulocytes 
were calculated for each population group and 
included in the phenotype file alongside the

additional covariates. Additionally, concordance 
plots were drawn for eight duplicate samples; aver
age β value range; 0.001–0.99 and average 
r2 = 0.96; Supplementary Figure 1. The concor
dance level was not significantly different when

Figure 1. Analysis outlines.
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comparing any of the demographic characteristics. 
Average WCCs have been included in 
Supplementary Table (ST) 1 for all demographic 
characteristics. P values have also been provided to 
show differences in the WCCs between the groups. 
All average WCC proportions were significantly 
different between males and females and all 
WCCs, except the proportion of B cells, were sig
nificantly different between the age group cate
gories. Age, sex and WCCs were included in 
both models run for each of the four analyses.

Of the 1,656 individuals included in this analy
sis, 1,629 remained following the pre-processing of 
samples using RnBeads. Of these individuals, 1,020 
were risk-averse, 255 were mildly risk-averse, 181 
were mildly risk-seeking and 173 were risk-seeking. 
Four analyses were conducted, each run whilst 
adjusting for the minimally and maximally 
adjusted models in turn.

Analysis 1
Assessment of single-site methylation levels in risk- 
averse vs. risk-seeking individuals. The distribution 
of single-site DNA methylation levels was com
pared between the risk-averse group (n = 1,020) 
and risk-seeking (n = 173) group of individuals, 
which passed pre-processing thresholds. Mildly 
risk-adverse and mildly risk-seeking individuals 
were excluded. In total, 46 differentially methy
lated CpG sites (dmCpGs) were identified between 
the groups where p≤x10−5 in the minimal model 
(ST2). The top-ranked dmCpG was cg09889165, 
p=5.39x10−6, which is not gene-centric.

When adjusting for all covariates, 55 dmCpGs 
were significantly different between the two popu
lations (p≤x10−5, ST3). The top-ranked dmCpG, 
cg09889165, p=4.52x10−6, matched the results 
from the minimal model. Of the top-ranked

dmCpGs, 41 overlap between the two ana
lyses (ST4).

No dmCpGs were significantly different at the 
significance threshold of p<9x10−8 which has been 
suggested to adequately control for the false- 
positive rate for DNA methylation data obtained 
using the MethylationEPIC array [22] after adjust
ment for covariates.

To further assess the changes in DNA methyla
tion between the risk-averse and risk-seeking 
groups, gene ontology (GO), pathway enrichment 
and protein interaction analyses were performed. 
These analyses were conducted for the genes in 
which the 41 overlapping top-ranked dmCpGs 
were located.

Enrichment based on GO terms revealed nine 
processes (ST5) including neuromuscular process 
controlling balance (p=0.07) and learning 
(p=0.08). Four pathways were enriched (p<0.1, 
ST6) including pathways in cancer (p=0.06) and 
aldosterone synthesis and secretion (p=0.08).

Analysis 2
Assessment of single-site methylation levels in all 
risk-averse vs. all risk-seeking individuals. 
The second analysis involved combining all indi
viduals who passed the RnBeads pre-processing 
stage and were risk-averse (both those who were 
risk-averse and mildly risk-averse, n = 1,275) and 
all those who were risk-seeking (both those who 
were risk-seeking and mildly risk-seeking, 
n = 375). A total of 11 dmCpGs were identified 
between the groups, where p≤x10−5 in the mini
mal model (ST7). The top-ranked dmCpG was 
cg05768532 within FLJ16779;NKAIN4, p
=2.64x10−6. No dmCpGs met the significance 
threshold of p<9x10−8 after adjustment for 
covariates.

Table 1. NICOLA population data demonstrating the breakdown of participants with risk preference data within NICOLA both with 
and without Infinium MethylationEPIC data.

