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1  |  INTRODUC TION

Virtually every component of Earth's climate system underwent 
large-scale change from the end of the Last Glacial Maximum to the 
early Holocene (approximately 19,000 to 11,000 years ago; Clark 
et al., 2012), with rates and magnitudes of warming comparable with 
21st century projections in many locales and regions (Brown, Wigley, 
Otto-Bliesner, Rahbek, & Fordham, 2020; Burke et al., 2018). Whilst 
not direct analogues of future climatic change due to different forc-
ing (Crowley, 1990), this last deglacial period provides important in-
sights for anticipating the ecological consequences of rapid warming 

(Fordham et al., 2020; Nolan et al., 2018), including quantifying risks 
of climate-driven biodiversity loss (Brown, Wigley, Otto-Bliesner, 
Rahbek, et al., 2020), and strengthening conservation management 
and policy through improved knowledge of biotic responses to cli-
matic stressors (Fordham et al., 2020).

Climatic oscillations in oceanic temperatures during the last de-
glaciation, and other glacial–interglacial cycles of the late Quaternary 
(Dansgaard et al., 1993), caused major redistributions of global ma-
rine biodiversity (Hewitt,  2000; Pellissier et al.,  2014). Many spe-
cies retreated into localised climatic safe havens during periods of 
wide-scale climatic disruption, preventing the extinction of ancient 
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lineages (Pellissier et al.,  2014), which promoted differentiation in 
radiating taxa, resulting in large aggregates of species with restricted 
ranges (Pinsky et al., 2020). Accordingly, areas where marine species 
richness is exceptionally high, such as the Coral Triangle in the Indo-
Australian Archipelago, occur in regions where late Quaternary sea 
surface temperatures (SSTs) have been relatively stable (Pellissier 
et al., 2014). Thus, maintaining high species richness in past climatic 
refugia relies, in part, on low-magnitude rates of future climatic 
change (Barlow et al., 2018), because resident species are ecologi-
cally ill-equipped to respond rapidly to change (Nguyen et al., 2011; 
Pellissier et al., 2014; Pinsky et al., 2020).

Recent human-induced climate change is already affecting 
Earth's marine biodiversity through shifts in species distributions 
and abundances (Pecl et al., 2017; Yasuhara et al., 2020), which are 
causing changes in community structure (Stuart-Smith et al., 2021; 
Vergés et al., 2014) that are negatively affecting ecosystem function 
(Frainer et al., 2017; Kortsch et al., 2015; Pinsky et al., 2020). In the 
terrestrial realm, biodiverse tropical regions are projected to experi-
ence rates of temperature change that exceed even the most abrupt 
shifts of the late Quaternary, depleting species richness at local and 
regional scales (Brown, Wigley, Otto-Bliesner, Rahbek, et al., 2020). 
However, the prospects for marine species richness in rapidly warm-
ing oceans are less clear.

Although exposure of marine biodiversity to absolute changes 
in past and future oceanic temperatures has been mapped, this has 
generally been done over short historical time periods (Beaugrand 
et al., 2015; Burrows et al., 2014; García Molinos et al., 2016), with-
out consideration of the conditions that species evolved in and are 
adapted to (Hoffmann & Sgrò,  2011). Where a longer-term per-
spective has been applied, the exposure of marine biodiversity to 
large and rapid shifts in oceanic temperature—those operating over 
decadal- to centennial-scales (Dansgaard et al.,  1993)—have been 
ignored (Beaugrand et al.,  2015). In studies where the ecological 
ramifications of gradual oceanic warming events in the ancient past 
have been considered, it has been done so only for a single taxo-
nomic group, without directly considering the rate of climatic change 
as an additional critical driver of change in biodiversity (Yasuhara 
et al.,  2020). Therefore, a better spatiotemporal understanding of 
patterns of past and future oceanic warming is needed to assess the 
exposure and, hence, vulnerability (Garcia et al.,  2014), of marine 
biodiversity to future climatic change (Barlow et al., 2018).

