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Abstract

Genetic manipulation of whole-plant transpiration rate (TR) response to increasing

atmospheric vapor pressure deficit (VPD) is a promising approach for crop adaptation

to various drought regimes under current and future climates. Genotypes with a non-

linear TR response to VPD are expected to achieve yield gains under terminal

drought, thanks to a water conservation strategy, while those with a linear response

exhibit a consumptive strategy that is more adequate for well-watered or transient-

drought environments. In wheat, previous efforts indicated that TR has a genetic

basis under naturally fluctuating conditions, but because TR is responsive to variation

in temperature, photosynthetically active radiation, and evaporative demand, the

genetic basis of its response VPD per se has never been isolated. To address this, we

developed a controlled-environment gravimetric phenotyping approach where we

imposed VPD regimes independent from other confounding environmental variables.

We screened three nested association mapping populations totaling 150 lines, three

times over a 3-year period. The resulting dataset, based on phenotyping nearly 1400

plants, enabled constructing 63-point response curves for each genotype, which

were subjected to a genome-wide association study. The analysis revealed a hotspot

for TR response to VPD on chromosome 5A, with SNPs explaining up to 17% of the

phenotypic variance. The key SNPs were found in haploblocks that are enriched in

membrane-associated genes, consistent with the hypothesized physiological determi-

nants of the trait. These results indicate a promising potential for identifying new

alleles and designing next-gen wheat cultivars that are better adapted to current and

future drought regimes.

1 | INTRODUCTION

Anthropogenic climate change is driving an increase in atmospheric

vapor pressure deficit (VPD, or evaporative demand) in major agricultural

hotspots across the globe, leading to major losses of productivity

(Ficklin & Novick, 2017; Yuan et al., 2019; Lopez et al., 2021). Because

VPD increases drive higher transpiration rates (TR) from crop canopies,

productivity penalties typically occur as a result of these losses not being

matched by adequate water supply either through irrigation or precipita-

tion (Kimm et al., 2020; Lobell et al., 2013). For grain crops such as wheat

(Triticum aestivum L.) grown on stored soil moisture under terminal

drought, such losses most often take place due to exacerbated exposure

of the highly sensitive flowering and seed-fill phases to water deficit

(Zheng et al., 2013; Zheng et al., 2016).
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Recently, two independent modeling approaches have shown

that cultivars exhibiting a limitation on TR as VPD increased

(i.e., sensitivity to VPD), could lead to substantive yield increases in

Mediterranean-type environments under current and future climate

change scenarios (Collins et al., 2021; Sadok et al., 2019). In both

cases, the yield gains arose from a water-conservation phenotype

resulting from a reduction in excessive TR losses during times of the

day where evaporative demand is highest (VPD-sensitivity), which

leads to larger amounts of soil moisture available during critical repro-

ductive phases in comparison to more ‘consumptive’ phenotypes

(VPD-insensitivity).

Since this VPD response was hypothesized to be a potential

‘trait’ that was quantitatively related to yield performance in the sys-

tems analysis of Sinclair et al. (2005), efforts have been made to iden-

tify such a water-saving phenotype in various crops (for review, see

Sinclair et al., 2017 and Monnens & Sadok, 2020). In wheat, Rebetzke

et al. (2003) identified substantial phenotypic variability in leaf-level

conductance among wheat breeding lines, with evidence suggesting

direct involvement of gene action, but direct relationships with VPD

variation were not investigated due to multiple confounding variables

in the field. More recently, substantive phenotypic variability for

whole-plant TR response curves to increasing VPD was established

under controlled environments, with findings suggesting that water-

saving responses are typically associated with drought-adapted culti-

vars (Schoppach et al., 2017; Tamang et al., 2019). The mechanistic

basis of such a strategy was found to be associated with a reduction

in root hydraulic conductance likely to be mediated by smaller meta-

xylem vessel size and a lack of root mercury-sensitive aquaporins

(Schoppach et al., 2014; Steinemann et al., 2015) that are possibly

modulated by root auxin levels (Sadok & Schoppach, 2019; Schoppach

et al., 2016).

For these results to be translatable for breeding purposes, a major

bottleneck is the limited ability to phenotype for this trait in such a

fashion to enable genetic mapping. In a first step to test the feasibility

of the approach, Schoppach et al. (2016) screened a mapping popula-

tion of 145 double-haploid lines for their TR dynamics over the course

of a single day under naturally fluctuating conditions, based on an

hourly manual weighting of pots over a 7-hour period. This led to

identifying a major QTL controlling whole-plant TR located on chro-

mosome 5A, which explained more than 25% of the genotypic vari-

ance (Schoppach et al., 2016). However, this preliminary effort did not

enable identifying the genetic basis of TR sensitivity to VPD per

se, since evaporative demand was co-varying with temperature

(20.9–38.5�C) and the number of datapoints based on which TR

response curves were built was too limited to enable detection of

VPD-sensitivity (i.e., change in slope of TR response to VPD).

Given that temperature itself can have VPD-independent effects

on TR through temperature-dependent mechanisms that influence

stomatal K+ channels, aquaporin regulation, changes in cuticle per-

meance or/and water viscosity over such ranges (Sadok et al., 2021

and references therein), the genetic mapping of Schoppach et al.

(2016) could not be directly ascribed to VPD effects. This is a major

limitation to any breeding efforts based on this trait, because if no

genetic basis is found underlying TR responses to VPD per se, then

this would indicate that this eco-physiological trait is genetically

intractable. Additionally, temperature effects have been shown to

cause a shift from a water-saving to a consumptive TR response to

VPD in several species (Riar et al., 2015; Shekoofa et al., 2015, 2016),

which makes it necessary to phenotype TR response independent

from co-variation in temperature. Otherwise, this would substantially

complicate any effort at a genetic dissection of TR response to VPD,

since it would lead to uncovering markers that are not directly rele-

vant to this response.