Population Risk averse
Mildly risk 

averse
Mildly risk 

seeking
Risk 

seeking Total

Individuals with risk preference data who consented to 
methylation analysis (%)

1,034 (62.4) 260 (15.7) 183 (11.1) 179 
(10.8)

1,656

Individuals with risk preference data who did not consent to 
methylation analysis (%)

1,963 (67.1) 401 (13.7) 297 (10.2) 265 (9.1) 2,926

All individuals with risk preference data from NICOLA (%) 2,997 (65.4) 661 (14.4) 480 (10.5) 444 (9.7) 4,582

1164 L. J. SMYTH ET AL.
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When adjusting for all covariates, 11 dmCpGs 
were significantly different between the two popu
lations (p≤x10−5, ST8) and the top-ranked 
dmCpG, cg05768532 within FLJ16779;NKAIN4 
(p=2x10−6) remained. Nine top-ranked dmCpGs 
overlap between the two analyses (ST9) but no 
processes or pathways were significantly enriched 
by these genes.

Analysis 3
Assessment of DNA methylation in the risk-averse 
group compared to the remaining population. The 
third analysis involved comparing the methylation 
patterns of the individuals from the risk-averse 
group (n = 1,020) to all the remaining individuals 
(n = 609) which had passed pre-processing. A total 
of 36 dmCpGs were identified between the groups 
(p≤x10−5) in the minimal model (ST10). The top- 
ranked dmCpG was cg00540637 within C5orf45, 
p=1.38x10−6. Three dmCpGs were located within 
SMYD4 (cg09940188, p=4.88x10−6; cg23679982, 
p=8.54x10−6 and cg16616918, p=1.62x10−5).

When adjusting for all covariates, 25 dmCpGs 
were significantly different between the two popu
lations (p≤x10−5, ST11). The top-ranked dmCpG 
remained (cg00540637; C5orf45, p=4.59x10−6) and 
the same three dmCpGs within SMYD4 were 
among the top-ranked (cg09940188, p=9.64x10−6; 
cg23679982, p=1.64x10−5 and cg16616918, 
p=2.59x10−5). No dmCpGs met the significance 
threshold of p<9x10−8 after adjustment for 
covariates.

Of the top-ranked dmCpGs, 19 overlap between 
the two analyses (ST12). One biological process 
(interferon-gamma-mediated signalling pathway, 
p=0.041) and two molecular functions (metal ion 
binding, p=0.004 and double-stranded RNA bind
ing, p=0.036) were enriched (ST13).

Analysis 4
Assessment of DNA methylation in the risk-seeking 
group, compared to the remaining population. The 
final analysis involved comparing the methylation 
patterns of the individuals, which passed pre- 
processing from the risk-seeking group (n = 173) 
to the remaining individuals (n = 1,456). A total of 
116 dmCpGs were identified between the groups 
where p≤x10−5 in the minimal model (ST14). The 
top-ranked dmCpG was cg10811901 within

TERF2, p=2.07x10−6. Three dmCpGs were located 
within NWD1 (cg20249566, p=6.8x10−5; 
cg19784428, p=7.03x10−5 and cg19344626, 
p=7.69x10−5).

When adjusting for all covariates, 123 dmCpGs 
were significantly different between the two popu
lations (p≤ x10−5, ST15). The top-ranked dmCpG 
remained (cg10811901, TERF2, p = 2.13x10−6). No 
dmCpGs met the significance threshold of 
p<9x10−8 after adjustment for covariates.

Of the top-ranked dmCpGs, 102 overlap 
between the two analyses (ST16). Enrichment ana
lyses were undertaken for the genes in which they 
were located. Eleven biological processes were sig
nificantly enriched by these genes, including the 
negative regulation of cell proliferation (p=0.05, 
ST17) alongside two cellular components and 
four molecular functions (ST17). The mucin-type 
O-Glycan biosynthesis pathway was enriched 
(p=0.07, ST18).

Discussion

Epigenetic alterations provide a dynamic link 
between genetic background and environmental 
exposures. These alterations have been considered 
to play an important role in determining an indi
vidual’s risk preference. This analysis was con
ducted utilising data collected as part of the 
NICOLA project, which assessed community 
dwelling older individuals from Northern Ireland.