Here, we describe and apply a new technique for assessing the 
exposure of global marine biodiversity (including plants and animals) 
to human-induced climatic changes projected for the 21st century. 
The approach, which builds off methodological advances in model-
ling the exposure of terrestrial biodiversity to climate change (Brown, 
Wigley, Otto-Bliesner, Rahbek, et al., 2020; Trisos et al., 2020), com-
pares spatiotemporal shifts in extreme centennial rates of oceanic 
warming and absolute SST over the last 21,000 years to future pro-
jections, providing a first-order assessment of the challenges that 
marine species face this century. Using this new climate change met-
ric, we show that the most biodiverse areas of Earth's oceans are 
also among the most exposed to accelerated rates of anthropogenic 

(post-industrial) climate change and that tracking suitable climatic 
conditions this century will require species to move distances be-
yond the biogeographic realms that they evolved in and are endemic 
to, at rates of movement rarely seen for marine life.

2  |  METHODS

We developed and applied a new protocol for assessing the expo-
sure of marine life to human-induced climatic change. This was done 
using data on the distributions of >14,000 species and by calculat-
ing two important dimensions of climatic change that affect marine 
biodiversity: extreme rates of oceanic warming and changes in SST. 
These climate-metrics were calculated continuously for the last 
21,000 years and for the 21st century using publicly available data-
sets (Brown, Wigley, Otto-Bliesner, & Fordham, 2020). Differences in 
the centennial rate of change in SST during periods of extreme global 
warming were used to quantify the exposure and, hence, vulnerability 
of marine biodiversity to climatic change following industrialisation.

2.1  |  Past and future oceanic temperatures

Annual gridded SSTs were extracted from the StableClim database 
(Brown, Wigley, Otto-Bliesner, & Fordham, 2020; 2.5° × 2.5° resolu-
tion) for the recent past (1850–2005 C.E.), and for current-day and 
future (2006–2100 C.E.) climates. Climate data for the ancient past 
(21,000–100 B.P [1850 C.E.]), was extracted from the TraCE-21 ka 
experiment using PaleoView (Fordham et al., 2017). TraCE-21 ka is a 
global, coupled ocean–atmosphere-sea ice-land surface general cir-
culation model (AOGCM) which simulates the global climate system 
over the last 21,000 years (Liu et al., 2009). The TraCE-21 ka simula-
tion has been validated across multiple spatial and temporal scales, 
where it has been shown to skilfully simulate major climatic events 
(Liu et al., 2009) and accurately model contemporary climatic condi-
tions (Fordham et al., 2017).

Historic and future projections of SST were based on a multi-
model ensemble average of 19 AOGCMs from the fifth phase of the 
Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012). 
Future forecasts were simulated under two different Representative 
Concentration Pathways (RCP; Meinshausen et al., 2011; van Vuuren 
et al., 2011). The multi-model ensemble data available in StableClim 
agrees with observed climatological average temperatures at a range 
of scales (e.g., global ρ = .99, root mean square error [RMSE] = 1.98; 
High tropics [20°S–20°N] ρ = .81, RMSE = 1.83). See Brown, Wigley, 
Otto-Bliesner, and Fordham et al. (2020) for a full description of the 
multi-model ensemble and the RCP scenarios used in this study.

2.2  |  Rapid warming

Periods of rapid global ocean warming were identified and extracted 
from StableClim using the 95th percentile of “natural” variability 
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of the CMIP5 pre-industrial control run ensemble (Brown, Wigley, 
Otto-Bliesner, & Fordham, 2020). The 95th percentile corresponded 
to a natural rapid warming rate of 0.18°C/Century. Centuries be-
tween 21,000 B.P. and 2100 C.E. with global oceanic warming rates 
≥0.18°C/Century were considered extreme and retained for further 
analysis (Fordham et al., 2019).

Gridded estimates of trend (°C/year) and variability (standard 
deviation of residuals from the trend; Nadeau et al.,  2017) in SST 
during these extreme centuries of global warming were extracted 
and averaged for the periods: (i) 21,000 B.P. to 1850 C.E., and (ii) 
1850 to 2100 C.E. for both RCP 4.5 and RCP 8.5 scenarios. Spatial 
estimates of trend were pattern-scaled using the mean of trends in 
global mean SST to account for differences in climate forcing (and 
their effects on global climate trends) between the past and the fu-
ture (Brown, Wigley, Otto-Bliesner, Rahbek, et al., 2020). We then 
calculated the SNR (SNR  =  |grid cell trend|/grid cell variability) in 
each grid cell. We used change in SNR as a metric of exposure of 
biodiversity to extreme rates of centennial climate warming.

