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Abstract
The California Current Marine Ecosystem is a highly productive system that exhibits 
strong natural variability and vulnerability to anthropogenic climate trends. Relating 
projections of ocean change to biological sensitivities requires detailed synthesis of 
experimental results. Here, we combine measured biological sensitivities with high-
resolution climate projections of key variables (temperature, oxygen, and pCO2) to 
identify the direction, magnitude, and spatial distribution of organism-scale vulner-
abilities to multiple axes of projected ocean change. Among 12 selected species of 
cultural and economic importance, we find that all are sensitive to projected changes 
in ocean conditions through responses that affect individual performance or popula-
tion processes. Response indices were largest in the northern region and inner shelf. 
While performance traits generally increased with projected changes, fitness traits 
generally decreased, indicating that concurrent stresses can lead to fitness loss. For 
two species, combining sensitivities to temperature and oxygen changes through the 
Metabolic Index shows how aerobic habitat availability could be compressed under 
future conditions. Our results suggest substantial and specific ecological suscepti-
bility in the next 80 years, including potential regional loss of canopy-forming kelp, 
changes in nearshore food webs caused by declining rates of survival among red ur-
chins, Dungeness crab, and razor clams, and loss of aerobic habitat for anchovy and 
pink shrimp. We also highlight fillable gaps in knowledge, including specific physiologi-
cal responses to stressors, variation in responses across life stages, and responses to 
multistressor combinations. These findings strengthen the case for filling information 
gaps with experiments focused on fitness-related responses and those that can be 
used to parameterize integrative physiological models, and suggest that the CCME 
is susceptible to substantial changes to ecosystem structure and function within this 
century.
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1  |  INTRODUC TION

Anthropogenic climate change and associated stressors will cause 
profound changes in global ocean conditions, in species distribu-
tions, and in the services the ocean provides to society (Gattuso 
et al., 2015; Pecl et al., 2017). Global models predict that changes 
in ocean pH, temperature, and oxygen concentration will force 
changes in critical earth system processes such as biogeochemi-
cal cycling and in marine ecosystem structure and function. These 
changes will ultimately affect human well-being and food security 
(Henson et al., 2017; Pecl et al., 2017; Pörtner et al., 2014). Recent 
work has estimated the vulnerability of species and functional 
groups to climate-associated changes in the ocean through consen-
sus of the international climate community combined with physical 
or biological data (Gattuso et al., 2015; Hare et al., 2016; Hollowed 
et al., 2020; Spencer et al., 2019). Such analyses offer means of an-
ticipating biological and ecological changes and can be used to help 
promote human adaptation to impending changes; they are likely to 
be most useful when supported by quantitative data on biological 
responses to environmental change.

Here, we combine a data-driven analysis of biological sensitivities 
to environmental change with high-resolution dynamically down-
scaled regional climate projections to describe biological vulnerabil-
ities to climate change in the California Current Marine Ecosystem 
(CCME). The CCME comprises an upwelling-dominated eastern 
boundary current system with known vulnerabilities to climate-
associated stressors including warming, oxygen loss, and ocean 
acidification variables (Chan et al., 2008; Connolly et al., 2010; Feely 
et al.,  2008; McCabe et al.,  2016). We use regionally downscaled 
climate projections of multiple variables (temperature, oxygen, and 
carbon dioxide [CO2]) that combine the effects of changing surface 
winds, heat fluxes, atmospheric CO2, terrestrial freshwater inputs, 
and physical and biogeochemical cycling to generate end-of-century 
projections of ocean conditions at high resolutions that can resolve 
some coastal processes (Howard, Frenzel, et al.,  2020; Siedlecki 
et al., 2021). We evaluate four key variables—temperature, salinity, 
oxygen, and pCO2 or its covariate, pH—that are influenced by an-
thropogenic carbon emissions, in terms of their expected influences 
on organismal physiology. These include the observed experimental 
effects of these stressors on growth, metabolic rate, reproduction, 
survivorship, and behavior. Although we aggregate and report sen-
sitivies across life-history stages, we exclude consideration of how 
these interact with seasonal changes due to problems of data suffi-
ciency. Here, we present an approach to first evaluate the biological 
sensitivities of key species to projected climate-associated changes 
in the CCME, and next to map the spatially variable climate vulner-
ability of these species. As such, our analysis offers a generalizable 
approach to assessing and comparing conservative estimates of po-
tential risk and habitat vulnerability across taxa exposed to climate 
stressors.

Our approach differs from prior studies that, by necessity, used 
expert judgment concerning biological responses (e.g., Bednaršek 
et al., 2019; Gattuso et al., 2015), used downscaled projections of 

single stressors (e.g., Hodgson et al.,  2018; Marshall et al.,  2017; 
Morley et al., 2018), or combined response data across broad taxo-
nomic groups to assess vulnerability to projected changes in ocean 
conditions (e.g., Busch & McElhany, 2016). Here, we use experimen-
tal evidence of direct effects on physiological performance of 10 key 
species or closely related species groups, and use inferred sensitiv-
ities based on a well-understood mechanistic model of the physi-
ological response to multiple stressors for two others. Each of the 
species considered provides direct or indirect benefits to ecosystem 
function, cultural and economic services, and human well-being. We 
find a range of sensitivities across these species and explore the 
interactions between physiological responses and spatial variation 
in projected climate exposure. In particular, we identify regions of 
the CCME in which many of the species evaluated are vulnerable 
to climate change, including species that have multiple physiological 
vulnerabilities.

2  |  METHODS

2.1  |  Regional climate projection models and future 
forcing

We projected ocean conditions by downscaling global Earth system 
models at coarse spatial resolution (~100 km) to two finer resolu-
tions (12 and 1.5 km models) as described in Siedlecki et al. (2021). 
Both regional modeling frameworks employ the Regional Ocean 
Modeling System (ROMS). The higher resolution (1.5  km) simula-
tion of the northern CCME was optimized for the Pacific Northwest 
“Cascadia” region spanning most of Oregon, Washington, and some 
of Vancouver Island (43°N to 50°N), and includes freshwater forc-
ing from major rivers such as the Columbia and Fraser Rivers. The 
12 km model is configured for a domain that extends along the North 
American west coast from 25°N to 60°N, described in more detail in 
Howard, Frenzel, et al. (2020).