To circumvent these limitations, we developed a controlled-

environment gravimetric phenotyping platform deployed across three

adjacent walk-in growth chambers where TR response curves could

be built independent from co-variation in temperature, air mixing,

photosynthetically active radiation (PAR) and soil moisture availability

(Tamang & Sadok, 2018). The imposition of target VPD regimes in this

system is enabled by ad hoc humidification/ de-humidification set-ups

that are programmed in coordination with the growth chamber's set-

tings such that each genotype is characterized by 21 TR versus VPD

datapoints per experimental run. This system was successfully tested

on maize (27 lines, Tamang & Sadok, 2018), barley (26 lines, Sadok &

Tamang, 2019) and wheat (58 lines, Tamang et al., 2019), revealing

substantial phenotypic variability in each one of these crops.

Leveraging this resource, the first goal of this investigation was to

develop a phenotyping protocol for screening TR response curves to

increasing VPD for larger populations, in order to enable for the first

time, a genetic mapping effort for this trait. To this end, we used three

nested association mapping (NAM) families chosen in order to maxi-

mize diversity, using in total 150 lines. The second goal was to con-

duct a genetic mapping effort and suggest potential candidate genes

to gain insights into the underlying genetic basis of this trait. To

achieve this, a total of three independent experiments were con-

ducted over the course of 3 years, leading to genotypes being typi-

cally characterized by very high-resolution (63-point) TR response

curves to increasing VPD based on the phenotyping of nearly 1400

plants. We discuss the relevance of the findings and implications for

breeding.

2 | MATERIALS AND METHODS

2.1 | Genetic material

A total of 150 spring wheat lines (Triticum aestivum L.), representing

three families (FAM14, FAM22 and FAM24) were selected from the

recently developed Spring Wheat Multiparent Introgression Popula-

tion (SWMIP, Sallam et al., 2020). This population consists of 25 fami-

lies that were developed out of crosses between 25 landraces

assembled from across the globe and the common parent RB07

(Anderson et al., 2009), a commercial cultivar with wide adaptation

released by the University of Minnesota wheat breeding program.

Out of the total lines that were available in each family (68, 80, and

87 for FAM14, FAM22 and FAM24 respectively), 50 lines per family
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were randomly sampled for this study. These three families were

selected because each one of them had a parent, namely PI 220455

(FAM14), PI 430750 (FAM22) and PI 519465 (FAM24) that con-

trasted sharply in its TR response curves to increasing VPD relative to

the common parent RB07 (Tamang et al., 2019; Figure S1).

2.2 | Phenotyping strategy and growth conditions

A total of three independent phenotyping experiments were under-

taken across three years, each conducted over a two-month period

(July–August 2017, August–September 2018, and April–May 2019),

resulting in a total of nine replicates for each genotype (three repli-

cates per experiment). In each experiment, three staggered plantings

took place one week apart, where 50 lines from one of the three

NAM families, replicated three times, were planted along with the

recurrent parent RB07. This sequencing was necessary due to the

space limitations of the gravimetric platform developed for phenotyp-

ing TR response curves to increasing VPD, which translated into a

maximal throughput of 54 plants per day (Tamang et al., 2019, see

section 2.3 for details). However, this sequencing did not significantly

impact the response curves of the check cultivar across all experiments.

The logistics of the phenotyping process required that each group of

50 genotypes be screened over a period of three consecutive days in a

given week. In each experiment, all plants were phenotyped at approxi-

mately the same age (32–34, 38–40, and 34–36 days in Exps. 1, 2, and

3, respectively). In a given week, phenotyping was initiated when 50% or

more of the plants reached the jointing stage (Zadok's scale of 31).

In all experiments, plants were grown in a glasshouse at the Uni-

versity of Minnesota, Saint Paul, MN, USA (44� 59018.00’N 93�

10050.50’W). For each genotype, three replicate plants were seeded at

a depth of 2.5 cm in 3.8 cylindrical pots filled with premium garden

mix (Plaisted Companies Inc., Elkriver) to which a slow-release fertil-

izer (Osmocot Plus, Everris, 15-9-12 NPK) was added. Plants were

watered every 3 days during the first 2 weeks, every second day

during the 3–4 weeks and daily during the fifth week of their growing

period. Pots were rotated every 2–3 days inside the greenhouse to

minimize differences in growth rates due to spatial heterogeneities in

environmental conditions.

Inside the glasshouse, air temperature, relative humidity and VPD

conditions were recorded every 15 min by means of three pocket sen-

sors (EL-USB-2-LCD, Lascar Electronics) placed at three locations at

the canopy height. A 14-h photoperiod (0600–2000 h) was main-

tained during the growth of the plants in all experiments. Supplemen-

tal lighting was provided by eight 1000-W HPS-Metal Halide

lightbulbs that were programmed to automatically activate when the

incident irradiance fell below 300 W m�2 s�1 for 30 min. Details of

the growth conditions experienced by the plants are provided in

Table 1.

2.3 | Phenotyping transpiration rate response
curves to increasing vapor pressure deficit

The phenotyping effort was conducted using the Gravimetric Pheno-

typing (GraPh) system (Tamang & Sadok, 2018). The platform consists

of (i) 54 balances with a resolution of 0.01 g connected to data log-

gers, (ii) nine temperature and RH sensors, and (iii) humidity control

equipment (12 industrial humidifiers and three industrial de-humidi-

fiers) deployed inside three walk-in, adjacent growth chambers as fully

described elsewhere (Sadok & Tamang, 2019; Tamang et al., 2019;

Tamang & Sadok, 2018). Briefly, during the phenotyping sequence,

plants are exposed to a stepwise increase in VPD levels, each 60 min-

long, from �1.5 to 3 kPa under a constant temperature of 30�C and

photosynthetically active radiation (PAR = 500 μmol m�2 s�1) at can-

opy height. The first step, consisting of the lowest VPD level, was

achieved by turning the humidifiers on for the first hour after which

they were turned off. Over the next 6 h, the dehumidifier automati-

cally decreased RH 80%–30% in a stepwise manner, that is, each hour,

resulting in the environmental regime detailed in Table 2.