2.3  |  Species richness

Marine species richness data came from AquaMaps (Kaschner 
et al., 2015), which is commonly used for vulnerability assessments 
of marine biodiversity (Brito-Morales et al.,  2020; García Molinos 
et al.,  2016). Relative probabilities of contemporary species oc-
currences were based on modelled data and expert knowledge 
(Kaschner et al., 2015). We discarded distribution data for species 
modelled with less than 10 occurrence records (i.e., the criterion 
used by AquaMaps to define data-scarce species). This resulted in a 
total of 14,173 marine algae, plant, invertebrate, fish, mammal, and 
reptile species. A species richness raster was then generated at a 
0.5° × 0.5° grid cell resolution by applying an occurrence probability 
threshold of 0.4 and then summing the total number of species in 
each grid cell (García Molinos et al., 2016). While the resulting spe-
cies richness maps generated from AquaMaps are relatively insensi-
tive to this threshold (Jones & Cheung, 2015; Selig et al., 2014), we 
nonetheless tested the sensitivity of this threshold. To do this we 
varied the probability threshold between 0 and 0.5 and quantified 
the overlap between spatial estimates of species richness using the 
I statistic (Warren et al., 2008). We found that all resulting species 
richness maps were effectively identical at a 0.5° × 0.5° resolution, 
with values for the I statistic ranging from 0.986 to 1.

We matched the spatial resolution of our marine species richness 
estimates to the spatial resolution of our climate data at a 2.5° × 2.5° 
grid cell using mean aggregation. We then identified global hotspots 
of marine species richness as grid-cells with richness ≥95th percen-
tile of global values, as defined previously (Ramirez et al.,  2017). 
Although we acknowledge that the use of AquaMaps for describing 
macroecological patterns comes with its own strengths and limita-
tions (Moonlight et al., 2020), we used this data resource to estimate 
and map species richness and determine the location of biodiver-
sity hotpots because (i) it represents the most comprehensive global 

dataset of marine species distributions currently available; (ii) the an-
alytical approach underpinning this data repository has been shown 
to work well, when compared to alternative approaches for generat-
ing species range maps at a global scale (Ready et al., 2010); and (iii) 
high levels of agreement have been shown with other independent 
estimates of local to regional species richness (Selig et al.,  2014). 
Furthermore, our use of AquaMaps is akin to how IUCN Red List 
maps have been used elsewhere to determine the exposure of biodi-
versity to climate change (Trisos et al., 2020).

2.4  |  Exposure of marine biodiversity to future 
climate change

We used change in grid cell and regional SNR (δ SNR) to quantify the 
exposure of marine biodiversity to projected rates of oceanic warm-
ing following industrialisation. We did this by subtracting past SNR 
values from post-industrial to 2100 C.E. values (Brown, Wigley, Otto-
Bliesner, Rahbek, et al., 2020). Here, positive δ SNR values indicate 
rates of climate change following industrialisation that surpass the 
most extreme rates of change in the past, whereas negative values 
indicate rates of climate change that were more rapid in the past.

Biogeographic realms for the world's oceans (Costello 
et al., 2017) were then intersected with the location of each grid cell. 
These 30 biogeographic realms are evolutionarily unique areas that 
harbour large numbers of endemic species (Costello et al., 2017). For 
grid cells in each realm, we extracted values of past and future SNR. 
Biogeographic realms with less than three grid cells of area were ex-
cluded from any further analysis (n = 3). Differences between past 
and future SNR within realms were assessed using a Kolmogorov–
Smirnov test, with p-values adjusted for multiple comparisons fol-
lowing Benjamini and Yekutieli  (2001). The proportional overlap 
(between 0 and 1) in kernel densities of past and future SNR was 
calculated for each biogeographic realm. The degree of overlap was 
used as a regional index of exposure to future rapid rates of warm-
ing, with low overlap corresponding to high exposure.