One hundred-year climate change forcings for the CCME 12 km 
simulation were based on the differences between climatological 
monthly conditions in 1971–2000 and 2071–2100 conditions, pro-
jected using representative concentration pathway 8.5 (RCP 8.5, the 
“business as usual” scenario) for five models from the CMIP5 archive: 
GFDL (ESM2M), IPSL (CM5A-LR), Hadley (ES), MPI (ESM-LR), and 
NCAR (CESM) (see Howard, Frenzel, et al.  (2020) for the rationale 
for model choice). Downscaled climate projections were produced 
by resimulating the CCME over the hindcast years 1994–2007 with 
the addition of these hundred-year differences to the historical forc-
ings. Climate forcings included net downward radiation, wind speed, 
air temperature, and specific humidity, as well as initial conditions 
and boundary anomalies in biogeographic variables (dissolved oxy-
gen, nitrate, phosphate, silica, iron, inorganic carbon, and alkalinity). 
The 1.5  km resolution model is one-way nested within the 12 km 
resolution model and is run for 3-year “time slices” covering 2002–
2004 for the control simulation and 2094–2096 for the future pro-
jection simulation. In both simulations, we ran the model for 1 year 
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(i.e., model spin-up) before we used the output for our analysis, using 
2001 forcing for the control and 2093 forcing for the future projec-
tion. The much shorter time slice for the 1.5 km resolution model 
reflects the substantially greater computational costs. Full details of 
the 1.5 km simulation can be found in Siedlecki et al. (2021).

Carbonate system variables (i.e., pH, pCO2, and carbonate sat-
uration state [Ω] values) were computed with CO2SYS (Lewis & 
Wallace,  1998) using model output fields of dissolved inorganic 
carbon (DIC), total alkalinity (TA), temperature, and salinity. We 
generated annual averages of variables in each model cell prior to 
calculating a spatially weighted mean, and calculated differences in 
temperature, oxygen, pH, and pCO2 between the two time periods 
(i.e., deltas) for every grid cell. For downstream analysis, we extracted 
conditions for three ocean layers: (1) surface conditions, drawn from 
the uppermost model layer for each simulation; (2) bottom condi-
tions, drawn from the deepest vertical layer; and (3) depth-averaged 
ocean conditions, calculated as the mean between the surface and 
200 m depth (or to the bottom depth in shallower waters).

2.2  |  Physiological sensitivities

We selected for analysis 12 taxa representing individual species 
or closely related and functionally similar species groups (here-
after referred to simply as “species”) known to be of high cultural 
and ecological significance in the CCME (Table 1). To evaluate the 
future effects of ocean change on these species, we used two 
distinct but complementary approaches. First, for 10 species, we 
compiled experimental results from the published literature that 
measured organism-level responses to one or more of four ocean 

variables expected to shift in the CCME in association with climate 
change. Second, for two species, we used the Metabolic Index of 
temperature-dependent hypoxia response (Φ; Deutsch et al., 2015) 
to assess potential organism-level response to the combined 
multiple-stressor impacts of temperature and oxygen, variables 
with robust climate trends across CCME models (Howard, Frenzel, 
et al., 2020; Siedlecki et al., 2021).

2.3  |  Experimental sensitivities to 
individual stressors

We used published data from controlled experiments to estimate 
sensitivities. We searched the published literature for controlled 
experiments in which (i) temperature, oxygen, pCO2, and/or salinity 
were varied within the range of mean values expected between the 
present and year 2100 in the California Current Marine Ecosystem 
and (ii) the individual-level response of these species was measured 
in one or more of the following categories: survival, metabolic rate, 
locomotion, somatic growth rate, and resource consumption rate. 
Note that responses to experimental variation in pH or pCO2 were 
used as estimates of sensitivity to changing carbonate chemistry, 
which, for the purposes of this analysis, we considered as a single 
stressor. In three cases (canopy-forming kelps, blue and black rock-
fish, and copper and quillback rockfish), we aggregated data from 
more than one species in order to increase data coverage within 
those groups (Table S1). We extracted either (i) all individual-level ob-
servations of the response variable (including control treatments) or 
(ii) the mean, error estimate, and sample size of aggregated response 
data. When values were not reported as numbers, we estimated 

TA B L E  1  Species and groups of species included in analyses, with common and Latin names, depth ranges occupied, and layers of the 
model domain used for adults and early life stages for which we had data. Information sources are provided in the supplemental dataset.

Common name Species included
Lower 
depth (m)

Upper 
depth (m)

Adult 
zone

Early-life-stage 
zone

Direct single-stressor responses

Pink salmon Oncorhynchus gorbuscha 250 0 200 m NA

Blue rockfish and
Black rockfish

Sebastes mystinus, Sebastes melanops 550 0 Bottom NA

Copper rockfish and Quillback rockfish Sebastes caurinus, Sebastes maliger 366 0 Bottom NA

Sablefish Anoplopoma fimbria 2740 175 Bottom NA

Razor clam Siliqua patula 55 0 Bottom NA

Red urchin Mesocentrotus franciscanus 125 0 Bottom Surface/bottoma

Dungeness crab Metacarcinus magister 360 0 Bottom Surface

Ochre star Pisaster ochraceus 90 0 Bottom Surface

Canopy-forming kelp Macrocystis pyrifera, Nereocystis 
luetkeana

30 0 Bottom Bottom

Seagrass Zostera marina 10 0 Bottom NA

Range projection using Metabolic Index

Northern anchovy Engraulis mordax

Alaska pink shrimp Pandalus eous

aGametes of red urchins were restricted to the deep layer of the model; larvae were restricted to the surface layer.
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values from figures using WebPlotDigitizer (Rohatgi,  2018). In ad-
dition to the category of response, we noted the location of organ-
ism collection, experimental treatments, duration of exposure, life 
phase, and other environmental variables for each experiment. We 
included published studies through December of 2020.