The relationship between age and risk aversion 
is mixed and unclear. Some studies suggest that 
older individuals are more likely to be risk-averse 
than younger people [27]. Others have identified 
the opposite, whereby risk tolerance increases with 
age [28]. Risk-aversion has been associated with 
poorer decision-making in older adults [29]. The 
data ascertained from the NICOLA project has 
shown that in this Northern Irish population of 
older adults, 62.4% showed evidence of being risk- 
averse (Table 2).

Alongside age, sex and proportional WCCs, 
additional covariates taken into consideration in 
the maximal model including deprivation level, 
education level, marital status, smoking status, 
BMI, alcohol intake and whether the individual 
was taking any medication for mental health con
ditions were selected as they have been previously
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been linked to risk preference [8,9,30–34]. There 
are mixed reports regarding the relationship 
between education level and risk-aversion, but 
the majority have indicated that people with 
lower levels of education are more risk-seeking 
[35] and that for every additional year of educa
tion risk-aversion increased [33]. Those who 
attained higher levels of education are believed to 
evaluate risk more methodically [36].

The link between finance and risk preference 
behaviours has been assessed alongside gender 
and marital status. It has long been recognized 
that males and females approach financial risk 
with varying degrees of tolerance, with females 
being reportedly less risk-tolerant, more risk- 
averse [37]. The correlation of risk preference 
and marital status has been less consistent [37]. 
Some studies have suggested that married indivi
duals are more risk-averse than those who are 
unmarried [38]. In 2005, one investigation pro
posed that married females were less risk-tolerant 
than those who were unmarried, and that unmar
ried males were more risk tolerant than married 
males [37].

A study including 1,094 individuals assessing 
risk preferences and health behaviours demon
strated significant negative correlation between 
risk aversion and behaviours, such as smoking, 
heavy alcohol intake and being overweight, along
side reluctance to wear a seat-belt [39]. Individuals 
who had been prescribed any nervous system 
drugs, psychoanaleptics, or psycholeptic drugs for 
mental health conditions were adjusted for within 
this analysis, as links have been made between 
several conditions and risk behaviours including 
attention-deficit hyperactivity disorder (ADHD), 
bipolar disorder, PTSD, and schizophrenia 
[40–42].

Top-ranked, gene-centric dmCpGs which were 
identified from both the minimally and maximally 
adjusted models when assessing the 1,656 
Northern Irish participants included those within 
PDLIM7, GALNT10 and C10orf81 from Analysis 1, 
FLJ16779;NKAIN4, C5orf45 and CDCA2;KCTD9 
from Analysis 2, SMYD4, C5orf45, MLNR and 
HLA-DQA2 from Analysis 3 and TERF2, TRAF2, 
PDLIM7 and LGR5 from Analysis 4. No genes 
which displayed any significantly dmCpG sites 
have previously been linked to risk preferences,

but epigenome-wide level of significance (p<9x10
−8) was not met by any dmCpGs within these 
analyses whilst adjusting for covariates.

Of the genes in which top-ranked dmCpGs 
were located, as included within ST2-16, several 
have been previously linked to neural pathways, 
disorders and psychiatric conditions. Additionally, 
GO enrichment results including neuromuscular 
process controlling balance and learning also indi
cate a potential link to neural pathways. These 
genes include CHD7, ADCY3, ANK3, NWD1, 
CNTNAP2 and TSNAX-DISC1, each of which has 
been carefully considered and contrasted as no 
previous link between neural disorders or psychia
tric conditions, including depression, has been 
made for risk preference. Due to the data that we 
have obtained through the ontology analysis, we 
have chosen to focus on a potential link between 
neural pathways and the risk preference phenotype 
in this discussion.

Within CHD7, cg11327992 was a top-ranked 
dmCpG (p=5.4x10−5) from Analysis 3. CHD7 is 
a member of the chromodomain helicase DNA- 
binding protein family which contributes to chro
matin structure and histone variant depositions 
necessary to regulate gene expression. The CHD 
protein family is vital for neurodevelopment and 
variants have been linked to a range of neurologi
cal phenotypes including schizophrenia [43]. 
A dmCpG from Analysis 4 was located within 
ADCY3, a gene that has previously been linked to 
major depressive disorder [44].