For hotspots of marine species richness within each realm, 
we determined whether centennial rates of warming in SST post-
industrialisation exceeded the 95th percentile of extreme centen-
nial rates of warming that occurred anywhere in the corresponding 
biogeographic realm prior to industrialisation. We then calculated 
the percentage of marine biodiversity hotspot cells projected to ex-
perience rates of oceanic warming that exceeded these bioregion-
level thresholds (i.e., the regional conditions in which the species 
persisted from 21,000 B.P. to 1850 C.E.). This approach is conser-
vative compared with competing methods for calculating climate 
exposure (Williams et al., 2007), because non-analogue conditions 
are calculated at the scale of the biogeographic realm (where the 
majority of species are endemic; Costello et al., 2017) rather than 
individual grid cells. We tested the sensitivity of projections of cli-
mate exposure to the choice of threshold, using thresholds from the 
90th to 100th percentile of past (pre-industrial) SNR. This showed 
that our calculations of overlap were reasonably stable, with average 
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standard deviation <10% under RCP 4.5 and <3% under RCP 8.5 
(range = 0%–25%, dependent on biogeographic realm).

To determine the percentage of global hotspots of marine spe-
cies richness that are likely to experience no-analogue rates of 21st 
century climate warming, we calculated the total number of hotspot 
grid cells predicted to exceed past extreme SNR values divided by 
the total number of global hotspot cells. Our approach assumes 
that species accumulated and evolved in these hotspots of marine 
species richness over multiple glacial–interglacial cycles (Dynesius 
& Jansson, 2000; Pellissier et al., 2014). An area-weighted percent-
age was also used to determine the average loss of hotspot cells per 
realm, using the area of the realms as weights.

2.5  |  Climate analogues

Pre-industrial gridded estimates of annual average sea-surface temper-
ature were extracted from PaleoView (Fordham et al., 2017), whereas 
post-industrialisation estimates were extracted from StableClim for 
RCP 4.5 and RCP 8.5 (Brown, Wigley, Otto-Bliesner, & Fordham, 2020). 
SST data for the pre-industrialisation period (21,000 BP to 1850 
C.E.) was bias corrected using a simple delta bias-correction (Beyer 
et al., 2020), calculated using anomalies between the TraCE-21 data 
and the StableClim data for the period 1850–1950 C.E. (100–0 B.P.).

To assess the exposure of hotspots of marine species richness 
to novel climatic conditions, plots of latitudinal mean temperatures 
(Hovmöller plots) were generated for cells containing species rich-
ness ≥95th percentile of global values (see above). Upper grid cell 
temperatures during the Holocene thermal maximum (HTM)—a 
variable period between 9000 and 5000 B.P., where tropical ocean 
temperatures were up to 1°C warmer than pre-industrial tempera-
tures (Renssen et al., 2012)—were compared with a 21-year period 
centred on 2090 (2080–2100 C.E.) under RCP 4.5 and RCP 8.5 and 
used as an additional measure of exposure to future climate change 
(García Molinos et al.,  2017). We used the VoCC package for R 
(García Molinos et al., 2019) to calculate the nautical distance (i.e., 
distances that account for coastal barriers) over which species in 
marine hotspots would have to disperse to remain within their upper 
temperature analogue in the future, under both RCPs. For cells 
where a climate analogue exists in the future, we identified whether 
they remained in the same or different biogeographic realm and de-
termined the percentage of hotspots that had climate analogues in a 
different biogeographic realm. We repeated the analysis, restricting 
the search for climatic analogues to near-shore Exclusive Economic 
Zones. We did this to investigate potential future dispersal condi-
tions for species that rely on habitats found close to shore in rela-
tively shallow waters (Kitchel et al., 2022; Nagelkerken et al., 2000).

3  |  RESULTS

Areas of highest marine species richness occur at tropical and mid-
latitudes, corresponding to regions where SST remained relatively 

stable during centuries of extreme deglacial oceanic warming at a 
global scale (Figure 1). However, these most speciose areas of Earth's 
oceans are projected to experience the greatest relative change in 
pre- and post-industrial rates of rapid centennial warming by the end 
of the 21st century (Figure 1), meaning they will be disproportion-
ately exposed to no-analogue rates of increased SST.