Because the response values and associated units varied across 
experiments, we transformed these data to allow comparison of ef-
fect sizes. We did this by (i) inverting mortality rates so that they 
aligned with survival rates, (ii) converting uncertainty estimates 
to standard errors of the mean (using SE = 95% confidence inter-
val/1.96), (iii) recentering data so that physiologically unreasonable 
negative values (1% of data) did not go below zero, (iv) standard-
izing values to a reference value, by dividing each observation by 
the highest observed value (reference) within each experiment (or, 
for aggregated data, to the highest observed aggregate value plus 1 
standard error). The resulting effect sizes ranged between 0 and 1.

To map connect the sensitivity of each taxon to each environmen-
tal variable, we developed a simple sensitivity index based on these 
comparable effect sizes. First, we filtered out data in which treatment 
values were outside the range of present and future projections of 
each variable (temperature: 8.7–30.8°C, oxygen: 0.003–6.73 mL/L, 
pCO2: 298–3090 μatm, salinity: 29.0–33.5 ppt). For studies in which 
only means and standard errors were available, we simulated sampling 
error by iteratively drawing N values at each treatment level, where N 
is the experimental sample size of each treatment, from a normal dis-
tribution with the reported mean and error for each treatment level. 
We fit a linear regression (Model I) to each random draw, and calcu-
lated the mean and standard error of the slope and intercept across 
5000 iterations. For non-aggregated data, we fit linear regressions 
(Model I) to the individual observations of each experiment. We refer 
to this population of comparably fitted slopes in response variables 
with associated uncertainty estimates as the estimated sensitivities of 
organisms to individual components of environmental change.

Within the relevant ranges of each environmental variable, al-
most all responses were monotonic; individual linear regressions 
through these responses had relatively good fits and allowed us 
to consider a single variable (slope) as the metric of relative sensi-
tivity (Figure S1–S4). However, a small number of nonlinearities in 
temperature and oxygen responses within the present-to-future 
environmental domain in sablefish and Dungeness crab suggest 
some fitted slopes will represent underestimates of sensitivity (see 
Figures S2–S3).

2.4  |  Data aggregation and scaling

We aggregated and scaled taxon sensitivities in various ways for dis-
play. First, in order to visually compare all sensitivities across expo-
sure types that vary in magnitude, we multiplied each sensitivity by 
the mean projected change in environmental variable (delta) projected 
between the present (1971–2000) and future (2071–2100) periods 
for the subset of grid cells in the model domains within the focal tax-
on's known depth distribution. For each sensitivity estimate, we used 

environmental deltas projected for the depth stratum (surface, bot-
tom, or upper 200 m mean) relevant for the life-history stage studied: 
bottom for benthic and demersal stages (most species and life stages 
in the dataset), the upper 200 m depth range for epipelagic organisms 
(pink salmon), and surface values for larvae found in the surface mixed 
layer (e.g., sea urchin larvae, Table 1). We refer to these products, that 
is, the individual experimentally derived sensitivities multiplied by the 
downscaled climate projections, as scaled sensitivities (although we 
note that these could also be considered as estimated responses given 
that they are the product of sensitivity and exposure).

2.5  |  Response indices across space

In order to summarize these scaled sensitivities for each taxon and 
response type, while synthesizing across environmental variables, we 
used a meta-analysis approach, taking a weighted mean of scaled sen-
sitivities within taxon and response types. Weights were assigned as 
the inverse of the squared variance of each sensitivity, and overall vari-
ance as the inverse of the summed weights (Lipsey & Wilson, 2001). 
We thus combined responses to different aspects of environmental 
change (temperature, O2, pH or pCO2) within response types (meta-
bolic rate, growth rate, consumption rate, motility rate, and survival 
rate) allowing responses to be additive within but not across response 
types. For example, we additively combined increases with decreases 
in growth rates for a red urchin, even if these responses were driven by 
temperature and pCO2, respectively. Although different stressors are 
known to have interactive effects on physiological responses (Crain 
et al., 2008), this additive approach provides a first-cut level of data 
aggregation in the absence of interaction data or mechanistic models, 
and when possible we apply a mechanistic model of interactive effects 
between stressors in our Metabolic Index approach (below). We re-
port these meta-analyzed results at two aggregated scales, first based 
on mean scaled sensitivies in biological rates for each taxon and re-
sponse type across the entire model domain (still within relavent grid 
cells for each species) to assess taxon level differences, and second, 
based on mean projected changes within individual grid cells to assess 
spatial variation (see below).

For individual model grid cells, we assessed response-specific 
scaled sensitivities as described above and then used these to gener-
ate a response index across space. This index is designed to maintain 
both the direction and scale of sensitivities, recognizing that some 
conditions evoke larger responses than others, and that different re-
sponses (e.g., growth rate and survival) with opposing signs do not 
necessarily combine additively to zero. For every grid cell, we aggre-
gated species' scaled sensitivities after meta-analysis (see above) fil-
tering to species with depth distributions included in the focal grid cell. 
This resulted in a distribution of weighted mean scaled sensitivities 
for every grid cell that ranged from negative (declines in rates) to pos-
itive (increases in rates). We defined separate indices of increases and 
decreases to avoid averaging-away divergent responses, as the sum of 
(i) increasing or (ii) decreasing responses to projected change, divided 
by the number of response types and species (i.e., observations), for 
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every grid cell. To assess each taxon's contribution to the index within 
each grid cell, we calculated a similar index for each taxon within each 
grid cell (i.e. the sum of increasing or decreasing responses across re-
sponse types) to assess each taxon's contribution to the index within 
each grid cell. We focus on individual physiological responses to each 
condition and not the integrated response of an organism to multiple 
interacting effects of changing climate conditions, given that interac-
tions can be synergistic or antagonistic depending on species sensitiv-
ities and ecological processes.

2.6  |  Metabolic Index of combined 
temperature and oxygen sensitivities

We extended our analysis beyond the laboratory context by evaluating 
the combined effects of two key stressors on potential species distri-
butions in the natural environment. Respiratory oxygen consumption 
is fundamentally temperature-dependent (Gillooly et al.,  2001). For 
most species, the supply of O2 (e.g., via gills) increases more slowly with 
temperature than does metabolic O2 demand (Deutsch et al., 2021), 
with the result that species generally become more sensitive to low 
O2 conditions at higher temperatures. Thus, the synergistic effects of 
temperature and O2 in shaping physiological hypoxia sensitivity can 
impose more limiting constraints on species responses to environ-
mental change than when responses to either variable are considered 
independently. Support for this mechanism comes from prior studies 
of a range of species (Clarke et al., 2021; Deutsch et al., 2021; Duncan 
et al., 2020; Howard, Penn, et al., 2020; McBryan et al., 2013; Penn 
et al., 2018; Vaquer-Sunyer & Duarte, 2011).