TABLE 1 Average temperature and vapor pressure deficit (VPD) conditions (± SE) experienced by the plants during their growth inside the
glasshouse

Daytime conditions Nighttime conditions

Expa. Plantingb T (± SE) RH (± SE) VPD (±SE) T (±SE) RH (±SE) VPD (± SE)

Exp 1 Week 1 34.6 ± 2.5 39.2 ± 5.5 3.6 ± 0.7 21.6 ± 0.9 71.2 ± 5.2 0.8 ± 0.2

Week 2 33.7 ± 2.8 41.1 ± 6.4 3.4 ± 1.8 21.1 ± 0.9 73.4 ± 5.4 0.7 ± 0.2

Week 3 32.7 ± 2.7 42.0 ± 6.9 3.2 ± 0.7 20.9 ± 0.9 74.1 ± 5.4 0.7 ± 0.2

Exp 2 Week 1 31.6 ± 1.8 47.6 ± 8.7 2.6 ± 0.6 21.6 ± 1.0 75.8 ± 4.3 0.6 ± 0.2

Week 2 31.9 ± 2.1 48.3 ± 8.4 2.6 ± 0.6 21.9 ± 1.1 75.0 ± 4.5 0.7 ± 0.2

Week 3 31.4 ± 2.2 48.8 ± 9.0 2.6 ± 0.6 21.4 ± 1.3 75.7 ± 4.4 0.6 ± 0.2

Exp 3 Week 1 26.9 ± 2.1 31.7 ± 7.6 2.6 ± 0.5 16.9 ± 0.7 61.5 ± 5.5 0.8 ± 0.2

Week 2 26.9 ± 1.9 33.6 ± 8.1 2.5 ± 0.5 17.0 ± 0.7 65.4 ± 5.5 0.7 ± 0.2

Week 3 26.7 ± 2.1 37.0 ± 8.5 2.4 ± 0.5 17.2 ± 0.8 68.0 ± 5.5 0.6 ± 0.2

aExperiment number.
bPlanting group.
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Approximately 6 h prior to transferring the plants to the pheno-

typing platform, pots were slowly watered until dripping and then

were left (for 6 h) to drain any excess water. Immediately after water-

ing, aluminum foil was tightly wrapped around the base of the plant

tillers and sealed around the pot edge to nullify direct water evapora-

tion from the soil. A total of 54 plants were then transferred at

approximately 18:00 h to the GraPh system, where each replicate

plant was randomly placed in one of three chambers (18 plants per

chamber) and exposed to temperature, VPD and PAR levels of 30�C,

1.7 kPa and 500 μmol m�2 s�1 respectively for 2 h before lights were

turned off at 20:00 h. During the nighttime, plants were subjected to

a temperature and VPD values of 20.3�C and 0.7 kPa, respectively

until the phenotyping experiment began at 6:30 h the following morn-

ing, following the sequence outlined in Table 2.

At the end of the last VPD step, plants were removed from the

growth chambers and transferred to the lab, where leaf areas

(LA) were measured destructively using a LA meter (model LI3100C,

LI-COR) so that transpiration rates could be calculated on a LA basis

(mg H2O m�2 s�1, Fletcher et al., 2007). Leaf samples were then

oven-dried at 65�C for 10 days and weighted afterwards to compute

specific LA (SLA, cm2 g�1). Overall, combining the three independent

experiments, a total of 1386 plants were phenotyped, typically result-

ing in 63 transpiration versus VPD datapoints per genotype in the

1.5–3.1 kPa range.

3 | DATA ANALYSIS

3.1 | Extraction of phenotypes from TR response
curves to VPD

Phenotypic and environmental data obtained via the GraPh platform

were processed as in Tamang and Sadok (2018) and Tamang et al.

(2019), using scripts written in R (R Development Core Team, 2017).

TABLE 2 Key environmental conditions imposed on the mapping population during the phenotyping of transpiration rate (TR) response
curves to increasing vapor pressure deficit (VPD) in the GraPh platform

Expa. Week Day T (± SE)

VPD1

(± SE)

VPD2

(± SE)

VPD3

(± SE)

VPD4

(± SE)

VPD5

(± SE)

VPD6

(± SE)

VPD7

(± SE)

Exp

1

Week

1

1 30.2 ± 0.0 1.7 ± 0.1 2.0 ± 0.1 2.1 ± 0.2 2.3 ± 0.1 2.5 ± 0.1 2.8 ± 0.1 2.9 ± 0.1

2 30.2 ± 0.1 1.7 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 2.3 ± 0.1 2.5 ± 0.1 2.8 ± 0.1 2.9 ± 0.1

3 30.0 ± 0.1 1.6 ± 0.1 2.0 ± 0.1 2.1 ± 0.2 2.3 ± 0.2 2.5 ± 0.1 2.7 ± 0.1 2.8 ± 0.1

Week

2

1 30.2 ± 0.1 1.6 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 2.4 ± 0.0 2.6 ± 0.1 2.8 ± 0.0 3.0 ± 0.0

2 30.4 ± 0.1 1.6 ± 0.2 2.0 ± 0.1 2.2 ± 0.1 2.5 ± 0.1 2.7 ± 0.0 2.9 ± 0.1 3.0 ± 0.1

3 30.2 ± 0.3 1.7 ± 0.2 1.9 ± 0.2 2.1 ± 0.2 2.3 ± 0.2 2.5 ± 0.1 2.8 ± 0.1 2.9 ± 0.1

Week

3

1 30.0 ± 0.3 1.5 ± 0.2 2.0 ± 0.1 2.1 ± 0.2 2.3 ± 0.2 2.5 ± 0.2 2.9 ± 0.2 2.9 ± 0.2

2 30.0 ± 0.1 1.5 ± 0.2 2.0 ± 0.2 2.2 ± 0.1 2.3 ± 0.0 2.5 ± 0.0 2.8 ± 0.1 3.0 ± 0.1

3 30.0 ± 0.2 1.5 ± 0.2 1.9 ± 0.2 2.1 ± 0.2 2.3 ± 0.1 2.5 ± 0.1 2.7 ± 0.1 2.8 ± 0.1

Exp

2

Week

1

1 30.3 ± 0.4 1.7 ± 0.2 2.1 ± 0.1 2.3 ± 0.2 2.5 ± 0.1 2.7 ± 0.1 2.9 ± 0.2 2.9 ± 0.1

2 30.5 ± 0.4 1.5 ± 0.2 2.0 ± 0.1 2.3 ± 0.1 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.1 2.8 ± 0.1

3 30.6 ± 0.3 1.7 ± 0.1 2.1 ± 0.0 2.3 ± 0.1 2.5 ± 0.6 2.8 ± 0.1 3.0 ± 0.1 2.9 ± 0.1