At a regional scale, the smallest overlaps in pre- and post-
industrial rates of rapid warming are projected to occur in biogeo-
graphic realms at tropical and mid-latitudes (50° South–50° North), 
based on a comparison of rates of extreme warming using SNR over 
the last 21,000 years and for the 21st century. Specifically, our mod-
elling indicates that 6 out of 17 tropical and mid-latitude biogeo-
graphic realms will be highly exposed to novel (no-analogue) rates 
of future oceanic warming (<10% overlap in pre- and post-industrial 
rates of extreme warming) by 2100 C.E. under RCP 4.5 (shown in 
red, Figure 2a). Under RCP 8.5, the number of biogeographic realms 
in tropical and mid latitudes that will be highly exposed to novel rates 
of future oceanic warming is projected to increase to 11 (Figure S2).

Although we project significant departures away from the most 
rapid rates of deglacial oceanic warming by 2100 C.E. for all oceanic 
biogeographic realms (p < .001; Data  S1), similar warming rates to 
those projected for the 21st century occurred more frequently in 
biogeographic realms at high latitudes (≳50° N). Overlaps in pre- and 
post-industrial warming rates of up to 50% are projected for biogeo-
graphic realms at high latitudes under RCP 4.5 (Figure 2a), increasing 
to 61% under RCP 8.5 (Figure S2; Data S1). Rates and magnitudes of 
pre-industrial centennial warming are projected to have been partic-
ularly high in the Offshore and Northwest Atlantic, North American 
boreal, and Arctic Seas (Figure 2).

At a local scale, we show that locations with plant and animal 
species richness ≥95th percentile of global values (hatched areas in 
Figures 1a and 2a) are projected to experience some of the largest 
shifts in rates of anthropogenic warming. Under RCP 4.5, up to 50% 
(±11.1% depending on the choice of threshold used to define species 
ranges, see Section 2) of the total area of these global hotspots of 
marine species richness will be exposed to rates of climate warming 
(defined as SNR) this century that exceed even the most abrupt in-
creases in SST in corresponding biogeographic realms over the last 
~21,000 years. This figure is projected to rise to up to 81% (±4.7%) 
under RCP 8.5. The unweighted regional averages were 68% (±8.1%) 
under RCP 4.5, increasing to 84% (±2.3%) under RCP 8.5.

Impacts of accelerated rates of warming on these global 
hotspots of marine biodiversity will be amplified by SSTs exceed-
ing absolute temperatures experienced at any time over the last 
21,000 years (Figure  3), requiring marine communities in these 
species-rich areas to redistribute quickly in order to track their 
thermal requirements (Burrows et al., 2019). Upper oceanic tem-
peratures experienced during the HTM (the most recent ancient 
warm period; Renssen et al.,  2012) by marine life in hotspots 
of marine species richness are likely to be on average 1625 km 
(±922 km) and 2190 km (±997 km) away from their current loca-
tions by the end of this century under RCP 4.5 and 8.5, respec-
tively (Figure  S3). In 2100, the nearest analogue of upper SST 
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will be in a completely different biogeographic realm to where 
most species evolved, for 32% and 39% of the richest areas of 
marine species richness under RCP 4.5 and RCP 8.5, respectively 
(Figure S4).

Restricting analogue searches to near-shore locations (<200 
nautical miles from the shore; Figure 4), which today provide suitable 
shallow-water habitat for locations of exceptionally high species 

richness (Figure 1), increases further the distance to the nearest SST 
analogue (RCP 4.5 = 2868 km [±3302]; RCP 8.5 = 4139 km [±3943]; 
Figure S5). It also increases the proportion of global hotspots of ma-
rine species richness (47%–62%) where species must move beyond 
their biogeographic realm to track their thermal requirements, in-
creasing the need to traverse entire oceanic basins to track thermal 
requirements.