As an example of how this multistressor response can be evalu-
ated, we apply the Metabolic Index (Φ; Deutsch et al., 2015) frame-
work for integrating the sensitivity of metabolism to the combined 
effects of O2 and temperature on metabolism. This approach pro-
vides a complementary (but not strictly comparable) means of es-
timating species vulnerability to changing conditions. Because this 
framework is theoretically and experimentally grounded across di-
verse marine species, we use it as a stand-in for plausible responses 
for species without contextualizing laboratory experiments.

Specifically, Φ is the temperature-dependent ratio of organis-
mal O2 supply to demand. Physiological parameters related to the 
Metabolic Index and temperature-dependent hypoxia tolerance 
have been measured in the laboratory for dozens of species (Deutsch 
et al., 2021; Penn et al., 2018). Metabolic theory predicts that these or-
ganismal constraints ultimately limit population-scale processes (Van 
Der Meer, 2006), with an additional energetic factor, here indicated as 
Φcrit, required for critical activities like growth and reproduction above 
the basal metabolic demands measured experimentally. This factor is 
roughly 1.5–7 times greater than resting metabolism, in both marine 
and terrestrial animals (Deutsch et al., 2021; Peterson et al.,  1990). 
When Φ/Φcrit < 1, the environment no longer has the aerobic capacity 
to support the organism's regular energetic requirements. The biogeo-
graphic distributions of a number of species are closely aligned with a 
threshold of Φ/Φcrit = 1 in depth, space, and time (Deutsch et al., 2015, 

2021; Howard, Penn, et al., 2020), suggesting that this may be a useful 
metric for assessing climate sensitivities.

We projected changes in Φ/Φcrit between the present and fu-
ture periods for northern anchovy (Engraulis mordax) and Alaska pink 
shrimp (Pandalus eous). Metabolic Index traits for anchovy are taken 
from Howard, Penn, et al. (2020). Shrimp physiological traits are as-
sumed to be similar to those measured for the Atlantic pink shrimp 
(Pandalus borealis; Penn et al., 2018); Alaska and Atlantic pink shrimp 
were recently determined to be separate species (Squires,  1992) 
but are closely related and live in similar hydrographic conditions 
in each ocean basin. Observations of species presence are taken 
from the Ocean Biodiversity Information System (OBIS, 2019) and 
National Oceanic and Atmospheric Administration trawl survey data 
(NOAA, 2019). We used the 12 km resolution model, which encom-
passes the southern range limit of both species, to project hundred-
year changes (2071–2100 – 1971–2000, as in Howard, Frenzel, 
et al., 2020) near the mean observed depths for each species.

To map habitat availability changes, we additionally delineate 
offshore range boundaries using species distribution models (SDMs) 
based on present correlations between species observations and 
environmental variables (see Supplementary Information); SDM off-
shore habitat extent is particularly sensitive to primary productivity. 
We did not attempt to extend the SDM approach into prediction 
of future habitat because these relationships are not robust under 
changing environmental conditions (Muhling et al.,  2020), and the 
projected ensemble mean productivity changes cannot be distin-
guished from zero (Howard, Frenzel, et al., 2020).

3  |  RESULTS

Based on the highest fossil fuel emission trajectory (RCP 8.5), by 
2100, the California Current System will likely experience large 
changes in climate stressors such as temperature, oxygen, and pCO2. 
Global models and downscaled simulations agree on the direction 
and approximate magnitude of change (Howard, Frenzel, et al., 2020) 
except for the ocean acidification variables whose magnitudes were 
modified in the downscaled projections (Siedlecki et al.,  2021). 
Projected changes are generally similar between the two downscal-
ings across the continental shelf (Figure 1 and Table S2), although 
surface CO2 changes are greater in the 12 km than 1.5  km model 
projections (Table S2, Figure S5).

Climate-driven environmental changes are projected to be 
greatest in the northern-CCME (Figure 1; Siedlecki et al., 2021). The 
northern-CCME differs from the rest of the CCME in several ways, 
but importantly the region experiences a more substantial down-
welling season that is anticipated to persist into the future. Oxygen 
removal by respiratory consumption of organic material produced 
over the summer is typically relieved by the fall transition and winter 
mixing on the shelf (Siedlecki et al., 2015), and this pattern continues 
into the future (Siedlecki et al., 2021). The projections indicate that 
the duration of very low oxygen persistence in the summer months 
will increase in the future projections. This seasonal pattern is also 
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characteristic of simulated carbon variables—the most severe con-
ditions develop over the upwelling season and are relieved in the 
downwelling season in the present ocean, but because of the pro-
jected increases in pCO2 suboptimal carbonate chemistry conditions 
persist for the majority of the year in the future projections.

3.1  |  Physiological sensitivities

Our synthesis of laboratory studies revealed a range of biological sensi-
tivities to changes in oxygen, temperature, pCO2, and pH when scaled 
to changes expected over the next century in the CCME (Figure 2a). 
Every species examined showed both increases and decreases in scaled 
sensitivities to projected change, differing across response types 
(Figure 2a). Sensitivities to changes in pCO2 and pH were greater in 
magnitude in both positive and negative directions than were sensi-
tivities to the other environmental variables examined (Figure 2a, blue 
points >50% change). Sensitivities to increasing temperature were 
also high (upward of 30% change), with notably more increases than 
decreases in biological rates in most species (i.e., rates are primarily 
positive in Figure 2a), except in canopy-forming kelps. Although low-
est in magnitude, biological rates generally declined with projected 
changes in pO2 across species; although we note that our linear regres-
sion across a nonlinear feeding and metabolic rate responses to pO2 in 
Dungeness crab and sablefish, respectively, may have underestimated 
the sensitivity of these groups (see linear fits in Figure S3).