Week

2

1 30.4 ± 0.6 1.6 ± 0.2 2.1 ± 0.1 2.3 ± 0.2 2.5 ± 0.2 2.7 ± 0.2 2.9 ± 0.1 2.9 ± 0.1

2 30.3 ± 0.4 1.5 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 2.5 ± 0.1 2.7 ± 0.1 2.9 ± 0.1 3.0 ± 0.1

3 30.3 ± 0.5 1.6 ± 0.1 2.0 ± 0.1 2.2 ± 0.1 2.4 ± 0.2 2.7 ± 0.1 2.9 ± 0.1 3.0 ± 0.1

Week

3

1 30.2 ± 0.8 1.7 ± 0.2 2.0 ± 0.2 2.3 ± 0.2 2.5 ± 0.2 2.7 ± 0.2 2.9 ± 0.9 3.1 ± 0.3

2 30.1 ± 0.4 1.6 ± 0.1 2.1 ± 0.2 2.3 ± 0.2 2.5 ± 0.1 2.7 ± 0.1 2.9 ± 0.1 3.0 ± 0.1

3 30.3 ± 0.7 1.7 ± 0.2 2.1 ± 0.2 2.3 ± 0.2 2.5 ± 0.2 2.7 ± 0.2 3.0 ± 0.2 3.1 ± 0.4

Exp

3

Week

1

1 30.1 ± 0.6 1.6 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 2.4 ± 0.2 2.7 ± 0.2 2.9 ± 0.2 3.0 ± 0.2

2 30.4 ± 0.4 1.6 ± 0.1 1.9 ± 0.2 2.1 ± 0.2 2.2 ± 0.2 2.5 ± 0.2 2.8 ± 0.2 2.9 ± 0.2

3 28.7 ± 0.4 1.6 ± 0.1 2.1 ± 0.1 2.2 ± 0.1 2.4 ± 0.1 2.7 ± 0.1 2.9 ± 0.1 3.0 ± 0.2

Week

2

1 29.9 ± 0.3 1.6 ± 0.2 1.9 ± 0.2 2.2 ± 0.2 2.5 ± 0.1 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.2

2 30.0 ± 0.5 1.7 ± 0.1 2.0 ± 0.2 2.1 ± 0.2 2.3 ± 0.2 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.2

3 30.0 ± 0.4 1.7 ± 0.1 1.9 ± 0.1 2.1 ± 0.1 2.4 ± 0.1 2.6 ± 0.1 2.9 ± 0.1 2.9 ± 0.2

Week

3

1 30.4 ± 0.5 1.6 ± 0.1 1.9 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.6 ± 0.1 2.8 ± 0.1 2.9 ± 0.2

2 30.4 ± 0.4 1.6 ± 0.1 2.0 ± 0.1 2.1 ± 0.1 2.3 ± 0.1 2.6 ± 0.1 2.8 ± 0.1 3.0 ± 0.2

3 29.8 ± 0.3 1.5 ± 0.1 1.8 ± 0.1 2.0 ± 0.1 2.3 ± 0.1 2.5 ± 0.1 2.7 ± 0.1 2.8 ± 0.1

aExperiment number.
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Briefly, TR time courses with a temporal resolution of 1 min were con-

structed for each individual plant in each experiment. Average TR

values and their corresponding VPDs were then computed for each

VPD step, while excluding the first 15 min during which TR was still

acclimating to the new VPD regime (Schoppach & Sadok, 2012). We

tested whether TR was at a steady-state regime during the remaining

45 min by regressing TR against time in each VPD step (Tamang

et al., 2019). Less than 3% of the analyzed 8802 TR time courses had

significantly non-zero slopes, indicating that TR of the vast majority of

plants were at steady-state during phenotyping.

In a second step, regression analyses were conducted to charac-

terize TR versus VPD response curves for each genotype in each

experiment. Two regression models, one linear and one segmented

were compared in each case and the best fitting formalism for a given

genotype was determined based on an extra sum-of-squares F test

(p < 0.05). The linear model resulted in two parameters, the slope and

y-intercept:

TR¼ y interceptþ slope�VPDð Þ, ð1Þ

while the segmented one produced four parameters:

TR¼ slope1�VPDBPþy intercept1f gþ slope2� VPD�VPDBPð Þf g,
ð2Þ

where slope1, y-intercept1, VPDBP and slope2 are respectively the

first slope, its y-intercept, the VPD breakpoint (BP)—that is, the VPD

at which the slope of TR response to VPD changes—, are the second

slope of regression. This method relied on an iterative procedure

(maximum number of iterations = 1000) by starting with initial condi-

tions provided by the user. The iteration tested primarily on whether

the slopes of the two linear segments derived from linear regression

were significantly different (P < 0.05; Motulsky, 1999).

Depending on the experiment, the relative proportions of linear:

segmented response curves were 128:20, 113:35 and 102:45 for

experiments 1, 2 and 3, respectively. Because the two fits presented

different sets of parameters with different potential biological inter-

pretations, it was impossible to conduct a genetic analysis on the two

groups of genotypes based on the same set of traits. To circumvent

this limitation and enable a joint analysis of data from the two groups,

the formalisms presented in Equation 1 and Equation 2 were used to

calculate, for each genotype within each experiment, four TR values

at four regularly spaced VPD levels spanning the entire range imposed

(1.5, 2.0, 2.5 and 3.0 kPa), yielding the corresponding traits: TR1.5,

TR2.0, TR2.5, and TR3.0.

3.2 | Best linear unbiased estimates of trait values
and repeatabilities

Best linear unbiased estimates (BLUEs) for each of the traits were cal-

culated using the lme4 R package (Bates et al., 2015). The experimen-

tal effect in the fitted mixed model was treated as a random effect

and the replicates within each experiment were nested while lines

were treated as fixed effect. Broad-sense repeatability (r) of each trait

was calculated based on Bajgain et al. (2021) and Sallam et al. (2020)

as follows:

r¼ σ2L∶Fþσ2Fð Þ
σ2L∶Fþσ2Fþσ2e∕Eð Þ , ð3Þ

where σ2L∶F represent the variance of lines nested within families, σ2F
represent the variance between families, σ2e is the pooled residual

variance and E is the number of experiments. Within-family broad

sense heritabilities (H2) were calculated using the formula and

reported in Table S1.