ANK3, believed to have roles in cellular moti
lity, proliferation and the maintenance of specia
lized membrane domains, contained a dmCpG 
reported in Analysis 3. This gene has previously 
been linked to schizophrenia and bipolar disorder 
[45]. NWD1 (NACHT and WD Repeat Domain 
Containing 1) is a protein coding gene in which 
mutations have previously been linked to schizo
phrenia [46]. Several dmCpGs were identified for 
this gene; cg19784428 and cg19344626 from 
Analysis 4, and cg20249566 in both Analyses 1 
and 4.

CNTNAP2, a gene that encodes a member of the 
neurexin family with functions linked to the nervous 
system, has been implicated in several neurodevelop
mental disorders including schizophrenia, autism, 
ADHD and depression [47,48]. One dmCpG
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cg03436967 located within CNTNAP2 was reported 
in Analysis 1, in both the minimally and maximally 
adjusted models. LRP1 encodes a member of the 
low-density lipoprotein receptor family of proteins 
and contains one dmCpG, resulting from Analysis 4. 
Evidence has been accumulated which links this 
gene to both the maintenance of brain homoeostasis 
and the regulation of amyloid-β peptides in the brain 
and peripheral area [49].

Read-through transcription is naturally occur
ring between the neighbouring TSNAX-DISC1 
(translin-associated factor X and disrupted in 
schizophrenia 1) genes located on chromosome 
1. One dmCpG, cg19999430, was reported for 
these genes within Analysis 4. Alterations within 
these genes have been linked to schizophrenia 
and bipolar affective disorder [50]. A SNP 
within this gene, rs821722, has previously been 
linked to addictions and opioid dependen
cies [51].

As indicated, several of the top-ranked genes 
identified in these analyses have been previously 
associated with or linked to neural pathways and 
disorders. However, this research has solely been 
conducted using blood-derived DNA samples due 
to the nature of the population-based NICOLA 
study and therefore there are no brain tissue sam
ples available for assessment of gene expression 
levels or next-generation sequencing.

Two recent studies have been conducted which 
assessed methylation profiles in blood samples 
compared to brain tissues to ascertain whether 
blood samples could be used as an alternative to 
brain tissue. Yu et al. [52], compared methylation 
profiles in CD4+ lymphocytes derived from per
ipheral blood, with post-mortem brain tissue from 
41 individuals. Using the Illumina Infinium 
HumanMethylation450K array, they noted signifi
cant differences in the average methylation level 
between the two tissue types within the same 
individuals.

Walton et al. [53] also compared the two tissue 
types and despite only including brain tissue sam
ples from 12 individuals, they found that approxi
mately 8% of dmCpGs showed a significant, large 
correlation between the two tissues and have sug
gested that only these dmCpGs should be consid
ered when using blood samples to assess 
methylation.

An interactive tool, BECon, has been developed 
by Edgar et al. [54], to assist in the interpretation 
of blood-derived DNA methylation results as sur
rogates for human brain samples. The Infinium 
HumanMethylation450K array was used to gener
ate the data included in this interactive tool using 
blood and three brain samples from 16 individuals. 
This has the potential for use as a validation 
method for dmCpGs with high levels of concor
dance between the tissues.

Not all dmCpGs output from our investigation 
of risk preference are included in the BECon inter
active tool as we used the larger Infinium 
MethylationEPIC array for data generation. 
Despite this, from the top-ranked genes linked to 
neural pathways and across the three brain areas 
considered by the BECon interactive tool, a null to 
0.75 positive correlation was seen for cg19344626 
(NWD1), and a null to 0.90 positive correlation for 
both cg19784428 and cg20249566 (both NWD1) 
between the brain tissues and blood. A 0.50–0.75 
negative correlation was noted for cg03436967 
within CNTNAP2, whilst cg23703633 (ANK3), 
cg27449030 (ADCY3), and cg03668470 (LRP1) all 
showed null or negative correlations between the 
tissues.