In the meta-analyzed results, an approximately even spread of 
increases and decreases in biological rates were associated with pro-
jected environmental change across species and response types 
(Figure 3a), and most species exhibited both increases and decreases 
in biological rates across response types (Figures 3b). Notably, most 
survival-related responses decreased, while responses in physiological 
rates (growth rate, metabolic rate, consumption rate, and movement) 

increased (Figure  3c). For example, in five species (canopy-forming 
kelps, razor clams, red urchins, Dungeness crab, and copper & quill-
back rockfish), declines in survival rates were associated with changes 
in projected environmental conditions, despite four of these species 
showing increases in physiological rates (Figure 3b). One group—the 
copper & quillback rockfish—showed only declining biological rates 
to projected changes, but studies of temperature-related responses 
were lacking for this group. The ochre star, by contrast, exhibited only 
positive physiological responses to projected changes, with no signs 
of decline in survivorship (Figure 3b). Although canopy-forming kelps 
exhibited some positive responses in growth and survival rates associ-
ated with expected changes in carbonate chemistry in individual stud-
ies (Figure 2a), these were mostly balanced by negative responses to 
temperature in the meta-analysis (Figure 3b). Pink salmon and sablefish 
showed moderate responses to projected changes, although sablefish 
showed a negative response to oxygen that could interact with increas-
ing metabolic demand associated with rising temperature (Figure 3b).

The Metabolic Index values for shrimp and anchovy decline in 
response to concurrent oxygen loss and warming (Figure 2b). Under 
present hydrographic conditions, aerobic habitat limitation (Φ/
Φcrit < 1) closely aligned with the time–mean depth distributions and 
southern range limits of each species, implying that temperature-
dependent hypoxia may impose an important ecophysiological con-
straint. Although derived using a different analytical approach, this 
result is consistent with both the negative sensitivity to declining O2 
and increasing metabolism and consumption rates with increasing 
temperature found in laboratory studies of other species (Figure 2a).

3.2  |  Sensitivity variation across space

As in the whole-domain results described above, the scaled sensitiv-
ities among species and response types within each grid cell ranged 

F I G U R E  1  Downscaled physical model outputs for the Pacific coast of North America from British Columbia to Baja California. Each 
panel shows results for the large California Current Marine Ecosystem (12 km resolution model) and the smaller Cascadia region (inset; 
1.5 km resolution model). Colors indicate differences between year 2100 and the base/modern conditions, in the bottom (benthic) zone 
of each model, for (a) temperature (deg C), (b) O2 (ml/L), and (c) pCO2 (μatm). For model results in the surface and 200 m zone and for other 
environmental variables, see Siedlecki et al. (2021). Reproduced from Siedlecki et al. (2021).
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from positive to negative (Figure 4a–c), with some spatial variation. 
When we combined responses within model grid cells into separate 
positive and negative response indices (colored bars in Figure 4a–
c, see Figure S7 for species identity), these were relatively equal in 
magnitude across most of the model domain (Figure 4d, maroon and 
violet cells labeled b and c). However, the positive response index 
was greater than the negative response index in the innermost shal-
low section of the shelf (Figure 4d, purple cells labeled a, details of 
example cell shown in Figure 4a), and in some regions of the mid-shelf 
(bluish cells; see also Figure  S8 for positive and negative indices 
separated, and Figures  S9–S10 for individual species responses). 
At the edge of the shelf (pink cells), negative response indices were 
greater than positive indices. Overall, the magnitudes of response 

indices declined from the inner to the outer shelf in the Cascadia 
region (Figure 4d,e), and from north to south in the CCME (Figure 4e; 
Figure S8). Spatial heterogeneity in the north–south direction was 
probably due to patterns in projected environmental change (as 
seen in Figure 1), while heterogeneity across the shelf in the east–
west direction appeared to be due primarily to differences in depth 
ranges occupied by species across the model domain. For example, 
the shallow-ranging kelps, ochre stars, razor clams, red urchins, and 
seagrass contributed to higher response indices (more extreme posi-
tive and negative sensitivities) close to shore, and the especially high 
positive response in metabolic rates of kelp to increased CO2 led to 
high positive index values in shallow water, while the inclusion of 
less-sensitive deep-water sablefish contributed to lower response 

F I G U R E  2  Sensitivities to anticipated 
environmental change. (a) Points and 
horizontal lines indicate mean and 95% 
CI of scaled sensitivities, that is, the 
percent change in biological response 
based on fitted slopes of responses 
to treatment variables within study, 
multiplied by mean change in each 
treatment variable projected within the 
depth range of the taxon and life-history 
stage across the model domain (results 
shown for Cascadia 1.5 km model). Thus, 
sensitivities are shown according to 
the mean anticipated changes in each 
variable, to contextualize the sensitivity 
within the exposure projected, allowing 
comparison across variables that change 
at different magnitudes. Each point and 
error bar represents a single experiment, 
symbols represent specific response 
types, treatment variables, and life stages. 
Lines connecting points are provided to 
visually connect responses within species. 
Studies reporting sensitivities to changes 
in salinity were not sufficient to draw 
conclusions, so we excluded salinity from 
subsequent analyses (see Figure S6). (b) 
Sensitivities to combined temperature 
and oxygen changes based on Metabolic 
Index approach are provided for visual 
comparison. Silhouettes are original art 
generated in Adobe Photoshop by J. 
Sunday.
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indices in deeper regions of the shelf (see Figures S9–S10). Within 
species, there was little spatial heterogeneity in index magnitude 
(Figures S9 and S10), which corresponds to the pattern of environ-
mental change projected across the shelf in the Cascadia (1.5 km) 
and CCME (12 km) resolution models.

The Metabolic Index analysis suggests loss of aerobic habitat 
across the range of northern anchovy and Alaska pink shrimp in re-
sponse to projected changes in temperature and O2 concentrations 
(Figure 5). We find that both species would lose aerobically suitable 
habitat along their southern range limits, which could shift ranges 
northwards. Alaska pink shrimp were inferred to have a relatively low 
hypoxia tolerance and a high metabolic rate increase with tempera-
ture compared to most species (Deutsch et al., 2021). Consequently, 
aerobically suitable pelagic habitat for these shrimp moves offshore, 
leaving most of the shelf unsuitable except in the northern shelf re-
gion (Figure 5a, region left of the yellow line). Moreover, declining 
O2 in seasonally upwelled waters will likely limit benthic habitat fa-
vored by egg-brooding female shrimp (Bergström, 2000). Northern 
anchovy are expected to be more hypoxia tolerant and less tempera-
ture sensitive than the shrimp; thus, aerobic habitat loss is predicted 
to be less severe for anchovy. However, anchovy will still likely ex-
perience increasing alongshore seasonal habitat compression across 
their latitudinal range (Howard, Penn, et al., 2020; Figure 5b, region 
north of the yellow line).