3.3 | Linkage disequilibrium, genetic relatedness,
association mapping and candidate gene analysis

The procedure for genotyping the SWMIP population and generation

of consensus linkage map is fully described in Sallam et al. (2020). For

the present study, genotypic data was subset to the three families and

filtered to remove monomorphic markers, markers with >20% miss-

ing data and markers with minor allele frequency of <5% (Anderson

et al., 2010). This procedure retained 13,590 Single Nucleotide

Polymorphisms (SNP) for downstream analyses of association map-

ping. Linkage disequilibrium (LD) values among these 13,590 SNPs

were estimated as pairwise squared correlation coefficients (r2)

across all SWMIP, where any two SNPs with an r2 value of >0.2

were declared to be in LD (Lin et al., 2012; Sallam et al., 2020).

Principal Component Analyses (PCA) were conducted in R using the

prcomp function to characterize genetic relatedness among the

three families.

Data from two lines out of the 150 was excluded from the

genetic mapping procedure due to data losses, so that the association

mapping was conducted on data from 148 lines. The analysis con-

ducted to identify SNPs significantly associated with the traits was

conducted on data obtained by calculating BLUE values as described

above. For the four TR traits, since models were fitted at the experi-

mental level combining replicates, the total number of values used to

calculate BLUE values were three. For rest of the traits, this number

was nine. SNPs were identified by implementing two different GWAS

models as discussed in Sallam et al. (2020) and Bajgain et al. (2021).

The first model was implemented in the GWAS function of the rrBLUP

R package (Endelman, 2011) which takes genetic kinship (K model)

into account. The second model was implemented using gwas2 func-

tion of R package NAM (Xavier et al., 2015) which accounts for both

family stratification and genetic kinship (N model). In both models, sig-

nificant SNPs were identified using the R package qvalue (Storey &

Tibshirani, 2003) with a false discovery rate (FDR) of 0.05. This pack-

age calculates q-values and local FDR values from a list of p values

resulting from the simultaneous testing for significance for all SNPs. If

multiple SNPs were identified within the same haplotype block, only

the SNP with the lowest p value was reported. The percentage of
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phenotypic variance explained by each SNP (R2) was computed as

implemented in the R/qtl package (Broman et al., 2003).

For the candidate gene analysis, all the genes within the haplo-

type block where the SNPs localized were scanned for protein coding

genes along with their annotations using IWGSC RefSeq v1.0 avail-

able in Ensembl Plants Biomart (https://plants.ensembl.org/biomart).

For SNPs not within any haplotype blocks, a 100 kb region around

the SNP was scanned.

3.4 | Other statistical analyses

Stability analyses of TR plateaus at each VPD step and regression fits

of TR response curves to VPD (linear and segmented) were conducted

using the statistical software Prism (version 9.2.0., GraphPad software

Inc.). Analysis of variance on TR traits were carried out in R using the

aov function. The best-fit model was selected using the Akaike infor-

mation criterion (AIC) model selection method implemented in R using

the AICcmodavg package.

4 | RESULTS

4.1 | Diversity in transpiration response curves to
increasing VPD across the three families

As exemplified on Figure 1 and fully detailed in Table S1, there was a

substantial diversity in TR responses to VPD among the genotypes of

the study.

For each experiment, regression fits were of a good quality, with

coefficients of determination (R2) averaging 0.80 (median = 0.83).

Due to larger scatter associated with increased sampling size, these

averaged 0.64 (median = 0.65) when combining all experiments as

exemplified in Figure 1. The percentage of linear versus segmented

responses was comparable across the three families, and a similar

observation applies to the ranges of the regression parameters

(Figure 2).

Independent from the family, and combining data from all experi-

ments, the majority (85%) of the 148 genotypes presented a linear TR

response to VPD with slopes that ranged from 30.5 to 61.7 mg H2O

m�2 s�1 kPa�1, a 2-fold variation. The responses of the remaining

15% (22 genotypes) were best described by a segmented fit, where

Slope1 and Slope2 ranged from 36.7 to 76.5 and 19.0 to 36.2 mg

H2O m�2 s�1 kPa�1 respectively, while VPDBP values ranged from 2.1

to 2.8 kPa (Figure 2).

4.2 | Frequency distributions and repeatability
estimates

Combining data from all three families, a significant genotypic variabil-

ity was found for TR1.5 (p < 0.0001), TR2.0 (p < 0.0001), TR2.5

(p < 0.004) and TR3.0 (p < 0.006) as illustrated in Figure 3. Phenotypic

values varied nearly two-fold for all TR traits, whereby TR1.5, TR2.0,

TR2.5 and TR3.0. respectively ranged from 25.5 to 55.7, 43.9 to 78.2,

58.7 to 101.5, and 73.4 to 124.8 mg H2O m�2 s�1. Broad-sense

repeatabilities ranged from 0.35 to 0.45 depending on the TR trait

(Figure 3), and were lower than those found for leaf dry mass (LDM),

LA, and SLA, which exhibited repeatabilities of 0.88 (LDM and LA) and

0.57 (SLA). TR traits correlated significantly with biomass traits such

as LDM, LA, and SLA (Figure 4).

4.3 | Genome-wide association mapping of
markers associated with transpiration rate response to
increasing VPD

The genetic kinships between the families, visualized as PCA plots

(Figure 5) revealed that lines derived from the same parent cluster

F IGURE 1 Examples of whole-plant transpiration rate (TR)
response curves to temperature-independent increases in
atmospheric vapor pressure deficit (VPD) for six lines selected from
the three families (two lines per family). Panels A–B, C–D, and E–F
represent responses of two genotypes from FAM14 (14–004 and
14–056), FAM22 (22–025 and 22–045) and FAM24 (24–034 and
24–048), respectively, including data from all three independent
experiments. Linear (slope) and segmented (Slope1, Slope2, VPDBP)
regression parameters, along with their coefficients of determination
(R2) are indicated.
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together. This separation between groups indicates successful devel-

opment of the NAM families and as a result makes it possible to

deploy GWAS methods, which use family structure as a covariate

(N model).