F I G U R E  1  Species richness and rate of oceanic warming. Map (a) shows bivariate relationships between marine species richness (MSR) 
and pre- and post-industrial (under a future RCP 4.5 scenario) difference in centennial rates of change in sea surface temperature (δ SNR) 
for periods of rapid oceanic warming. Histograms show latitudinal gradients in MSR (b) and δ SNR (c). Hatched areas in (a) (outlined in white) 
show hotspots of MSR. Inset plots show density plots of standardised marine species richness (d) and delta SNR (e). Dotted line on (d) 
corresponds to the 95% threshold for MSR hotspots. Colours on plots (d) and (e) correspond to the colours along the axes of the bivariate 
plot (a), with changes in colours showing the location of break points. Lines in (a) show the 30 marine biogeographic realms from Costello 
et al. (2017).
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4  |  DISCUSSION

Our new approach for analysing extreme rates of pre- and post-
industrial warming shows that human-driven climate change will dis-
proportionately affect marine biogeographic realms at tropical and 
mid-latitudes this century, exposing 50%–84% (dependent on the 
warming scenario considered) of the richest areas of global marine 
biodiversity to future climate-driven species redistributions. This 
variation in the spatial pattern of rates of change in SST, acting alone, 
or in synergy with other human impacts on the marine realm (Gill 
et al., 2017; Halpern et al., 2008), is likely to cause wide-scale spe-
cies extirpations, extinctions, and extensive community reshuffling 
(Trisos et al.,  2020), affecting ecosystem services in areas where 
governance systems are already struggling to prevent biodiversity 
losses (Barlow et al., 2018; Oremus et al., 2020).

A higher exposure of marine life to novel oceanic warming by 
2100 C.E. in Earth's most specious oceanic regions threatens wide-
scale biodiversity loss (Burrows et al., 2014), not only because the 
sheer number of species is greater in these areas, but also because 
ecological communities in these regions are least able to respond to 
large relative shifts in rates of warming. This is because species in 
tropical regions—where 93% of hotspots of marine species richness 
are found, based on area—have small geographic ranges (Pellissier 
et al., 2014), high ecological specialisation (Foden et al., 2013), lim-
ited dispersal capacity (Pinsky et al.,  2020), and narrow thermal 

safety margins (Vinagre et al.,  2019), with species living closer to 
their upper thermal maxima (Nguyen et al., 2011).

The impacts of accelerated rates of warming on these global 
hotspots of marine species richness are likely to be further amplified 
by oceanic temperatures exceeding upper absolute temperatures 
experienced during the HTM, a period in Earth's history (~9000–
5000 years ago) when oceanic temperatures in many regions were 
as warm or warmer than pre-industrial temperatures (Renssen 
et al.,  2012). However, for many communities of species, tracking 
these upper thermal requirements will necessitate moving well be-
yond the biogeographic realm where they are endemic, at rates of 
redistribution (2020–2090  =  ~23–31 km  year−1) that exceed those 
observed for most marine taxa (Poloczanska et al., 2013).

Some of the largest shifts in past and future rates of warming 
are projected to occur in the Coral Triangle and central Indo-Pacific, 
which together contain the majority of the world's reef-building 
coral species, providing ecosystem services that support the live-
lihoods of >200 million people (Barlow et al.,  2018). Here, and in 
other global hotspots of marine species richness, conservation in-
terventions are needed immediately to strengthen the ecological 
and evolutionary resilience of biodiversity to climate change, by 
improving fisheries management, assisted migration, and the expan-
sion of well-managed, climate-smart marine protected areas (Barlow 
et al., 2018; Brito-Morales et al., 2020; Oremus et al., 2020). While it 
has been previously shown that 39% of tropical marine assemblages 

F I G U R E  3  Temporal changes in mean annual sea-surface temperature for hotspots of marine biodiversity. Hovmöller diagrams showing 
temperatures for hotspots of marine species richness, grouped by latitudinal bands, for the period 21,000 B.P. to industrialisation (1850 C.E.) 
(a), and post-industrialisation to the end of the 21st century under RCP 4.5 (b) and RCP 8.5 (c). Temperatures in (a) have been harmonised 
with temperatures in (b) using anomalies from a 100-year period of overlap. Temperatures for RCP 4.5 (b) and 8.5 (c) are based on a multi-
model ensemble average (Brown, Wigley, Otto-Bliesner, & Fordham, 2020). Black dotted lines in (a) show the time period for the Holocene 
thermal maximum, and lines in (b) and (c) show the time period where analogous climate conditions from the Holocene thermal maximum 
were checked.
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are projected to have more than 20% of their constituent species 
exposed to unprecedented temperatures by 2100 based on a post-
industrial baseline (Trisos et al.,  2020), further research using a 
longer-term baseline could provide important additional information 
for biodiversity conservation efforts.