4  |  DISCUSSION

Our findings reveal that by 2100, environmental changes projected 
to occur in the California Current Marine Ecosystem (CCME) will be 
sufficiently large to elicit changes in biological rates among a suite 
of economically and culturally important species. Among these, by 
2100, many biological rates are expected to exceed present-day 
rates by more than 25% (scale in Figures 2 and 3), from which we 
can anticipate effects on the ecosystem (see Implications section, 
below). We find that individual biological responses will be more 
severe in the northern region of the CCME, reflecting greater rela-
tive environmental change, compared with the southern region, 
and greater along the inner shelf, reflecting a larger proportion of 
sensitive species at shallower depths, compared to the outer shelf 
regions. We also find projected loss of aerobic habitat in two species 
for which we could combine temperature and oxygen sensitivities, 
likely causing an aerobically driven northward retreat of their south-
ern range edges. Although based on a thorough literature search of 
experimental data, our work highlights data gaps for species of high 
ecological and economic concern that could be readily filled with 
targeted experiments.

Considering multiple environmental variables (temperature, 
pCO2, O2) simultaneously allowed us to directly compare organismal 
sensitivities to projected changes in each of these three variables. 

F I G U R E  3  Weighted mean responses within species and response types from meta-analyses, displayed three ways. Points represent 
aggregated responses to all four environmental variables across the relevant layers for each taxon in the model domain, separated by 
response type. Means were weighted by precision of estimates from each individual study. Colored horizontal bars indicate 95% CI of 
each sensitivity based on meta-analysis results, and the size of each point indicates precision (1/SE of weighted mean), with larger points 
indicating higher precision. In (a), results are shown in order of mean response, regardless of response type and taxon; in (b), responses are 
organized by taxon, with gray horizontal bar indicating the span of mean responses within each taxon, and in (c), responses are organized by 
response type.
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Overall, sensitivities to carbonate system changes were more vari-
able across species than were sensitivities to other stressors, causing 
the largest decreases in individual biological rates in some species 
and the largest increases in others. This species-level variability is 
consistent with global patterns of high interspecific variability in 
ocean acidification sensitivities, even among taxonomically similar 
species (Busch & McElhany, 2016; Kroeker et al., 2013). By contrast, 
almost all species considered showed intermediate increases in bio-
logical rates with increased temperature. This is consistent with the 
expectation that temperate–latitude ectotherms tend to experience 
mean annual temperatures in the rising portion of their thermal per-
formance curves (Deutsch et al.,  2008), and hence, metabolically 
constrained biological rates are expected to increase with rising 
temperature (Gillooly et al.,  2001). One exception here were the 
canopy-forming kelps, in which biological rates mostly declined with 

temperature responses, in contrast to (and potentially offsetting) 
the increases in physiological rates with increased pCO2. In direct 
assays, oxygen sensitivity was moderately negative or neutral for 
the six species investigated. Yet for those species in which interac-
tive oxygen and temperature sensitivities were considered together 
via the Metabolic Index, responses were strong and negative, high-
lighting the importance of the interaction between increasing tem-
perature (and thus oxygen demand) with decreased oxygen supply.

The direction of change in biological rates varied among re-
sponse types: Rates of survival almost always declined, while 
changes in physiological rates (growth, consumption, movement, 
and metabolic rate) more often increased. This finding indicates 
that, not surprisingly, the choice of response types used in exper-
iments and the way in which they are combined is critical to con-
clusions about climate sensitivity. Furthermore, interpretation of 

F I G U R E  4  Response indices across locations along the Pacific coast of North America for the Cascadia and larger California Current 
Marine Ecosystem. (a–c) Scaled sensitivities of species and response types for species with depth distributions included in the three 
illustrative grid cells of the Cascadia 1.5 km model domain, locations indicated in panel (d). Horizontal bars indicate the combined mean 
increasing and decreasing responses, with values matching x and y grid in panel (d). (d–e) Positive and negative response indices within (d) 
the Cascadia domain (1.5 km resolution model), results for the outer shelf of Vancouver Island (VI) and Washington state (WA); and (e) the 
CCME domain (12 km resolution model), results for the outer shelf from British Columbia, Canada (BC) to Baja California, Mexico (MEX). 
Model domains do not include the inner seas (dark gray areas) or locations deeper than 500 m (indicated as the edge of shelf). For each grid 
cell in the model domains, the weighted mean of biotic responses to projected environmental changes for each species and response type 
(e.g., gray points in a–c) were grouped as increasing and decreasing responses, and each group summed and standardized by number of 
responses investigated (this index is represented as horizontal bars in a-c). Colors in d–e indicate the scale of the index, showing where 
mean increasing and decreasing responses to projected environmental change are relatively equal (gray, violet, and maroon cells; b and c), 
where increases outweigh decreases (purple cells; b), and where decreases outweigh increases (pink). The magnitude of effects generally 
declines from the coast to the outer shelf. Results are constrained to show the shelf and slope regions <500 m in depth, containing the depth 
distribution of most species. Density distributions around the color legends indicate the relative frequency of the index values in each model 
domain, and values indicate the threshold index values used for color display.
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increasing physiological rates at the organism or population level 
is not simple: increasing physiological rates are not always bene-
ficial to an organism, and can have detrimental effects when re-
sources (e.g., food or oxygen) do not increase to meet demand (see 
below). The differing directions of rate changes among response 
types make it difficult to ascertain an overall species-level climate 
sensitivity via data synthesis. Our assumption of additive effects 
within response types and taxa provided a first approximation of 
overall sensitivity. We present this approximation with caution 
and refer often to the individual-study level data in our interpreta-
tions, because we expect non-additive effects between stressors 

(e.g., temperature can affect the growth rate sensitivity to CO2), 
and nonadditive effects among life-history stage responses (mor-
tality of a larva is not equal to mortality of a reproductive adult). 
Similarly, aggregating individual species and stressor-level data 
within grid cells allowed spatial patterns to be summarized, but 
this metric should also be interpreted with caution, as different 
responses across response types are not necessarily additive.