The two GWAS methods (N and K models) yielded a total of

27 unique and significant markers, which were identified for the four

transpiration and three biomass-related traits. Among these markers,

three were exclusively identified by the K model, 13 by the N model

and 11 by both N + K models (Table 3). Out of the 27 markers, seven

were not found to be contained in any haplotype blocks, while

20 were in 15 different haplotype blocks (Table S2), spanning 10 chro-

mosomes. Among the 15 haplotype blocks, two had more than one

F IGURE 2 Variation in best fits (linear vs. segmented, panel A) and their parameters (panels B–E) for transpiration rate (TR) response curves
to increasing vapor pressure deficit (VPD) across the three nested association mapping (NAM) families. In panels B–E, horizontal segments (blue
and orange for linear and segmented fits, respectively) reflect the range, while the circle's position indicates the median value for the parameter of
interest. The letter n reflects the number of genotypes best described by a linear or segmented response in each family. Parameters slope, Slope1,
Slope2 and VPDBP are fully described in the materials and methods.

F IGURE 3 Frequency distribution of the four TR traits. Panels A, B, C, and D represent data for TR1.5, TR2.0. TR2.5 and TR3.0 respectively. In
each panel, the values of four parents are highlighted by the gray arrows. Broad sense repeatability (r) values are reported in each panel.
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marker, with HaploBlock_5A_573.05_589.3 containing the highest

number of six markers (Table S2). The SNPs with the highest percent

of variation explained (PVE) were identified for LA, DW, and SLA, con-

sistently with the higher repeatabilities of these traits (Table 3).

Overall, a total of eight significant SNPs were found to be associ-

ated with the four transpiration traits (TR1.5, TR2.0, TR2.5, and TR3.0.),

individually explaining 8.7%–17.1% of the observed phenotypic varia-

tion (average PVE = 12%). Among these eight SNPs, four were identi-

fied in two or more TR traits and five were detected in both N and K

GWAS models (Table 3). With the exception of two markers, located

on chromosomes 5D (for TR1.5) and 7D (for TR2.0, TR2.5 and TR3.0), all

the remaining ones were found to be located in a major region of

chromosome 5A, also shared with SNPs associated with LA and SLA

(Table 3, Figure 6).

In this region of chromosome 5A, the TR-associated marker

S5A_595425852 consistently had the highest PVE (11.9 to 17.1) and

for this SNP, the allelic effect of parent RB07 was consistently posi-

tive (+2.13–+3.62), while that of the parent PI 430750 was consis-

tently negative (�1.78–�3.93). The allelic effects of parents PI

220455 and PI 519465 were either null or weak, respectively

(Table 3).

As indicated on Figure 7, some of the transpiration SNPs were

found to be associated with specific VPD conditions. Specifically, high-

VPD transpiration traits TR2.0, TR2.5, and TR3.0 were found to be associ-

ated with an SNP on chromosome 7D (S7D_500209644) that was not

detected for the lower-VPD transpiration trait (TR1.5). Similarly, an SNP

detected for TR1.5 on chromosome 5D (S5D_194957929) was found to

be specific to this trait only, that is, it was associated only with TR under

moderate (1.5 kPa) VPD conditions (Table 3, Figure 7).

Specific leaf area-associated SNPs were found to be highly

unique to this trait, with 15 out of 16 SNPs being specifically associ-

ated with this trait. Seven of these SNPs concentrate in a region

located on chromosome 1B, including one (S1B_9571874) explaining

20.9% of the phenotypic variation (Table 3). The rest of the unique

SNPs cover chromosomes 4B, 6A, 6D, 7A, and 7B, but have much

lower explanatory power (Table 3, Figure 6).

4.4 | Candidate gene identification

For the four major SNPs identified (S5A_579969562, S5A_595425852,

S5D_194957929 and S7D_500209644), the corresponding haploblocks

were examined for candidate gene identification (Table S3). Haplo-

Block_5D_66.76_290.6, where the SNP S5D_194957929 localizes, has

the highest number of genes (665) while HaploBlock_5A_573.05_589.3

and HaploBlock_5A_595.43_608.36, where SNPs S5A_579969562 and

S5A_595425852 reside, have a total of 112 and 87 genes, respectively.

The SNP S7D_500209644 turned out not to be contained in any haplo-

type block and only has one gene within 100 kb from it. As reported in

Figure 8, the largest class of genes associated with all three SNPs repre-

sents the gene products and protein complexes embedded in the cell

membrane.

5 | DISCUSSION

5.1 | Relevance of the VPD-associated SNPs
identified

To the best of our knowledge, this is the first study that identified the

genetic basis of TR response to VPD per se in plants, that is, indepen-

dent from confounding environmental variables such as temperature,

PAR, air mixing, and soil drying. In this regard, the study indicates that

F IGURE 4 Correlation matrix between the traits considered in
the analysis. Positive and negative correlations are indicated as shades
of blue and red. The color, shade, and size of the circles are
respectively proportional to the direction and value of the correlation
coefficients, as indicated by the scale on the right-hand side of the
figure.

F IGURE 5 Scatter plot of the first three principal components
generated from the genetic data of the 150 lines used in this study.
The three NAM families are color-coded as outlined in the insert.
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TABLE 3 List of significant markers associated with the studied traits along with their allele type, minor allele frequency (MAF), percent of
variation explained (PVE), �log10 p value, additive effect of the parental alleles and the type of GWAS method (N, K, or both) that identified the
markers