When assessing the proportion of WCCs 
between demographic characteristics, it would be 
unwise to expect the proportions to be the same 
between different age groups and between males 
and females. It is expected that these will differ due 
to known key immunological differences between 
the sexes, at different stages of life [55,56]. For 
example, it has been shown previously that overall, 
males have a higher proportion of NK cells than 
females, but that elderly males show a more rapid 
decline of B and CD4+ T cells than females. 
Additionally, the menopause is a known contribu
tor to the alteration of WCCs [55,56].

Risk preferences and behaviours have previously 
been assessed using DNA methylation techniques 
in a study of identical twins who were discordant 
for risk-taking behaviour [57]. It was established 
that epigenetic markers alone are unable to 
account for differences in their behaviour but 
may help to explain why one twin is able to func
tion well, with no anxiety, in more highly danger
ous situations than their other. Is it possible that 
our risk preferences affect lifestyles, which in turn
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affect epigenetic signatures, or is it the reverse? Or 
could it be both? As previous investigations have 
outlined, determining the direction of causality 
between risk preferences and variables such as 
level of education is difficult and unclear [33].

This study has some limitations. Despite reach
ing out to multiple colleagues, we were unable to 
source a complementary replication cohort with 
relevant phenotypic information. Additionally, 
only blood-derived DNA was available for analy
sis. It may have been advantageous to be able to 
assess these alterations in two independent cell 
samples, however previous analyses undertaken 
to assess methylation in blood, saliva, and/or buc
cal swab samples have shown high levels of corre
lation in the results ascertained from each [58,59]. 
We have employed the most comprehensive com
mercially available array to study DNA methyla
tion and we have considered multiple relevant 
variables in our analyses, which is a particular 
strength of this study.

The analysis is based on cross-sectional data 
that were collected at one point in time, with no 
follow-on epigenetic or risk preference changes as 
yet available to study longitudinally, which is 
a limitation for assessing changing epigenetic pro
files. It would ideally complement this cross- 
sectional research to be able to assess epigenetic 
changes connected to risk preference in this popu
lation as more samples are collected in later years. 
Additionally, without the benefit of longitudinal 
data, including the necessary phenotype informa
tion and biological samples, it is possible that any 
putative causal associations could be bi- 
directional – genetic determinants of risk prefer
ence might induce their own epigenetic signatures, 
while decisions made by individuals associated 
with their risk preferences (their diet, exercise, 
smoking and alcohol habits) may induce charac
teristic epigenetic changes. Considering such pos
sibilities (i.e., some ‘confounders’ are really 
mediators) it could also be argued that our maxi
mally adjusted models have been over-adjusted – 
which might also suggest that some of the p-values 
are overly conservative. Approaches such as Bi- 
Directional Mendelian Randomization may assist 
in the evaluation of such phenomena [60], but it 
has not been possible to assess this in the present 
study (lacking valid instruments and longitudinal

follow-up). Clearly, the phenotype could be 
refined with follow-up information on the conse
quences of ‘risky’ decisions from which we might 
gain an improved understanding of underpinning 
biological mechanisms.

Potential future directions may include asses
sing risk preferences in conjunction with religion 
and religious beliefs [61] and it may also be of 
benefit to assess risk preferences before and after 
the individuals have children to monitor changes 
to the phenotype [32]. Finally, there may be 
a benefit to measuring the differences or concor
dance of risk preferences between parents and 
their children in relevant cohorts, with an attempt 
to apportion any correlation between shared envir
onments and shared genes.

Conclusion

Epigenetic research has the potential to transform 
the social science landscape [62]. Modifications 
including DNA methylation may represent impor
tant biomarkers of complementary complex 
genetic and environmental determinants of these 
traits. Several striking results from this study sup
port further analysis of DNA methylation as an 
important link between measurable biomarkers 
and health behaviours. Data from longitudinal 
cohorts provide the opportunity to monitor the 
relationship between the two, over time.
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