Interpreting the effects of physiological rate changes at higher 
(e.g., population) levels is similarly not straightforward. Higher phys-
iological rates can represent greater intrinsic population growth 
potential, but can also represent greater resource demand. If ener-
getic resource supply rates are limiting and do not increase to match 
demand, greater per-capita resource demand (e.g., higher metabolic 
rate) can cause declines in population growth rates or population 
size at carrying capacity (Bernhardt et al., 2018; Carozza et al., 2019; 
Gillooly et al., 2007). Although we could not do so using all species in 
our meta-analysis, we directly explored this mechanism with regard 
to oxygen limitation in our Metabolic Index approach by asking how 
increased metabolic demand with warming changes the minimum 
oxygen requirement for survival; we find that within the CCME, in-
creased biological rates can be detrimental where oxygen supply is 
not simultaneously increased to meet demand.

Our Metabolic Index approach thus allowed multiple climate 
variables to be combined through a hypothesized mechanistic in-
teraction. Both species examined—anchovy and pink shrimp—were 
projected to lose aerobic habitat at the warm edge of their ranges 
because temperature-driven increases in metabolic rates cannot be 
supported by the available oxygen supply. This is consistent with 
the developing understanding that temperature-dependent hy-
poxia presents a pervasive habitat barrier for diverse marine spe-
cies (Deutsch et al., 2021). The timing and duration of aerobic stress 
will depend on the particular habitat and traits of species, including 
their relative mobility, which could allow rapid shoaling and avoid-
ance of low O2 areas. By contrast, in our meta-analysis of organismal 
responses, there were insufficient data on oxygen limits, nor mech-
anistic models allowing other combinations of climate responses, to 
combine them in this way. Clearly, frameworks for mechanistically 
combining stressors will be pivotal for projecting biological response 
to environmental change.

Several complexities will need to be overcome to translate the 
observed physiological responses presented here to projections 
of population or ecosystem change. First, we have modeled linear 
responses of biological rates to projected environmental change in 
mean conditions, but nonlinearities in responses (e.g., thermal per-
formance curves) combined with variability in environmental con-
ditions (e.g., heatwaves, low oxygen events, and other extremes) 
can lead to counterintuitive responses. For example, the addition 
of temporal variability in the temperature dimension causes organ-
isms to experience population declines at mean temperatures that 
are seemingly benign due to nonlinear declines beyond the thermal 
optimum (Bernhardt et al.,  2018; Martin & Huey,  2008; Vasseur 
et al.,  2014). The response to oxygen in Dungeness crab and sa-
blefish, for example, was nonlinear and steeper at lower O2 values 

F I G U R E  5  Predicted annual mean habitat limits at the median 
observed depths of Alaska pink shrimp (Pandalus eous, 100 m) and 
northern anchovy (Engraulis mordax, 40 m), using 12 km regional 
model outputs. Land is shown in gray, and predicted distributions 
are shown in yellow and orange areas, based on both the species 
distribution model (SDM) and the Metabolic Index (MI). Blue circles: 
Number of observations from all depths and years (1° binned). 
Black line: Edge of SDM (<50% probability offshore). Orange 
(1994–2007) and yellow (2100) lines: Temperature-dependent 
hypoxia threshold (Φ/Φcrit >1 from the MI), with aerobic habitat 
primarily offshore (west) of line for Alaska pink shrimp and north of 
line for northern anchovy. Orange arrows: Spatial direction of the 
temporal shift in the MI threshold.
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(Figure S3), leading to underestimates of oxygen sensitivity in these 
species in our analysis. Similarly, some declines in biological rates at 
high temperatures lead to underestimates of rate declines, depend-
ing on the temperatures experienced (Figure  S2); future analyses 
that capture value-specific responses rather than an overall sen-
sitivity are warranted. Second, responses at one life-history stage 
may be nonadditively offset by stronger (positive or negative) re-
sponses at another stage through demographic compensation (Doak 
& Morris, 2010; Le Quesne & Pinnegar, 2012). Here, we combined 
responses among life-history phases additively, but the sensitivity 
of juvenile phases (constituting much of the data from Dungeness 
crab, red urchins, and kelp) may have smaller demographic effects 
due to lower reproductive potential of early life stages compared 
to adults (Kindsvater et al., 2016), or can be critical transition stages 
causing demographic bottlenecks (Dahlke et al., 2020). Third, inter-
actions between species are expected to drive changes in commu-
nity structure that could be at odds with species-specific predictions 
(Doney et al., 2020; Gilbert et al., 2014; Gilman et al., 2010). Results 
from an ecosystem modeling framework exemplify these last two 
points with responses to pCO2 among CCME species, as reported 
by Marshall et al.  (2017). These authors used an end-to-end eco-
system model forced by climate projections of seawater pH in the 
CCME, informed by a meta-analysis of the pH sensitivities (Busch 
& McElhany, 2016). In their modeling, the direct negative effects of 
ocean acidification on Dungeness crab larvae failed to manifest at 
the population level due to demographic compensation of adults, 
whereas reductions in their prey populations—caused by negative 
responses to ocean acidification in other species—resulted in pro-
jected declines in Dungeness crab populations. Our results are con-
sistent with those of Marshall et al. (2017) in finding clear negative 
sensitivities to pCO2 among some epibenthic invertebrates and 
groundfish (Dungeness crabs, red urchins, and rockfish) —although 
in our study these are derived only from direct responses (without 
a trophic interaction). Our work generally differs by focussing on 
taxon-specific data, summarizing response rates as slopes (and thus 
accounting for different treatment levels among studies), and pro-
viding the additional context of responses to O2 and temperature. 
Although we do not place our results within an ecosystem model, 
we consider some community-scale implications via species interac-
tions (see Ecological Implications, below).