Trait Markers Alleles MAF PVE �log10 p value

Additive effect

MethodRB07 PI 220455 PI 430750 PI 519465

TR1.5 S5A_588416899a C/A 0.06 13.42 5.99 1.38 0.00 �2.13 0.75 N + K

S5A_591993956 A/G 0.09 11.32 5.17 1.89 0.00 �1.89 0.00 N + K

S5A_595425852b G/A 0.12 15.17 6.69 2.13 0.00 �1.78 �0.34 N + K

S5D_194957929 T/C 0.22 9.85 4.60 �0.91 2.99 �1.79 �0.28 N

TR2.0 S5A_584821710a A/G 0.11 14.82 6.55 1.88 0.00 �2.72 0.84 N + K

S5A_591993956 A/G 0.09 12.71 5.71 2.43 0.00 �2.43 0.00 N + K

S5A_595425852b G/A 0.12 17.14 7.49 2.63 0.00 �2.44 �0.19 N + K

S7D_500209644 C/T 0.09 10.37 4.80 2.16 �0.24 �1.92 0.00 N + K

TR2.5 S5A_579969562a A/G 0.14 12.34 5.57 2.68 2.68 �3.27 1.91 N

S5A_586600382a G/T 0.09 10.97 5.03 2.76 0.00 �2.76 0.00 K

S5A_591993956 A/G 0.09 10.61 4.89 3.09 0.00 �3.09 0.00 N + K

S5A_595425852b G/A 0.12 14.09 6.26 3.12 0.00 �3.28 0.16 N + K

S7D_500209644 C/T 0.09 11.97 5.42 3.24 �0.53 �2.71 0.00 N + K

TR3.0 S5A_588416899a C/A 0.06 9.20 4.35 2.81 0.00 �3.49 0.68 K

S5A_591993956 A/G 0.09 8.67 4.14 3.58 0.00 �3.58 0.00 K

S5A_595425852b G/A 0.12 11.89 5.39 3.62 0.00 �3.93 0.32 K

S7D_500209644 C/T 0.09 10.19 4.73 4.02 �1.29 �2.73 0.00 K

LA S2B_72586852 A/G 0.10 6.97 3.48 �16.34 �3.33 19.67 0.00 K

S5A_570788577c G/T 0.14 8.85 4.21 �19.84 0.00 20.77 �0.93 N + K

S5A_573046932a G/T 0.08 7.52 3.69 �20.08 0.00 20.08 0.00 K

S5A_579969562a A/G 0.14 25.27 10.94 �31.71 5.43 36.52 �10.24 N + K

S5A_591993956 A/G 0.09 21.12 9.14 �36.10 0.00 36.10 0.00 N + K

S5A_595425852b G/A 0.12 23.54 10.18 �26.47 0.00 43.66 �17.19 N + K

S5A_608360107b A/G 0.22 7.98 3.87 �13.85 �10.36 25.64 �1.43 N

S7D_500209644 C/T 0.09 8.45 4.05 �19.94 �5.87 25.81 0.00 N + K

LDM S5A_570788577c G/T 0.14 9.71 4.54 �0.08 0.00 0.09 �0.01 N + K

S5A_579969562a A/G 0.14 21.03 9.11 �0.11 0.02 0.13 �0.04 N + K

S5A_591993956 A/G 0.09 19.35 8.40 �0.13 0.00 0.13 0.00 K

S5A_595425852b G/A 0.12 21.44 9.28 �0.10 0.00 0.15 �0.05 N + K

S7D_500209644 C/T 0.09 7.90 3.84 �0.07 �0.03 0.10 0.00 K

SLA S1B_15589918 T/C 0.41 10.02 4.66 �1.43 �1.06 �5.91 8.40 N

S1B_16432170 G/T 0.37 7.78 3.79 �0.98 �1.91 �4.93 7.81 N

S1B_17145879 T/C 0.12 11.50 5.24 �3.48 0.97 �7.54 10.04 N + K

S1B_645514214 T/C 0.24 9.93 4.63 �3.28 0.24 �4.47 7.50 N

S1B_6474600 T/C 0.15 12.68 5.70 �5.28 �3.99 0.00 9.27 N + K

S1B_8175738 T/C 0.09 9.69 4.53 �2.98 �0.14 �7.78 10.91 N

S1B_9571874 C/T 0.16 20.89 9.05 �7.11 �2.35 0.00 9.46 N + K

S4B_4128125 G/C 0.18 8.40 4.03 �6.37 �2.20 �5.02 13.59 N

S5A_584821710a A/G 0.11 7.57 3.71 �5.12 0.00 1.29 3.83 N + K

S6A_568743993 T/C 0.17 7.39 3.64 �12.89 �6.87 �16.60 36.35 N

S6A_602923768 C/T 0.07 7.65 3.75 �6.23 0.00 0.00 6.23 N + K

S6A_603354559 A/G 0.12 8.57 4.10 �7.80 0.00 0.00 7.80 N

S6D_459750797 C/G 0.15 9.32 4.39 �4.58 �5.77 �3.60 13.95 N

S7A_484464079 T/C 0.15 9.41 4.43 �3.22 �2.54 �7.51 13.27 N

(Continues)
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a biophysical trait, namely whole-plant TR sensitivity to VPD has a

genetic basis in wheat. In the literature, while there is a very limited

set of studies that undertook an effort of identifying the genetic basis

of whole-plant TR, these took place under naturally fluctuating envi-

ronments that did not separate out interacting effects on TR arising

from co-variation in temperature, PAR and air mixing along with VPD

(Kholova et al., 2012; Schoppach et al., 2016). Because water use

strategies are driven by TR response to VPD, it is critical to confirm

that such behaviors have a genetic basis if they are to be used as a

basis for a breeding effort.

In this respect, the present study revealed a major region on chro-

mosome 5A, which appears to be a ‘hotspot’ for traits controlling

whole-plant TR and evaporative surface (Figure 6, Table 3). More spe-

cifically, this region harbors an SNP of a particular interest

(S5A_595425852) that explained up to 17.1% of the observed pheno-

typic variance, with the RB07 and PI 430750 alleles consistently exhi-

biting positive and negative effects. These effects are in alignment

with the rationale for selecting PI 430750 as the parent that exhibited

the lowest slope for TR response to VPD, in comparison to RB07

(Figure S1, Tamang et al., 2019). The haploblock where this SNP

resides harbors various gene families, the majority of which are inte-

gral parts of a membrane (Figure 8A). While further studies are

needed to determine the exact functions of these genes, such a find-

ing is consistent with the need for recruitment of intercellular, trans-

membrane aquaporins for water movement during TR response to

VPD (Maurel et al., 2016; Sadok & Sinclair, 2010; Schoppach

et al., 2014; Sinclair et al., 2008). Additionally, the haploblock is asso-

ciated with three photosynthesis-related genes, (GO:0009535,

GO:0019684, GO:0015979), which functions could be related to TR

response to VPD given the coupling between transpiration and CO2

fixation through the stomata.