In some high-latitude (≳50° N) biogeographic realms in the 
Northern Hemisphere, biodiversity has persisted through climatic 
perturbations during the last deglaciation that approximate those 
predicted for the future (Figure 2; Figure S2). While these past rapid 
warming events could have induced selective pressures on organ-
isms, making species in these regions more resilient to rapid rates 
of future warming (Hoffmann & Sgrò, 2011), absolute temperatures 
in the Arctic this century are forecast to exceed those experienced 
over the past 55 million years (Sluijs et al., 2006). These changes are 
already causing a rapid borealisation of Arctic marine ecosystems 
(Fossheim et al., 2015; Polyakov et al., 2020) and the redistribution 
of many Arctic marine species (Frainer et al., 2017), potentially en-
dangering taxa, even those with relatively high dispersal capabilities 
and low ecological specialisation (Kortsch et al., 2015).

Here we developed and applied a new climate change metric to 
more than 21,000 years of continuous global climate data to quantify 
exposure of marine biodiversity to human-induced oceanic warm-
ing, avoiding well-established limitations in statistical projections of 

species' range shifts (Yates et al., 2018), and the low availability of 
demographic, physiological, and evolutionary data for parameteris-
ing process-explicit models of biodiversity change (Pilowsky et al., in 
press) While climate metrics are highly suited to biodiversity assess-
ments of data-depauperate and poorly described species (Garcia 
et al., 2014), which constitutes the majority of marine life (Pacifici 
et al.,  2015), our approach does not distinguish between poten-
tially important inter-specific differences in adaptive, dispersal, or 
physiological capacities (Comte & Olden, 2017; Sunday et al., 2012). 
Therefore, our results should be interpreted somewhat conserva-
tively. Nevertheless, our finding that future ocean warming could 
cause deleterious biodiversity changes in more than 70% of current-
day global hotspots of marine species richness, provides an import-
ant first-order assessment of the near-term threat anthropogenic 
climate change poses to marine biodiversity, particularly in tropical 
regions. Our analysis did not consider the increasing frequency of 
short-term marine heatwaves this century (Oliver et al., 2019), which 
are likely to further amplify the effects of exposure to accelerated 
centennial rates of warming, particularly in near-shore environments 
(Burrows et al.,  2019). Concerningly, abrupt exposure events are 
projected to occur more frequently in areas of high species richness 
(Trisos et al., 2020), highlighting the potential for abrupt ecological 
collapse in global hotspots of marine species richness.

F I G U R E  4  Redistribution of global 
hotspots of marine species richness under 
climate change. Maps shows the distance 
from each biodiversity hotspot cell to 
the closest near-shore cell containing 
an analogue of sea-surface temperature 
(SST) under RCP 4.5 (a) and RCP 8.5 
(b). The location of analogous cells are 
restricted to near-shore locations using 
the exclusive economic zone (purple 
outline). Inset (c) shows the latitudinal 
pattern in analogue conditions between 
the Holocene thermal maximum to a 
21-year window centred on 2090 C.E. for 
both RCP 4.5 and RCP 8.5. Inset (d) shows 
a density plot of the distances (km × 1000) 
moved under each scenario, with vertical 
arrows highlighting the mean for RCP 
4.5 (orange) and RCP 8.5 (red). Note that 
nearest analogue distances/locations in 
(a) and (b) were calculated using nautical 
distances (i.e., not allowing for dispersal 
over land) but are plotted using great 
circles. Gray lines in ocean basins in a-b 
show the 30 marine biogeographic realms 
from Costello et al. (2017). See Section 2 
for further details.
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Marine life in tropical regions is ill-equipped to respond to large 
relative shifts in rates of future warming and changes in absolute 
temperatures. Within tropical regions, locations of exceptionally high 
marine biodiversity will be highly exposed to oceanic warming, mak-
ing them particularly vulnerable to 21st century climatic change. This 
new approach and understanding of exposure of marine biodiversity 
to past and future rates of oceanic warming provides important con-
text and scalable information for deriving and strengthening conser-
vation actions to safeguard marine biodiversity under climate change.
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