4.1  |  Data gaps

Our synthesis identified data gaps of considerably high priority. 
First, it was surprising how few response types and correspond-
ing environmental variables have been reported for the species 
we examined, given their socio-economic importance. The cover-
age across species, treatments (temperature, O2, pCO2, or pH), and 
response types was low (median coverage within species  =  37%, 
max coverage = 47%) and this issue persisted even after reducing 
the species set due to data scarcity, combining some species into 
groups (canopy-forming kelps, rockfish species pairs), and excluding 

salinity due to insufficient data. Experimentally derived responses 
to low O2 were especially sparse in the literature, despite the ex-
pected declines in O2 in this region and the importance of direct 
O2 limitation and O2-limited thermal tolerance among regional spe-
cies. Moreover, most studies of survival were conducted on larval 
stages but not on adults, leaving open questions about variation 
in response strength across life stages, and resulting demographic 
responses. Furthermore, it was not possible to incorporate empiri-
cally derived responses to multiple drivers as would be required to 
estimate their interactive effects, simply because the experimental 
data were mostly lacking. Physiological experiments focused on 
responses to global change seem often have used “model” species 
rather than those of cultural and economic concern, often focus 
on single life-history phases, and rarely consider all three key en-
vironmental stressors or their interactions. It is within reach to fill 
these gaps with efficient, complexity-focussed experimental de-
signs (e.g., factorial, collapsed, or reduced designs, reviewed in Boyd 
et al., 2018) that consider multiple life-history stages.

While our dataset describing physiological sensitivities could have 
been augmented by adding correlational responses to environmen-
tal change or including data generated from closely related species, 
we chose to constrain our input data to controlled experiments on 
the particular species of interest. Doing so increases our confidence 
that the mechanisms underpinning the observed sensitivities are ac-
tually related to the specified variables. Although the Metabolic Index 
approach requires even more information for each species—namely, 
an estimate of threshold values for oxygen limitation at multiple 
temperatures—the value of the data for projecting the interactive 
impacts of multiple stressors warrants the added experimentation re-
quired. Given our observation of differing overall trends between sur-
vival and other biological rates, we emphasize as a priority the need to 
assess responses that are most likely to influence demographic pro-
cesses (e.g., through changes in survival and reproduction) for species 
of cultural and economic concern in the CCME.

4.2  |  Scaling results across space and time

Our approach combines high-resolution climate projections with ex-
perimentally derived biological responses to estimate vulnerability 
to changing ocean conditions. However, in most cases, experimental 
organisms were collected from a single site within the CCME, thereby 
constraining the available genetic and physiological potential in un-
known ways and leading to the possibility that unobserved pheno-
typic variation in response norms could lead to different responses 
across the species' range. Similarly, the conditions in laboratory as-
says (e.g., food supply, oxygen availability, levels of other stressors, 
age and condition of experimental subjects) can influence results, and 
it is not possible to evaluate responses to changes in these covariates 
without factorial experiments (Doney et al., 2020). Moreover, using 
responses measured in the past to understand sensitivity in the future 
does not allow the possibility of adaptation and acclimation within 
that time frame. However, we note that over seasonal to interdecadal 
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periods, biogeographical retreat in response to adverse conditions ap-
pears to be more common than physiological change across a range 
of water-breathing ectotherms (e.g., Deutsch et al., 2015; Fredston-
Hermann et al.,  2020; Hastings et al.,  2020; Morley et al.,  2018; 
Pinsky et al., 2013). Taken together, the experimental data provide a 
coarse but data-driven lens through which to understand the relative 
sensitivity of species of concern in the CCME.

4.3  |  Ecological implications

Our results suggest that substantial levels of change can be ex-
pected within this century for every taxon included in our analy-
sis in every grid cell of the CCME inner shelf region. Moreover, 
such changes are highly unlikely to be restricted to the suite of 
species examined here, and can reasonably be expected to occur 
across species yet unstudied. Such widespread change will, over 
time, cause substantial changes in ecosystem structure and func-
tion. Local or regional loss of canopy-forming kelps caused by de-
clining rates of survival and growth can affect local biodiversity 
through loss of structural habitat (Arkema et al. 2009), and poten-
tially alter other ecosystem services provided by kelp (Norderhaug 
et al., 2020); although kelps had high positive responses in meta-
bolic rate, it is unclear how these will interact with declines in sur-
vival and growth. Increased growth and consumption rates in two 
invertebrate species with strong interactions, red urchins (reviewed 
in Rogers-Bennett, 2007) and ochre stars (Paine, 1966), could have 
large knock-on effects on nearshore food webs if left unchecked, 
as observed in the 2014 sea star wasting disease epidemic, in which 
ochre stars and their predation rates declined (Menge et al., 2016). 
Controlled experiments on survival responses to climate change of 
both species are currently only available for their larval stages, with 
evidence that red urchin larvae will have decreased survival; clearly 
further study into demographic effects and adult survival is war-
ranted for these taxa. Reduction or loss of species of cultural and 
commercial value caused by reduced survival among Dungeness 
crab, razor clams, sablefish, and copper and quillback rockfish 
(Figure 3b), and loss of aerobic habitat for anchovy and pink shrimp 
(Figure 5), all can be expected by the end of this century with ex-
pected impacts on human livelihoods. These outcomes could be 
mitigated or exacerbated by changes in other interacting species. 
For example, changes in food or nutrient resource supply, arrival 
of non-native or range-expanding species (Pinsky et al., 2020), and 
new disease outbreaks associated with warming waters (Burge & 
Hershberger, 2020), could each result in changes beyond the direct 
sensitivities synthesized here. The socio-economic consequences 
of these changes are likely to be substantial and will be spread in-
equitably across economic sectors and human communities (e.g., 
Jardine et al., 2020), contributing to disparities in the potential for 
adaptations that promote human well-being.

Actions to maintain and expand ocean monitoring networks, fur-
ther develop predictive models, integrate scientific information into the 
policy and decision-making domains, create and implement adaptation 

strategies, and promote public understanding could help to alleviate 
some of the anticipated harm to human communities. Even so, the 
scope of change over just a few generations is likely to be large, and pol-
icy interventions, while necessary, may be insufficient to fully reduce 
harm. Ultimately, sharp reduction in fossil fuel-derived CO2 emissions is 
the single strategy to offer long-term benefits across all domains and is 
paramount to achieving success through any other intervention.
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