Another SNP of interest in this region is S5A_579969562

(Figure 8B). The profile of the haploblock harboring this gene is similar

to that of S5A_595425852. It contains genes which the majority of

are membrane-associated, but additionally, it presents two auxin-

responsive genes (GO:0006351). Such findings are in alignment with

Schoppach et al. (2016) who identified a major QTL controlling TR

under naturally fluctuating condition on chromosome 5A. This peak

region was mapped to genes responsive to auxin, and the subsequent

finding was that auxin differentially accumulated in the root tissues of

genotypes from that population, expressing contrasting levels of TR

(Sadok & Schoppach, 2019). Interestingly, the haploblock of this SNP

also harbors the Vrn-A1 gene, which is known to affect plant develop-

ment (Dixon et al., 2019). If confirmed, our findings would indicate

that Vrn-A1 could also influence transpiration, presumably through

pleiotropic effects.

The investigation also revealed that some SNPs are associated

with either low VPD (TR1.5, S5D_194957929) or higher VPDs only

(S7D_500209644 for TR2.0, TR2.5, and TR3.0), which are respectively

located on chromosomes 5D and 7D (Figures 6,7, Table 3). While

S7D_500209644 was not found to be in any haploblock, the one con-

taining S5D_194957929 presented a very rich gene ontology profile

(Figure 8C), which highlighted membrane-associated genes as the

biggest class, similar to the two previously discussed SNPs.

This SNP was also found to be associated with at least one

ABA-responsive gene (GO:0009737), an observation that could be

interpreted as consistent with this SNP being associated with a

specific VPD level, since differential VPD levels are associated with

different ABA accumulation levels in the plant (Kholová

et al., 2010; Kudoyarova et al., 2011). If confirmed, these SNPs

offer a potential avenue for further fine-tuning the design of

cultivars adapted to specific VPD regimes.

TABLE 3 (Continued)

Trait Markers Alleles MAF PVE �log10 p value

Additive effect

MethodRB07 PI 220455 PI 430750 PI 519465

S7A_64614962 A/G 0.12 7.53 3.70 �3.07 �2.24 �3.42 8.73 N

S7B_66021438 G/C 0.11 8.05 3.90 �6.00 �8.04 0.00 14.04 N

Note: Bolded markers indicate SNPs that are detected for several traits and marker identifiers followed by the same lower-case letters (a, b, and c) are

within the same haplotype block. The absence of these letters indicate that the corresponding SNP is either the only SNP in the given haplotype block or

not associated with any haplotype block.

F IGURE 6 Genetic map of statistically significant markers
associated with the studied traits. Each point in the map represents
the marker's physical position in mega base pairs, with colors
corresponding to different traits. Only those chromosomes where

significant markers are found are shown (10 out of 21 wheat
chromosomes).
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5.2 | Advantages and limits of the phenotyping
approach

Due to unavoidable space and logistical limitations, the three-year

phenotyping approach deployed in this study relied each time on a

sequential planting in order to phenotype the three mapping popula-

tions. This resulted in the challenge of exposing each one of the three

cohorts of a given experiment to sensibly different growth conditions,

as these were grown under naturally fluctuating conditions in a green-

house (Table 1). Despite this, reasonable repeatabilities were found

for the traits of interest (Figure 3), indicating that future efforts of

phenotyping the entire mapping population simultaneously is likely to

yield higher repeatabilities, and perhaps more SNPs. Relieving this

logistical bottleneck is probably critical for the future, to perform more

routine and risk-averse studies given the relatively complex nature of

the phenotypes being investigated (response curves), which tend to

be sensitive to changes in growth conditions (Sadok et al., 2021). With

such larger phenotyping set-ups, the highest throughput for screening

TR versus VPD response curves, achieved in this investigation

(150 lines), could be perhaps increased 2–3 folds. Such effort might

be particularly needed in future efforts, as our results indicate that

VPD sensitivity, meaning the expression of a significant change in

slope in TR response to increasing VPD, is a relatively rare trait, which

was expressed by only 15% of the genotypes of the study (Figure 2).

This likely requires the screening of a large number of genotypes in

order to be able to maximize phenotypic variation.

One potential limit of the proposed approach is its reliance on

controlled, rather than fluctuating environmental conditions for phe-

notyping TR responses to VPD. We argue that this approach is critical

for a number of reasons. First, ever since the hypothesis of TR

F IGURE 7 Manhattan plots showing significant SNPs associated with traits controlling transpiration rate (TR) response to increasing vapor
pressure deficit (VPD). Results are shown based on two genome-wide association models, N (left) and K (right) for TR1.5 (A, B), TR2.0 (C, D), TR2.5

(E, F) and TR3.0 (G, H). In each panel (except G), the horizontal line indicates the threshold level above which SNPs are declared as significantly
associated with the trait with an FDR of 0.05.
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sensitivity to VPD was proposed as a promising avenue for improving

crop productivity in water-limited environments in the systems analy-

sis of Sinclair et al. (2005), the vast majority of the efforts looking for

this trait in crops failed to impose VPD as the only source of variation

(see review by Sinclair et al., 2017). As recent research efforts

highlighted the benefits of breeding intentionally for this trait (Collins

et al., 2021; Gaffney et al., 2015; Sadok et al., 2019; Ye et al., 2020),

the inability to identify a genetic basis for TR sensitivity to VPD per se

would mean that this trait is not a viable breeding target.

A second argument in favor of the controlled environment

approach lies in the importance of untangling the effects on TR

arising from VPD from those resulting from co-variation in PAR or,

even more importantly, temperature. Variation in temperature con-

ditions within and between days could strongly mask differences

between genotypes, and in fact, may trigger a switch from a VPD-

sensitive (i.e., a water-saving) phenotype to a VPD-insensitive

(i.e., consumptive) one, and to complicate things, in a genotype-

dependent fashion (Sadok et al., 2021). In this context, our results pro-

vide a parsimonious basis for interpreting the physiological relevance of

candidate genes/markers as outlined in the above section. The relatively

low number of SNPs identified underlying an a priori complex trait might

be the direct result of the phenotyping approach, which has the benefit

of pointing directly to those that directly underlie TR response to VPD,

rather than other confounding variables.
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